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Abstract

Psychological distress can be conceptualized as an umbrella term encompassing symptoms of 

depression, anxiety, posttraumatic stress disorder (PTSD), or stress more generally. A systematic 

review of metabolomic markers associated with distress has the potential to reveal underlying 

molecular mechanisms linking distress to adverse health outcomes. The current systematic review 

extends prior reviews of clinical depressive disorders by synthesizing 39 existing studies that 

examined metabolomic markers for PTSD, anxiety disorders, and subclinical psychological 

distress in biological specimens. Most studies were based on small sets of pre-selected candidate 

metabolites, with few metabolites overlapping between studies. Vast heterogeneity was observed 

in study design and inconsistent patterns of association emerged between distress and metabolites. 

To gain a more robust understanding of distress and its metabolomic signatures, future research 

should include 1) large, population-based samples and longitudinal assessments, 2) replication and 

validation in diverse populations, 3) and agnostic metabolomic strategies profiling hundreds of 
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targeted and nontargeted metabolites. Addressing these research priorities will improve the scope 

and reproducibility of future metabolomic studies of psychological distress.
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1. Introduction

1.1 Psychological distress

Psychological distress can be conceptualized as an umbrella term encompassing multiple 

common psychological conditions, ranging from subclinical symptoms to clinical diagnoses 

of depression, anxiety, stress, or posttraumatic stress disorder (PTSD). High levels of 

distress can be a feature of impaired mental health or common mental disorders, including 

depression or anxiety. Various forms of psychological distress, defined based on differing 

diagnoses and measures, are highly comorbid, share similar symptoms, and may be linked to 

the same underlying pathways of dysregulation (Kalin, 2020). Therefore, it is reasonable to 

hypothesize they might share a similar metabolomic signature.

Various forms of psychological distress have consistently been linked to a range of 

adverse physical health outcomes, including accelerated aging, cognitive decline, and 

mortality (Russ et al., 2012; Miller and Sadeh, 2014; Cohen et al., 2015; Roberts et 

al., 2015, 2017). The most methodologically rigorous work has examined associations 

of psychological distress with excess risk of cardiometabolic diseases (CMD). Findings 

have been particularly strong and consistent, with associations evident across animal 

models, clinical samples, and population-based cohorts (Grippo and Johnson, 2009; 

Sumner et al., 2015; Golbidi et al., 2015; Levine et al., 2021). Despite this consistency, 

molecular mechanisms underlying these associations are not well-delineated. One promising 

hypothesis is that distress may affect downstream metabolism across biochemical domains, 

(e.g., steroids, amino acids, lipids), leading to dysregulated metabolomic profiles that give 

rise to excess disease risk (Cohen et al., 2007; Dinoff et al., 2017; Juster et al., 2010).

1.2 Metabolomics

Metabolomic markers, or metabolites, refer to a wide range of small molecules that occur in 

biological fluids and tissues, including peptides, lipids, amino acids, nucleic acids, and many 

other chemical compounds that can be metabolized (Wishart et al., 2018; Yu et al., 2019). 

It has been long appreciated that metabolite levels are linked to health and functioning, 

are influenced by genetics, health, diet, and environmental exposures, and can serve as 

a signatures of processes that are proximal to disease phenotypes (Gerszten and Wang, 

2008; Clish, 2015). In the last 20 years, metabolites have been reliably measured across 

different biospecimens including plasma, serum, urine, and cerebral spinal fluid (CSF), 

making it possible to gain greater insight into disease conditions, molecular signatures, and 

potential therapeutic targets. A metabolomics perspective may also provide important new 

understanding of key mechanisms and causal pathways underlying the relation between 
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psychological distress and CMD (Humer et al., 2020). Understanding directionality of 

associations in this context is important as there are likely bidirectional relationships 

between diseases or psychological conditions and metabolomic profiles.

Several key features of design and analytic approaches distinguish metabolomics studies 

from one another. First, studies may use a variety of different techniques for metabolomics 

profiling, such as Nuclear Magnetic Resonance (NMR), and mass spectrometry (MS). 

Compared to NMR-based methods, MS is thought to more effectively reduce sample 

complexity and increase detection of metabolite levels especially when a large number 

of metabolites are assessed simultaneously (Lee et al., 2019; Zhou and Yin, 2016). 

Second, analogous to other omics studies, both candidate and agnostic approaches have 

emerged in studies evaluating the relationship between distress and metabolites. A candidate 

approach involves a priori selection of a small to moderate number of metabolites as 

the focus, and their selection is generally based on specific hypotheses drawn from 

theory or prior literature. An agnostic approach assesses associations with a large number 

(typically hundreds) of metabolites simultaneously and detects signals for future follow-

up experiments. Third, researchers can use a targeted versus nontargeted approach when 

measuring metabolites. Most studies to date have utilized targeted strategies, involving 

quantification of the relative abundance of known metabolites. However, with the recently 

developed capacity to simultaneously assay hundreds of metabolic markers at once, 

platforms measuring large-scale metabolomic markers can detect not only known analytes 

(i.e., a targeted approach), but also unlabeled peaks that can then be mapped to specific 

metabolites post hoc, including structurally novel metabolites (i.e., a nontargeted approach) 

(Schrimpe-Rutledge et al., 2016). Nontargeted strategies are advantageous especially when 

the goal of research is to generate new hypotheses. Lastly, while studies may examine the 

same metabolites, differences in results and interpretations may arise from identifying these 

metabolites using different types of biospecimens. For example, metabolites concentrations 

in plasma represent molecules in peripheral circulation whereas metabolites in urine are 

derived from the degradation and excretion of molecules. Different types of biospecimen 

may be implicated in different pathways and mechanisms of disease physiology. Without 

an integrative and standardized pre-processing and analytical procedure, studies looking at 

different biospecimen types separately may yield seemingly inconsistent results because in 

fact, they are measuring different pathways (Patti et al., 2012; Zhou et al., 2019).

1.3 Associations between psychological distress and metabolomic profiles

Preliminary evidence suggests specific psychological disorders may be linked to unique 

metabolic signatures in several peripheral tissues. In animal models of depression, tissue-

specific biomarkers have been identified; in particular, neurotransmitter and kynurenine 

metabolite levels in the brain, and amino acid and corticosterone metabolite levels in blood 

have been linked to depression (Pu et al., 2021). A recent systematic review focused on 

human studies considering metabolomic markers (from blood, urine, and CSF) in relation to 

several forms of clinical affective disorders, including major depressive disorder (MDD) and 

bipolar disorder (BD) (MacDonald et al., 2019). This review included evidence from 266 

articles considering 249 metabolites and found 122 metabolites were evaluated in at least 

two studies. Several key pathways implicated in MDD emerged, including mitochondrial/
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energy metabolism, neuronal integrity, and signaling/neurotransmission. The review also 

highlighted a few metabolites showing consistent associations with MDD and BD, such as 

glutamate and other amino acids, which play key roles in signaling, neurotransmission and 

energy metabolism. In 2020, a meta-analysis from nine Dutch cohorts (n=10,145 controls 

and n=5,283 cases with depression) identified 21 metabolites associated with clinically 

diagnosed depression (Bot et al., 2020). Findings suggested the metabolomic signature of 

depression is characterized by lower high-density lipoprotein and higher very-low-density 

lipoprotein and triglyceride particle levels, highlighting the importance of lipid metabolites 

in the pathophysiology of depression.

These review articles, both primarily focused on clinical mood disorders, have considerably 

contributed to our understanding of linkages between psychological distress and 

metabolomics. However, psychological distress encompasses a broader set of phenotypes 

beyond mood disorders, including subclinical manifestations of these disorders; our 

understanding of how psychological distress may influence metabolic processes across this 

broad spectrum remains limited. To our knowledge, no review to date has considered other 

forms of psychological distress such as anxiety disorder or PTSD, nor considered subclinical 

symptoms of these types of distress in population-based samples. It remains unclear whether 

metabolic markers for clinical depression are similar in other forms of psychological distress 

or in subclinical distress. In the current systematic review, we address this question by 

synthesizing existing literature on psychological distress and alterations in metabolomic 

biomarkers, considering multiple forms of psychological distress at both clinical (e.g., 

anxiety disorder, post-traumatic stress disorder) and subclinical (e.g., symptoms of anxiety 

or depression or post-traumatic stress that may not meet criteria for psychopathology) levels. 

We excluded studies of clinical depression and related disorders given the recently published 

reviews described above.

1.4 Study aims

We aim to summarize and assess literature examining associations between metabolomic 

profiles in human adults and psychological distress, covering anxiety disorders, PTSD, or 

subclinical symptoms of depression, anxiety, and PTSD. Objectives include the following: 

1) to summarize the aims, study characteristics, and methodological approaches of existing 

distress and metabolomics studies; 2) to assess converging and diverging evidence from 

these studies; and 3) to identify critical directions for future work.

2. Methods

2.1 Eligibility and study selection process

An electronic literature search was performed using PubMed (NLM) and PsychINFO (Ovid) 

in June 2020. Search terms were selected to identify targeted and nontargeted metabolomics 

studies of psychological distress, specifically pertaining to subclinical levels of depression 

as well as clinical or subclinical levels of anxiety and PTSD. All searches were limited 

to original research conducted in human adults as we were primarily interested in the 

implications for human diseases.
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We conducted a search for studies with subclinical and population-based samples for 

depression and studies of clinical and population-based samples for anxiety and PTSD 

(full details on the search strategy are available in the appendix). We excluded two types 

of studies that were captured by the searches. First, studies measuring metabolite levels 

using magnetic resonance spectroscopy (MRS) were removed due to general challenges in 

validating MRS results and varying degrees of reliability depending on the metabolites 

and brain regions assessed (Dhamala et al., 2019). Second, studies assessing acute 

stress responses following experimental manipulations were excluded (e.g., alterations in 

metabolite levels following exposures designed to induce anxiety in patients with phobia or 

panic disorder), as we were primarily interested in metabolic markers linked with chronic 

psychological distress.

The Covidence platform was used to organize and perform abstract screening. Two 

independent reviewers (SJ and RS) reviewed abstracts using standardized criteria. Studies 

were rejected if they reported findings from animal models, children, or pregnant women. 

Abstracts that reported findings primarily related to drug effects, herbal treatments, or any 

sort of intervention and treatment were also excluded. Furthermore, we include only primary 

research articles, and excluded all commentaries, editorials, opinions, and reviews. We 

further excluded grey literature, unpublished studies, and articles not available in English, 

and also studies with a primary focus on mental, physical, or medical conditions other than 

general psychological distress, subclinical depression, PTSD, and anxiety.

When disagreements regarding a study’s relevance occurred between abstract reviewers, a 

third rater (LK) evaluated the abstract. Once all abstracts were screened and a set of relevant 

research articles were collected, both raters performed a full text review applying similar 

inclusion and exclusion criteria. Finally, new searches and screening were conducted once 

more before finalizing our analyses to collect and include any additional studies published 

since initiating our systematic review. Figure 1 shows the process of study selection.

2.2 Data extraction and analysis

For each study included, we extracted features related to publication details, key population 

characteristics, study design, measures used to assess distress and metabolomics, statistical 

analysis, and main findings. Each reported metabolite was entered into the Human 

Metabolome Database (HMDB, www.hmdb.ca) to extract the corresponding ID, common 

name, and class. Key characteristics were summarized into separate tables for each of the 

three distress types: PTSD, anxiety disorders, and subclinical distress including depressive 

or anxiety symptoms.

Study quality was evaluated using an adapted version of the Newcastle-Ottawa Scale for 

Cohort Studies (Herzog et al., 2013; Wells et al., 2010) by two independent reviewers (SJ 

and YZ). The scale was modified to evaluate metabolomic studies in three specific domains: 

selection, comparability, and outcomes. Specifically, quality of sample selection included the 

following items: representativeness of study population, sample size, rigor in assessment of 

exposure, and exclusion of outcome of interest at baseline (when study was longitudinal) 

or temporality. Study comparability assessment focused on covariate adjustment, i.e., if 

the most important potential confounders (defined based on prior literature and expertise 
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from our research group, including key determinants of metabolomics and distress – 

age, sex, and/or race/ethnicity) and additional confounders were considered. Outcome 

assessment consisted of three items: representativeness of outcome (i.e., scope of metabolite 

measurement regarding whether candidate vs. agnostic approaches were used), metabolite 

measurement, and statistical test. Disagreements between raters were resolved by consensus.

3. Results

3.1 Search results and quality assessments

A database search for studies of subclinical depression and metabolomics identified 861 

potentially relevant articles. After excluding 127 duplicate articles, a total of 734 abstracts 

were screened and 44 articles were further reviewed using the full text. Eight of these met 

review criteria and were retained for analysis.

A database search for studies of anxiety or PTSD and metabolomics identified 2,227 papers. 

After removing 1,039 duplicate papers, a total of 1,188 paper abstracts were screened. Of 

these, 108 studies entered a full-text screening process and a total of 69 studies advanced to 

the extraction phase. 36 of these met review criteria and were retained for analysis.

Combining results from these two searches yielded a total of 39 unique papers that were 

included in this review. Of these, 21 primarily targeted PTSD, seven targeted anxiety 

disorders, and 11 targeted subclinical distress (generally characterized by anxiety or 

depressive symptoms). If studies included more than one measure of distress, we used 

the measure which addressed the primary research question. We included fewer studies 

specifically focused on clinical anxiety disorders compared to studies on clinical PTSD and 

subclinical symptoms of depression and anxiety, primarily because we excluded studies that 

experimentally induced short-term responses related to the disorder (such as in phobia or 

panic disorders). Of the 39 unique reports, two studies utilized an agnostic approach. For 

these papers, we reported null associations between distress and metabolites only if the same 

metabolites were also examined in at least two other candidate studies. Given that more than 

two hundred metabolites were tested in each of the two agnostic studies included in the 

current review, it was not feasible to examine all tested associations.

Characteristics of all included studies are summarized in Table 1. An increasing number 

of studies were conducted after the year 2000 (Figure 2), corresponding to the timeline of 

technology for assessing metabolites becoming more available and development of various 

metabolomic platforms (Scalbert et al., 2009). Quality assessments completed in the 39 

studies revealed nine to be of good quality, 23 to be of average quality, and seven to be 

of poor quality and at high risk for bias. The full assessment and results can be found 

in Table S1. The least endorsed quality measures were temporality (most studies were 

cross-sectional) and representativeness of the selected sample (most studies were based in 

small clinical samples). Studies that scored low on the quality assessment frequently had 

inadequate sample sizes and did not adjust for important risk factors. Generally, studies with 

higher quality scores were those using larger and more representative samples.
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3.2 PTSD status or symptoms and metabolites

We identified 21 studies. Sample sizes ranged from 19 to 731, but the majority (90%) had 

fewer than 200 participants. Eleven studies were conducted in civilian clinical populations, 

while the rest relied on specific populations with elevated levels of trauma exposure and 

clinical diagnoses of PTSD: nine studies were based in veteran or military samples, and one 

study included Holocaust survivors. Out of the 17 studies reporting the age distribution of 

participants, the average age was 39 years. Only one study included a sample of older adults 

(average age above 60 years; Yehuda et al., 2009). Seven studies included only male, and 

three studies included only female participants; among studies with both male and female 

participants, the average percentage of female participants was 44.1% (Figures S1–S2).

Most studies used a case-control design (n=17) (Figure S1C). Among the remaining four 

studies, two were analyses of cross-sectional data nested within ongoing cohort studies, 

one study assessed associations between symptom severity and metabolite levels cross-

sectionally in a sample of veterans recruited for that purpose, and one observational study 

included patients with clinical disorders who were followed and assessed at two additional 

timepoints after baseline. Metabolites were assayed in a range of biospecimens across the 

21 studies: blood plasma (n=8), urine (n=7), CSF (n=4), blood serum (n=2), hair (n=2), 

and saliva (n=1). Of note, three studies collected more than one type of biospecimen and 

performed pre-processing and analysis separately for each type (Figure S3). Across the 21 

studies, only one took an agnostic approach, examining all 244 compounds available on the 

analytic platform (Mellon et al., 2019). The others evaluated associations with from one to 

15 prespecified candidate metabolites.

Measures of PTSD overlapped across a subset of the studies: namely, the Clinician 

Administrated PTSD scale was used to measure PTSD severity in 11 studies (Blake et al., 

1995), and the Structured Clinical Interview for DSM-III-R or DSM-IV was administered in 

five studies (Spitzer et al., 1992; First and Gibbon, 2004). Other instruments used in more 

than one study to assess PTSD included the Impact of Event Scale-Revised (Weiss, 2007), 

PTSD checklist (Blanchard et al., 1996), and the Posttraumatic Diagnostic Scale (Foa et al., 

1997). All these measures have been psychometrically validated. While 18 studies primarily 

focused on the comparison of metabolites between PTSD cases and controls, associations of 

metabolite levels with PTSD symptom severity on a continuous scale were also examined in 

14 studies.

3.2.1 Metabolites in candidate PTSD studies—A total of 57 unique metabolites 

were examined across the 20 studies of candidate metabolites and PTSD. We were able 

to match forty-three metabolites to existing HMDB IDs, spanning 10 distinct classes 

(Figure 3). Thirteen metabolites or composite measures (e.g., metabolite ratios or aggregate) 

available in HMDB were selected for study in at least two candidate studies (Figure 4). 

Here, we summarize results regarding the three top metabolite classes with overlap across 

studies: steroids and steroid derivatives, phenols, and carboxylic acids and derivatives. 

Metabolite classes that appeared only in one study are not discussed, but a detailed summary 

of all associations examined is provided in Table S2. Direction of associations with PTSD 
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(i.e., when higher PTSD or case status is associated with higher or lower metabolite levels) 

varies across the different metabolites but are indicated in Table S2.

Steroids and steroid derivatives.: A total of eight studies examined links between 

PTSD and 18 steroid metabolites available in HMDB. Four studies tested the hypothesis 

that deficits in the synthesis of GABAergic neuroactive steroids, such as metabolites of 

progesterone, may be implicated in the pathophysiology of PTSD (Rasmusson et al., 

2006; Pineles et al., 2018; Rasmusson et al., 2019; Kim et al., 2020). Rasmusson et 

al. (2006) assessed four neurosteroids in CSF (5a-DHP, dehydroepiandrosterone (DHEA), 

progesterone, Allo+Pregnan), examining differences between nine premenopausal women 

with chronic PTSD and 10 healthy controls with no trauma history. PTSD patients had lower 

Allo+Pregnan levels, but no other differences emerged. Another study examined levels of 

Allo+Pregnan and 5a-DHP in women with PTSD (N=15) compared to trauma-exposed 

controls (N=19) in blood plasma (Pineles et al., 2018). Contrary to prior findings in 

CSF, plasma 5a-DHP levels were higher in PTSD patients but no difference in plasma 

Allo+Pregnan levels were evident. A follow-up study in 2019 investigated CSF levels of 

the same neurosteroid metabolites in 13 men with PTSD compared to 17 healthy male 

controls with trauma history. Although no between-group differences were identified, an 

inverse correlation between Allo + Pregnan levels and a continuous measure of PTSD 

symptom severity emerged (Rasmusson et al., 2019). Lastly, Kim et al. (2020) identified a 

negative correlation between CSF Allo+Pregnan levels and PTSD symptom severity among 

trauma-exposed men with and without PTSD (N=30) but found no difference in 5a-DHP 

levels or DHEA. Three of these four studies also assessed associations between metabolite 

ratios and PTSD. The Allo+Pregnan/5a-DHP ratio was inversely associated with PTSD in 

two studies (Rasmusson et al., 2006; Pineles et al., 2018) and not associated in one study 

(Rasmusson et al., 2019). The Allo+Pregnan/DHEA ratio was also inversely associated with 

PTSD in both studies that included this measure (Rasmusson et al., 2006, 2019).

Investigators have also considered metabolites related to glucocorticoid metabolism. Four 

studies examined the associations between specific glucocorticoid metabolites and PTSD 

status or symptoms (Wheler et al., 2006; Yehuda et al., 2009; Steudte et al., 2013; 

Wingenfeld et al., 2015). Overall, results were mixed: Wheler et al. (2006) found no 

difference in urinary levels of 14 cortisol metabolites between 10 PTSD patients and 10 

controls matched by age and gender. In a sample of aging Holocaust survivors (N=51) 

evaluating urinary levels of four glucocorticoid metabolites, Yehuda et al. (2009) identified 

one positive association between PTSD symptom severity and 5a-THF. Wingenfeld et al. 

(2015) analyzed urinary cortisol levels in a large cohort recruited at two Veterans Affairs 

medical centers (N=613) found cortisol levels were lower in PTSD patients. A fourth study 

evaluating hair and salivary cortisol also found lower hair cortisol levels among those with 

PTSD in comparison to non-trauma exposed controls, but no association with salivary 

measures (Steudte et al., 2013).

Phenols or catecholamine metabolites.: Six studies examined levels of seven phenols 

available in HMDB. Of three studies assessing norepinephrine levels in CSF or urine 

samples (Kim et al., 2020; Mellman et al., 1995; Wingenfeld et al., 2015), only one 
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found a positive association with PTSD status which suggested norepinephrine levels in 

urine may be higher in PTSD patients; however, this study did not find associations 

with either epinephrine or dopamine (Wingenfeld et al, 2015). Two studies using small 

samples (including 10–20 individuals with PTSD and approximately the same number 

of healthy controls) examined metanephrine and normetanephrine levels from urine and 

found no link to PTSD status (Wheler et al. 2006; Breen et al. 2019). Notably, while 

Mellman et al. (1995) did not identify differences in nocturnal or 14-hour excretion levels 

of urinary norepinephrine or MHPG between PTSD patients and controls (N=28), their 

analyses did find PTSD patients had a larger difference between their nocturnal and daytime 

MHPG levels, reflecting potential dysregulation during sleep. One study measured VMA, an 

epinephrine and norepinephrine metabolite; findings from 50 patients with chronic PTSD 

and 50 healthy controls showed that VMA derived from urine was higher in patients 

(Dikanović et al., 2011).

Carboxylic acids and derivatives.: Five studies assessed a total of five carboxylic acids and 

derivatives. The only metabolite analyzed in at least two studies was gamma-aminobutyric 

acid (GABA). While Kim et al. (2020) found GABA levels in CSF did not differ between 

trauma-exposed men with and without PTSD in a small sample (N=30), Schür et al. (2016) 

identified a positive association between GABA levels in plasma and PTSD symptoms in a 

large sample of military personnel (N=731).

3.2.2 Agnostic analyses—Out of the 21 studies on PTSD, only one study performed 

an agnostic analysis of metabolomic profiles (Mellon et al., 2019). The authors identified 

244 compounds in plasma available in both the discovery (N=103) and test samples (N=62) 

and compared group-level differences between combat trauma-exposed male veterans with 

and without PTSD, matched on age. Identified markers were primarily related to glycolysis 

and fatty acids uptake and metabolism. Among 33 identified markers, only cortisol and 

Docosahexaenoic acid (DHA) were also examined in the candidate studies of PTSD 

described above, with cortisol levels being higher among PTSD patients in the discovery 

group but not the test group, and DHA being lower among PTSD patients in both groups. 

Additionally, two metabolites, cortisone and dehydroepiandrosterone sulfate (DHEA-S), 

showed consistently null relationships with PTSD in this agnostic analysis as well as in other 

candidate studies (Wheler et al., 2006; Yehuda et al., 2009; Rasmusson et al., 2019; Kim et 

al., 2020).

3.3 Anxiety disorders and metabolites

A total of seven studies documented the relationship between anxiety disorders and 

metabolites in clinical populations. Studies were performed in six different countries with 

sample sizes ranging from 34 to 2,912 individuals. The majority of studies (57%) were 

small, with less than 100 participants. Notable exceptions were two large population-based 

cohorts that included 2,841 and 2,912 individuals recruited from the Netherlands Study of 

Depression and Anxiety (NESDA) (Black et al., 2017; Thesing et al., 2018a). All studies 

were conducted among individuals in early to mid-adulthood, with mean age across samples 

ranging from 30.5 to 45 years. One study consisted of only male participants. In studies 
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with both male and female participants, the average percentage of female participants was 

approximately 62.5% (Table 1).

Four studies defined “anxiety disorders” as having a clinical diagnosis of any anxiety 

disorders including social phobia, generalized anxiety disorder (GAD), panic disorder and/or 

agoraphobia (Black et al., 2017; Dušková et al., 2015; Thesing et al., 2018a; Yamada et 

al., 2000). One study focused specifically on panic disorder (Eriksson et al., 1991), one on 

social anxiety disorder (Green et al., 2006), and one on GAD (Garvey, 1995). Diagnoses 

were made using the Structured Clinical Interview (for DSM-II, DSM-IIIR, or DSM-IV), the 

Composite International Diagnostic Interview (CIDI), or the International Classification of 

Diseases, Tenth Revision (ICD-10). Anxiety symptoms were most often evaluated using the 

Hamilton Rating Scale for Anxiety (HRSA) or the Beck Anxiety Inventory (BAI).

No agnostic studies of anxiety disorders and metabolites were conducted. Three studies used 

blood plasma, and one study each used urine, saliva, red blood cells, and CSF to measure 

metabolite concentrations (Table S3).

3.3.1 Metabolites in candidate studies—A total of 48 unique metabolites were 

identified in the seven studies. Of these, 37 matched existing HMDB IDs. These 37 

metabolites belong to five different metabolite classes. Only two of these were documented 

in at least two studies: Vanylglycol (MHPG) belonging to the phenols metabolite class, and 

5-Hydroxyindoleacetic acid belonging to the indoles and derivative class (Figure 4C).

MHPG was assessed in both saliva and CSF. Yamada et al. (2000) assessed salivary levels 

of MHPG in patients with diagnosed anxiety disorders (including panic disorder, GAD, 

adjustment disorder with anxiety or adjustment disorder with mixed anxiety and depressed 

mood) and found higher salivary MHPG concentrations in patients versus controls. In 

contrast, Eriksson et al. (1991) found no significant differences in CSF MHPG levels in 

patients with panic disorder compared to controls.

5-Hydroxyindoleacetic acid (5-HIAA) was assessed in CSF (Eriksson et al., 1991) and urine 

(Garvey, 1995). Neither study revealed significant relationships of 5-HIAA concentrations 

with panic disorder or with total symptom scores.

3.4 Subclinical distress and metabolites

A total of eleven studies documented the relationship between depressive or anxiety 

symptoms and metabolites (Table 1). All studies were conducted in sub-clinical or 

population-based cohorts, with three comprising occupational samples and one comprising 

students. Studies were performed in nine different countries with sample sizes ranging 

from 25 to 2,912 individuals. More than a third of these comprised large population-based 

cohorts with over 1,000 participants. Mean age across studies ranged from 23.3 years to 76.3 

years, with most studies performed in middle age and older participants. Four study samples 

included only female, and one study included only male participants; among studies with 

both males and females, the average percentage of female participants was approximately 

60.5%.
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Distress symptoms were assessed using a variety of different measurement tools. The 21-

item Depression, Anxiety, and Stress Scale (DASS-21) was administered in two different 

studies (Hashemi et al., 2020; Lee et al., 2011). Depression screeners such as the CES-D 

(CES-D-20, CES-D-10, or CES-D-6), and PHQ-9 were also used in two or more studies 

(Altmaier et al., 2013; Huang et al., 2020; Liu et al., 2019; Szabo de Edelenyi et al., 2020). 

Altmaier et al. also utilized Type D personality, a measure of general psychological distress 

characterized by both social inhibition and negative affectivity.

Ten of the eleven studies (91%) were candidate studies, pre-selecting study metabolites 

based on previous research. The remaining study (Altmaier et al., 2013) performed an 

agnostic assessment of Type D personality using 668 metabolites. Metabolites were assayed 

from blood plasma (N=5), urine (N=4), blood serum (N=1), or red blood cells (N=1) (Table 

S4).

3.4.1 Metabolites in candidate studies—A total of 106 unique metabolites were 

identified in the 11 studies pertaining to subclinical distress. Most metabolites (N=101) 

were matched to existing HMDB IDs and classified into 16 different metabolite classes. 

Fifteen of these were selected as candidates in at least two studies, with eleven belonging to 

the carboxylic acids and derivatives metabolite class (Figure 4). The remaining metabolites 

belonged to the following classes: indoles and derivatives, fatty acyls, steroids and steroid 

derivatives, and organooxygen compounds classes.

Carboxylic acids and derivatives.: The relationship of carboxylic acids and derivative 

metabolites with subclinical distress was examined in three studies. Of the 11 metabolites 

examined, only hydroxyproline and glutamic acid showed significant trends with distress in 

at least one study.

Hydroxyproline was evaluated as a candidate metabolite in two studies (Adachi et al., 2019; 

Lee et al., 2011). Adachi et al. (2019) categorized a sample of Japanese older community 

dwelling adults into two groups experiencing high vs. low depressive symptoms as measured 

by the Geriatric Depression Scale-15, then examined the association with levels of plasma 

amino acid-related metabolites, including hydroxyproline. Lee et al. (2011) examined the 

relationship between urinary hydroxyproline and depression, anxiety, and stress symptoms, 

as measured by the Depression Anxiety Stress Scale (DASS), in hospital employees from 

South Korea. Both studies found significant associations, albeit in biospecimen-specific 

and in opposite directions: Adachi et al. showed a negative relationship between plasma 

hydroxyproline levels and depressive symptoms (Adachi et al., 2019) while Lee et al. found 

urinary hydroxyproline concentrations were higher among those with high levels of stress 

symptoms but not with either depressive or anxiety symptoms (Lee et al., 2011).

Glutamic acid was considered as a candidate metabolite in two studies as well (Adachi et 

al., 2019; Huang et al., 2020), but findings were inconsistent. Huang and colleagues (2020) 

assessed the association of depression status (yes/no), measured by reporting either elevated 

current depressive symptoms, history of depression (based on self-report of physician 

diagnosis), or antidepressant use, with glutamic acid (as well as other candidate metabolites 

from plasma) in three independent samples of postmenopausal women in the US. While 
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this study found average levels of plasma glutamic acid were higher in the depressed 

cases relative to controls, the Adachi et al. (2019) study described above observed no 

significant differences between those with and without depressive symptoms. Six additional 

carboxylic acids and derivative metabolites were also assessed in these studies, but none 

were significantly associated with any measure of depression in either study.

Indoles and derivative metabolites.: Two indoles and derivative metabolites, tryptophan 

and serotonin, were examined in two or more studies (Adachi et al., 2019; Chojnacki et 

al., 2020; Huang et al., 2020). Details of Adachi et al. (2019) and Huang et al. (2020) are 

described above. Chojnacki and colleagues (2020) used the Hamilton Depression Rating 

Scale (HAM-D) to characterize depressive symptom levels and evaluated urinary metabolite 

levels in middle-aged adult without mood disorders, older aged adults without mood 

disorders, and older adults with mild and moderate depressive symptoms.

While all three studies evaluated tryptophan, associations varied across all reports. One 

found significantly lower levels of plasma tryptophan in the depressed cases relative to 

controls (Huang et al., 2020), another reported higher urinary levels of tryptophan in 

older adults with depressed mood compared to middle-aged adults without depression 

symptoms (Chojnacki et al., 2020), and the third study found no associations between 

plasma tryptophan and depressive symptoms among older adults (Adachi et al., 2019). Two 

studies considered serotonin as a candidate metabolite but found no significant relationships 

with depressive symptoms (Adachi et al., 2019; Huang et al., 2020).

Other metabolites.: DHA and kynurenine, belonging to the fatty acyls and organooxygen 

compounds classes, respectively, were also assessed in two or more studies and association 

were generally inconsistent across studies. DHA levels were evaluated in two studies 

(Hashemi et al., 2020; Thesing et al., 2018b). Hashemi et al. (2020) assessed the relationship 

of DHA in red blood cells with self-reported stress and anxiety symptom levels, as measured 

by the DASS, in Iranian university students, comparing a group with elevated subclinical 

stress and anxiety to matched controls with low levels of depression, stress, or anxiety 

symptoms. Thesing et al. (2018b) investigated the association of depression and anxiety 

sensitivity, as measured using the Leiden Index of Depression Sensitivity-Revised (LEIDS-

R) and the Anxiety Sensitivity Index (ASI), with plasma DHA in a large cohort of healthy 

adults. The first study found lower DHA levels among participants with elevated subclinical 

stress and anxiety, while the second study found no evidence of an association.

Kynurenine levels were assessed in two studies (Adachi et al., 2019; Chojnacki et al., 

2020) and associations with depressive symptoms were similarly inconsistent. Urinary 

concentrations of kynurenine were higher among elderly participants with elevated 

depressive symptoms when compared to non-depressed younger adults (Chojnacki et al., 

2020), but plasma concentrations were not associated with depressive symptom severity in 

the second candidate study (Adachi et al., 2019).

3.4.2 Agnostic analysis—Altmaier et al. (2013) performed an agnostic analysis using 

metabolomic panels by Metabolon, Inc. and Biocrates to identify a signature for Type 

D personality in a population-based cohort of 1502 German adults. Using an agnostic 
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assessment of the associations of 668 serum metabolites, the study found significantly 

lower levels of kynurenine in individuals with versus without Type D personality. Moreover, 

when looking at the two subscales of Type-D personality, they found a positive association 

between cortisol and social inhibition and a negative association between cortisol and 

negative affectivity, but no association with overall Type-D personality was identified.

3.5 Concordance of Metabolite Associations Across Distress Phenotypes

Across studies of PTSD, anxiety disorders, and subclinical distress, 28 metabolites were 

examined in studies considering relationships with at least two different forms of distress. 

These 28 metabolites span five metabolite classes: steroids and steroid derivatives, fatty 

acyls, carboxylic acids and derivatives, phenols, and indoles and derivatives. Out of the 28 

metabolites, 21 were reported to be significantly associated with a form of distress in at least 

one study.

3.5.1 Steroids and steroid derivatives—Across nine studies, eleven steroids and 

steroid derivatives were assessed in relation to the different forms of distress. Cortisol 

was the most frequently studied metabolite (included in a total of six studies) but 

findings were inconsistent. For example, while cortisol was negatively correlated with 

PTSD in two candidate studies using hair and urine samples, respectively (Steudte et al., 

2013; Wingenfeld et al., 2015), higher serum cortisol was associated with lower negative 

affectivity and higher social inhibition in a large agnostic study (Altmaier et al., 2013); 

another agnostic study also found higher plasma cortisol levels among individuals with 

PTSD. Adding to the inconsistencies, in a small candidate study found no association of 

subclinical distress with plasma cortisol levels (Barbaccia et al., 2000).

Progesterone and dehydroepiandrosterone (DHEA) were also commonly studied, examined 

in five studies. None found an association of progesterone with any form of distress, 

regardless of study design, biospecimen type, or analytic platform. Apart from one small 

study (N=25) documenting a negative association for depression and anxiety symptoms 

with DHEA, no other studies found evidence of associations. Related, DHEA-sulfate was 

assessed in three studies, and associations with any form of distress were consistently null. 

Other metabolites in this class were either included in two or fewer studies or had mixed 

results across studies.

3.5.2 Fatty acyls—Six fatty acyl metabolites were studied across four studies, with 

two focusing on PTSD, one on anxiety disorder, and one on subclinical distress. While 

associations between distress and fatty acyls varied across studies examining the same 

distress type (i.e., PTSD), some consistency was observed across different forms of distress. 

For example, six of the omega-3 fatty acids examined in relation to social anxiety disorder 

by Green et al. (2006) were also analyzed in other studies, and five showed consistent 

directions of associations in at least one other study. While some studies failed to identify 

an association, no conflicting directions of associations occurred for any of the fatty acyl 

metabolites.
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3.5.3. Carboxylic acids and derivatives—L-Tyrosine, L-Glutamine, L-Arginine, and 

GABA were examined in relation to various distress types in a total of six studies. While 

the two studies on subclinical distress (Adachi et al., 2019; Huang et al., 2020) did not find 

a significant relationship, single studies on PTSD identified significant associations without 

replication. GABA, the most frequently studied metabolite in this class, was examined in 

four studies, with two examining associations with PTSD and two examining subclinical 

distress. Out of these, only one identified a significant association with PTSD (Schür et al., 

2016). Additionally, L-Glutamine and L-Arginine levels were lower among individuals with 

PTSD (Mellon et al., 2019) but none of these metabolites were significantly associated with 

subclinical distress levels in other studies.

3.5.4 Phenols—Four phenol metabolites, all of which pertain to catecholamine 

metabolism, were assessed across eight studies of different distress types. Two out 

of four studies examining levels of MHPG found positive associations. Specifically, 

Mellman et al. (1995) found significant daytime to nocturnal differences in metabolites 

levels between PTSD patients and controls. One study of anxiety found higher MHPG 

concentrations in patients versus controls (Yamada et al., 2000). However, other studies 

evaluating this metabolite in relation to anxiety or subclinical distress found no significant 

concentration differences between groups (Sothmann and Ismail, 1984; Eriksson et al., 

1991). Normetanephrine was assessed in three studies, all of which found no association 

with distress. Out of the three studies that assessed levels of metanephrine, only one 

identified a negative association (Sothmann and Ismail, 1984); the two studies that included 

VMA also yielded inconsistent results (Garvey, 1995; Dikanović et al., 2011).

3.5.6 Indoles and derivatives—Three indoles and derivatives (5-HIAA, serotonin, and 

L-tryptophan) were examined in eight studies considering various forms of distress. All four 

studies including 5-HIAA found no association with any forms of distress, while results 

concerning relationships with serotonin and L-tryptophan were mixed. Serotonin levels were 

lower among individuals with PTSD in one study (Li et al., 2016) but no associations 

were evident in two large studies of subclinical depression. Conflicting findings regarding 

L-tryptophan emerged from the two studies on subclinical distress: while Huang et al. found 

lower levels of plasma L-tryptophan associated with higher distress, another study found 

higher levels of urinary L-tryptophan associated with higher levels of distress (Chojnacki et 

al., 2020).

4. Discussion

Data extracted from the 39 studies provide the current state of evidence for associations 

between psychological distress and various metabolic markers. Our synthesis did not 

yield a clear and robust set of metabolites reliably associated with one or more forms of 

psychological distress. However, failure to find a common set of metabolites altered in 

relation to various forms of distress is likely due, at least in part, to the widely varying 

methodological approaches, biospecimens, and metabolites selected for assessment across 

the studies that have been done to date. Specifically, few candidate studies assessed the 

same metabolites and even the overlap of metabolite classes across studies was limited. 

Additionally, most studies were heterogeneous with regard to their underlying population, 
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design, biospecimen type, laboratory procedures, and data processing pipelines; moreover, 

many studies were small, such that even when the same metabolites were examined, 

possibilities for replication and validation were limited. Our findings strongly suggest the 

need for more unified and systematic examination of these relationships. That said, while the 

heterogeneity across studies suggests we cannot yet draw any conclusions about a common 

set of distress-linked metabolites, a substantial amount of information can be drawn from 

existing studies to inform future investigations.

Summarizing across metabolite classes, we identified several notable patterns. First, 

although many studies examined steroids and steroid derivatives, regardless of the type 

of distress considered or the specific metabolites examined, most associations were null. 

Even investigations of metabolites linked to well-documented pathways underlying stress 

responses, such as cortisol regulation, yielded mixed results. Second, similar inconsistencies 

across findings emerged for several other metabolite classes across the various forms of 

distress, including catecholamine metabolites (e.g., MHPG), serotonin and its metabolites, 

and amino acids. Third, when comparing across distress types, there was suggestive 

evidence of consistent associations between fatty acids and several forms of distress. In 

the following sections, we unpack each finding in more detail and discuss recommendations 

for future studies.

4.1 Metabolite findings within and across distress types

Comparing studies looking at similar forms of distress, we largely observed discordant 

results for most candidate metabolites evaluated. For example, across studies of PTSD 

and anxiety disorders, the most commonly examined metabolite class was steroids and 

their derivatives; however, we did not see consistent patterns of associations even when 

comparing only among studies of anxiety or only among studies of PTSD that looked 

at the same metabolites. Of note, CSF levels of a composite measure, Allo+Pregnan, 

were negatively associated with PTSD severity in two studies among men and women, 

although no association was evident with PTSD case-control status in the same two 

studies. Somewhat surprisingly, cortisol-related metabolites, long identified as part of a 

stress-linked pathway, were not consistently associated with PTSD status or symptoms, nor 

with anxiety as examined in one study. Furthermore, across studies, few individual steroids 

or their derivative metabolites were consistently associated with any forms of distress. 

Beyond potential differences in design or analytic approach (see below for more detailed 

discussion), one potential explanation is that cortisol metabolites specifically may not be 

independently associated with measures of distress, but dysregulation of the entire pathway 

could play a key role in stress physiology, as shown in a differential network analysis from 

relevant recent studies that explored this approach (Shutta et al., 2021). Similarly, although 

catecholamines play a central role in sympathetic nervous system activation and are heavily 

implicated in stress response regulation, we failed to see any robust links among the studies 

reviewed here. Moreover, while numerous studies examining subclinical distress evaluated 

associations with candidate carboxylic acids and derivatives, few meaningful or consistent 

associations were found across studies.
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The body of work linking metabolic markers with clinical depression has identified key 

pathways related to neurotransmission or energy metabolism (MacDonald et al., 2019), 

while studies of PTSD, anxiety, and subclinical distress are somewhat sparse. Comparing the 

literature captured by the current review to prior studies on clinical depression, we observed 

that both the scope and the findings differed. For example, while MacDonald et al. (2019) 

identified evidence for the downregulation of N-acetyl aspartate (NAA) in MDD, none of 

the studies included in our review examined the concentration of NAA. While six studies 

examining MDD reported consistent patterns of downregulated GABA levels in patients, 

results for GABA were largely null in the four studies of PTSD and subclinical distress 

included in our review. However, a comparison of study results in the current review to 

findings from a recent meta-analysis of clinical depression and metabolic markers (Bot et 

al., 2020) revealed some high-level consistencies: for example, while most amino acids were 

not associated with distress, L-Tyrosine was positively associated with PTSD in one study 

and also with depression in the meta-analysis. Alterations in concentrations of lipid and 

fatty acid metabolites were generally linked to depression in the meta-analysis, as well as 

other forms of distress in our review. Given the sample sizes of the individual metabolomic 

studies of distress included in our review (75% of the studies reviewed had under 200 

participants) were generally substantially smaller than the sample size available from the 

combined information used in the meta-analysis by Bot et al. (with 10,145 controls and 5283 

depression cases from nine cohorts), it is unsurprising that studies reviewed here reported 

mostly null findings even in the case of metabolites with stronger links to depression as 

seen in the meta-analysis, such as L-Isoleucine. Overall, it remains challenging to formally 

compare metabolomic markers of clinical depression to that of other disorders at this stage; 

with additional large studies in diverse populations, general patterns of concordance may 

be revealed to gain greater insight into whether there may be a shared metabolic profile of 

distress across disorders.

Comparing metabolite findings between clinical depression and subclinical distress 

specifically, some inconsistencies are worth noting. Most studies of subclinical distress 

considered either subclinical depression alone or subclinical symptoms of depression and 

anxiety. Among studies of subclinical depression, at least 10 metabolites that were selected 

as candidates by two studies (Adachi et al., 2019; Huang et al., 2020) failed to demonstrate 

significant associations. In contrast, the previous systematic review of clinical depression 

found significant associations with eight of these same metabolites in two or more studies 

(MacDonald et al., 2019). One possible explanation for differences in findings across 

these different ways of characterizing distress is that metabolite differences evident in 

individuals experiencing severe and clinical levels of depression may not be as potent or 

detectable among individuals with subclinical depression. However, another possibility is 

that the detection rate of metabolites could vary by analytical platforms and biospecimen. 

Because most studies use different platforms and many use different biospecimens, efforts 

to compare findings across studies and forms of distress are further complicated. It is also 

possible that measures of subclinical versus clinical distress capture different underlying 

constructs depending on which features of the disorder are measured. Pharmacological 

treatment often prescribed for clinical depression may also induce changes of metabolite 

levels independent of the pathophysiology of the disorder prior to the treatment. Therefore, 

Zhu et al. Page 16

Neurosci Biobehav Rev. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metabolomic signatures of these phenotypes may not completely overlap, analogous 

to differences that have been observed between the genetic architecture of minimally 

phenotyped versus clinically defined depression (Cai et al., 2020).

Several additional issues may be at play regarding the divergence in findings regarding 

metabolite association with clinical versus subclinical depression. Lack of consistency could 

be attributed to the narrow scope of metabolic function captured by studies of candidate 

metabolites; as the field moves forward with agnostic approaches based in larger samples, 

additional insights regarding metabolic differences in pre-clinical and clinical populations 

are likely to emerge. Another issue could be differences in sample sizes and statistical 

power: large studies (i.e., n>1,500) considering subclinical depression with either tryptophan 

(Huang et al., 2020) or kynurenine (Altmaier et al., 2013) each produced results consistent 

with those observed in clinical studies of depression (MacDonald et al., 2019). Furthermore, 

in a recent discovery and validation study that was performed across large subclinical 

datasets (Shutta et al., 2021), relationships between depressive status and GABA and 

serotonin were identified, consistent with findings in studies of clinical depression.

Other factors could also introduce confounding and noise into metabolomic analyses of 

psychological distress, rendering it more difficult to find consistency across studies. As 

noted by prior reviews (Davison et al., 2018; MacDonald et al., 2019), a key factor 

is whether studies take account of psychotropic medication status. Medications may 

affect associations of interest because their therapeutic effects could induce changes 

in metabolomic profiles. Of the 39 studies included in this review, twelve did not 

provide specific information about medications that may impact distress and metabolomics 

associations (i.e., psychotropic medications). Nineteen studies either excluded all individuals 

taking psychotropic medication or required a washout period (i.e., asked participants to 

stop taking their medications) prior to sample collection. The remaining eight studies 

included individuals using psychotropic medications. Of these, two PTSD case-control 

studies of veterans’ cohorts consisted entirely of patients using psychotropic medication. 

The remaining six studies focused on antidepressant use and considered the variable as a 

confounder or evaluated its effects in secondary and sensitivity analyses. While these reports 

generally revealed no significant impact of antidepressant use (Black et al., 2017; Mellon 

et al., 2019; Wingenfeld et al., 2015), one of the larger studies did find that in a model 

simultaneously adjusting for three different depression indicators, associations with amino 

acids were strongest with antidepressant use compared to depressive symptoms (Huang et al. 

2020). In general, 49% of studies in this review included currently unmedicated individuals. 

However, among studies that did include individuals who are medicated, information on 

medication was not consistently available, not consistently assessed, and/or not consistently 

included in analyses. As a result, our ability to determine how psychotropic medication 

use impacts observed associations of psychological distress with metabolite alterations is 

limited. Moreover, psychotropic medication use varies widely across different forms of 

distress, often depending on severity and type of distress. Of note, MacDonald et al. (2019) 

found antidepressant medication status did not significantly impact findings of altered 

metabolite levels related to MDD or BD.
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Although overlap in findings of metabolite alterations across distress types was limited, 

we observed several intriguing patterns that may be potential targets for future follow-up 

studies. First, across the four studies that assessed fatty acyls, a generally consistent 

picture emerged whereby higher levels of fatty acyls were mostly associated with lower 

psychological distress. Of note, all four studies analyzed blood samples from a clinical 

population. This finding suggests not only that reliable metabolite alterations may occur but 

also that lipids may be an important component of a molecular signature of psychological 

distress. This inference is supported by other work linking aberrations in lipid profiles 

to clinical depression (Dinoff et al., 2017; Bot et al., 2020) as well as to higher risk of 

cardiovascular diseases (Laaksonen et al., 2016; Xu et al., 2016). Taken together, these 

findings may suggest that lipids are involved in the underlying pathophysiology linking 

elevated CMD risk with distress. Nonetheless, because only four studies examined fatty 

acyls and each metabolite was included in at most three studies, more rigorously designed 

follow-up studies are needed to further validate this finding. Second, for some metabolite 

classes such as carboxylic acids and indoles, results were largely divergent across distress 

types. For example, differences in findings about GABA or 5-HIAA across distress types 

could be attributed to both heterogeneity across studies and potential distress-specific 

signals.

4.2 Study designs and epidemiologic characteristics

As noted throughout, the body of work to date is characterized by great heterogeneity in 

study designs and epidemiological characteristics. Such differences can make any direct 

comparisons difficult or unwise. Thus, a key finding from this review is the critical need 

to consider these factors carefully in future studies. Here, we discuss several key aspects 

of design, including sample size, tissue type, selection of metabolites, and measurement 

of distress. Of note, in the current review, studies often differ on many of these elements, 

making it difficult to pinpoint a specific reason for any heterogeneity in findings.

First, limited sample sizes and consequently insufficient power likely contributed to the 

failure to detect associations in some studies. In brief, among the reviewed studies, those 

with larger versus smaller samples were more likely to find positive associations of various 

metabolite levels with distress. For example, a large sample of middle-aged postmenopausal 

women found higher depressive symptoms levels were associated with higher plasma 

glutamate levels (Huang et al., 2020) but this association was not evident in a sample of 152 

older community dwelling adults (Adachi et al., 2019). On the other end of the spectrum, 

underpowered studies are also more likely to yield more biased estimates and potentially 

exaggerated effects (Gelman and Carlin, 2014). Given most studies in the current review 

were relatively small, an important focus future work will be to implement metabolomic 

assessments in large, population-based cohorts.

A second source of heterogeneity relates to variation in tissue type used across studies. 

For example, a number of studies found urinary tryptophan and kynurenine were higher in 

individuals with higher depressive symptoms (Chojnacki et al., 2020) but associations were 

not evident in studies measuring these metabolites in plasma (Adachi et al., 2019). Use of 

different tissue types may also help explain inconsistent findings regarding associations 
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of cortisol and its metabolites with distress. Measures of metabolites from different 

biospecimens could reflect different metabolic processes, such as those occurring with 

acute responses versus chronic dysregulation, or in central versus peripheral processes. 

Furthermore, concentration of amino acids in CSF or plasma may be influenced by a 

variety of activities including diet and metabolic processes that control the absorption, 

transport, degradation and excretion of metabolites, whereas concentrations in urine are 

largely influenced by the rate of excretion of these molecules (Fonteh et al., 2007). Thus, 

if alterations in metabolite levels occur only after chronic exposure and reflect long-term 

functional changes, it might be difficult to observe associations in studies considering only 

acute responses to distress or using different biospecimens. Related, even if the same types 

of biospecimens were analyzed, measurements of basal differences may be less reflective of 

some relative dysregulation compared to change over time, such as the nocturnal-daytime 

differences of MHPG levels assessed in a study of PTSD (Mellman et al., 1995). Thus, 

careful attention is needed regarding which biospecimens and measures of metabolites are 

used. To mitigate variability arising from these differences, studies should also consider 

matching factors such as fasting status, date, and time of blood draw.

A third source of heterogeneity is the use of different metabolomic platforms, a problem 

present in the field of metabolomics as a whole. For example, in the 47 cohorts represented 

in the COnsortium of METabolomics Studies (COMETS; Yu et al., 2019), the world’s 

largest metabolomics consortium, at least 15 different analytic platforms were used to collect 

metabolomics data. Different platforms do not typically evaluate the same set of metabolites. 

In fact, when comparing the three most commonly used platforms, Yu et al. (2019) found 

only modest overlap in the metabolites measured across them, with only 14 metabolites 

measured by all three. In the set of six studies collecting large-scale metabolomics data 

that were included in the current review, we found four different platforms were used; 

given limited overlap of metabolites evaluated across platforms, comparability across studies 

is constrained. There is a pressing need for research that addresses comparability across 

metabolomics platforms to evaluate more precisely similarities and differences in whether 

and how various forms of distress may be associated with metabolic alterations.

A fourth source of heterogeneity is how distress is measured, including the use of 

instruments designed to capture clinical vs non-clinical levels of distress and the assessment 

of formal diagnoses of disorders versus the use of symptom-level gradients. For example, 

while prior studies reported associations between PTSD symptom severity and the combined 

measure of Allo+Pregnan, no such associations were evident in studies comparing PTSD 

cases and controls. Additionally, for PTSD research specifically, the selection of controls 

remains an important question. By definition, PTSD occurs only in the context of 

experienced trauma. Thus, some studies defined the control group as individuals who 

experienced trauma but not PTSD, while other studies compared individuals meeting 

clinical criteria for having PTSD with a control group of individuals with no trauma 

history. Determining which control group is most appropriate would involve developing an 

understanding of whether trauma itself, even in the absence of any additional psychological 

distress, might be associated with certain metabolic alterations, and whether researchers are 

primarily interested in dysregulation that occurs in the context of trauma.
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A fifth source of heterogeneity is that existing candidate studies use an inconsistent 

approach to metabolite selection. While most studies provided justification for why they 

considered certain sets of metabolites, they did not discuss why these metabolites might 

be more pertinent to the underlying question of interest than other metabolites. The lack 

of overlap between studies overall also suggested that researchers are generally more 

incentivized to pursue novel hypotheses, instead of conducting replication or validation 

studies. In the omics era, reproducibility of findings is increasingly important. An 

additional challenge with assessing reproducibility is the requirement that validation or 

replication studies consider the variability of metabolite concentrations due to both technical 

measurement error and changes in lifestyle and environmental factors, while using similar 

study populations and pursuing similar analytic approaches (Perng and Aslibekyan, 2020). 

That said, ultimately it will be important to consider associations across highly diverse 

populations.

Lastly, differences in analytic method and covariate adjustment may also lead to different 

degrees of bias and interpretations of study results. For example, in the agnostic 

metabolomic study of PTSD, Mellon and colleagues (2019) adjusted for a range of 

potential confounders, including medication use, comorbid depression (to account for the 

independent effects of PTSD), and physiological markers. However, other candidate studies 

that examined the same metabolites generally did not adjust for any additional lifestyle or 

physiological factors. Among the 39 studies included in the current review, most adjusted for 

age, sex, or race/ethnicity, while only half additionally accounted for biobehavioral factors 

(e.g., physical activity, diet). Ten studies included no covariates, merely reporting between-

group differences. Such variation makes it challenging to compare estimates across studies. 

Thus, we must interpret some results as only crude observed differences and can consider 

only a more limited set of studies as a source of unbiased estimates of the associations 

of interest. Additionally, the distributions of medical comorbidities in different psychiatric 

populations should also be more closely examined in metabolomic studies. Given the 

high medical comorbidity of psychiatric disorders and the shared pathophysiological 

dysregulations implicating inflammatory and metabolic processes (Roy-Byrne et al., 2008; 

Pacella et al., 2013; Mellon et al., 2018), future studies should account for comorbid 

physical conditions and assess if associations vary by level of underlying comorbidities.

4.4 Recommendations for future studies

Findings from this systematic review highlight the need for large, systematic studies of 

psychological distress and metabolomics that use a consistent set of methods and platforms. 

More specifically, we make three key methodological recommendations for future studies. 

First, diverse study samples and large, population-based cohorts should be prioritized. 

While studies in our review represent samples from 18 different countries, many are 

quite small and 74% do not report information regarding race or ethnicity. Consequently, 

considering consistency of findings across diverse populations is not currently possible. 

Moreover, among even the large population cohorts to date that do provide racial and 

ethnic information, all include a majority of non-Hispanic white participants. Recruiting 

diverse and representative populations can enhance our understanding of natural variations 

in metabolite levels and pathways related to psychological health (Reavis et al., 2021). 
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Studies of preclinical distress have utilized large cohorts such as the Nurses’ Health Study II 

and Women’s Health Initiative (Huang et al., 2020), NESDA (Thesing et al., 2018a), and the 

National Health and Nutrition Examination Survey (Liu et al., 2019), but community-based 

cohorts addressing clinical PTSD and anxiety disorders are lacking. To date, studies of 

PTSD and metabolomics have generally been conducted in small clinical samples, and 

studies of anxiety disorder have not yet been conducted with samples of older adults.

Second, regarding the measurement of metabolomics, we recommend performing agnostic 

analyses using large-scale platforms that can provide broader coverage of the metabolome, 

with inclusion of both targeted and nontargeted approaches. Such analyses allow for 

simultaneous measurement of hundreds of metabolites in plasma or other tissue types. 

We found only two studies of PTSD, anxiety, or subclinical distress that have utilized 

this high-throughput approach to date and only one of these studies examined molecules 

without a known biochemical identity, i.e., pursuing a nontargeted approach. While studies 

on clinical depression were considered beyond the scope of the current review, prior research 

suggests that far fewer studies of depression use agnostic versus candidate approaches 

(Shutta et al., 2021), consistent with our observations about studies on other types of 

psychological distress. Future studies should consider agnostic and nontargeted approaches 

to identify novel signals. With the introduction of international collaborations such as 

COMETS (Yu et al., 2019), datasets can be aggregated to produce well-powered, large-

scale studies linking metabolomics profiles not only with disease endpoints but also with 

social and psychological factors. Such datasets can also be used to examine metabolite 

levels across various tissue types and platforms to standardize and optimize collection 

methods. In addition to expanding the scope of metabolomic platforms, we recommend 

implementing studies that not only identify relationships (i.e., discovery) but also validate 

these relationships using rigorous criteria to demonstrate that associations can be replicated. 

Our recent study provides an example of this; a metabolome-wide agnostic approach was 

used to assess metabolomic profiles associated with psychological distress using a discovery 

and validation design, identifying eleven metabolites with validated associations with 

psychological distress (Shutta et al., 2021). Additionally, given high variability in metabolite 

concentrations due to both technical variations and fluctuations in external environments, 

future studies should carefully assess measurement error and provide coefficients of 

variation in reporting.

Third, well-powered longitudinal analyses are needed to address causal and mechanistic 

questions. Specifically, future studies should evaluate the chronicity of psychological 

distress and assess whether higher levels of distress are associated with change in 

metabolites over time as well as with the persistence of metabolomic changes over time. 

Such studies should carefully consider sources of potential confounding, may also consider 

life course and whether these changes are evident only at particular developmental periods 

(e.g., among older adults), and assess if such changes may be modified or “reversed” if 

distress is appropriately treated or remits on its own.
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4.5 Limitations

There are several limitations to note for this review. First, due to the heterogeneity across 

studies with regard to methods and platforms and biospecimens, we could not conduct 

a quantitative synthesis. Second, because most studies excluded individuals who were 

taking distress-relevant medications, we were unable to assess the role of pharmacological 

treatment in the dysregulation of metabolite levels. Lastly, the scope of this review is 

constrained by the criteria used for study selection. As with most systematic reviews, this 

limitation impacts the generalizability of our findings to other populations, such as children 

and individuals with clinical depression.

4.6 Conclusion

Findings from our systematic review highlight the potential of and need for examining 

metabolite profiles linked to psychological distress beyond clinical depression. Through 

summarizing characteristics, methods, and results of 39 existing studies, the review points 

to a number of important future directions that will make it possible to conduct a more 

unified, systematic analysis of distress metabolomics. Adequately powered population-based 

longitudinal studies with multidimensional measures of distress and large-scale assessments 

of metabolomics are needed to validate existing findings, resolve inconsistencies, and 

generate novel hypotheses for future research.
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Highlights

• Studies on metabolomic markers of psychological distress are limited

• Prior work reviews clinical depression; our paper includes multiple distress 

forms

• Most existing studies were candidate based and had little overlap of 

metabolites

• Vast heterogeneity exists in methods and patterns of findings across studies

• Critical gaps in sample selection, study design, and methods need to be 

addressed
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Figure 1. 
Diagram showing the process of study selection, following the PRISMA guidelines.

Studies were excluded if they met any of the following criteria: (a) used magnetic 

resonance spectroscopy (MRS) (b) assessed acute stress responses following experimental 

manipulations; (c) used animal models, children, or pregnant women;(d) primarily focused 

on drug effects, herbal treatments, or any sort of intervention and treatment; were 

commentaries, editorials, opinions, reviews, grey literature, unpublished studies, or articles 

not available in English; focused primarily on mental, physical, or medical conditions other 

than general psychological distress, subclinical depression, PTSD, and anxiety.
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Figure 2. 
Trend of publication examining psychological distress and metabolic markers.
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Figure 3. 
Distribution of HMDB metabolite classes in studies included in the current review.
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Figure 4. 
Comparison of associations between psychological distress and metabolites across studies, 

within each distress type.

Metabolites examined in at least two candidate studies within each distress category are 

shown. Each panel corresponds to a domain of psychological distress considered. Significant 

results from agnostic studies are also shown and indicated by asterisks (*).The color of each 

point corresponds to the direction of association with higher distress. The shape of each 

point corresponds to the biospecimen type examined in the study.
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Figure 5. 
Comparison of associations between psychological distress and metabolites across distress 

types.

Metabolites examined in at least two candidate studies across distress categories are shown. 

Each panel corresponds to a metabolite class. Significant results from agnostic studies are 

also shown and indicated by asterisks (*). The color of each point corresponds to the 

direction of association with higher distress. The shape of each point corresponds to the 

biospecimen type examined in the study.
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Table 1.

Characteristics of studies included in the current review.

First author, year, journal Cases population, 
country

Study 
Design

N % 
female

Race / 
ethnicity

Mean 
age 
(y)

Tissue Scope Metab
1 Distress 

type
Distress 
measure

PTSD

Mellman, 1995
Biological Psychiatry

Clinical/Veteran, 
United States

Case-control 28
NR

2 NR NR Urine Candidate 6 PTSD 
(combat-
related)

Mississippi 
Scale for 
Combat-Related 
PTSD (M-
PTSD); SCID 
(DSM-III-R)

Maes, 1999
Neuropsychophar 
macology

Clinical (survivors 
of traumatic events), 
Belgium

Case-control 57 Group 1: 
78.6%
Goup 2: 
66.7%

NR Group 
1: 
45.8
Group 
2: 
47.6

Blood 
plasma 
and 
serum

Candidate 6 PTSD; 
major 
depression

CIDI (DSM-III-
R); HAM-D

Strawn, 2002
Life Sciences

Clinical/Veteran, 
United States

Case-control 20 0.0% NR NR Blood 
plasma; 
CSF

Candidate 1 PTSD SCID (DSM-
IIIR)

Rasmusson, 2006
Biological Psychiatry

Clinical, United 
States

Case-control 19 100.0% 53% 
Caucasian, 
21% 
African 
American, 
11% 
Hispanic. 
11% 
Asian, 5% 
Askenazi 
Jewish

31 CSF Candidate 7 PTSD CAPS

Wheler, 2006
Journal of Clinical 
Endocrinology & 
Metabolism

Clinical, United 
States

Case-control 20 70.0% NR 42.2 Urine Candidate 15 PTSD Clinician-
Administered 
PTSD Scale 
(CAPS)

Yehuda, 2009
Journal of Psychiatric 
Research

Holocaust survivors, 
United States

Case-control 73 40.1% 100% 
Jewish

72.5 Urine Candidate 4 PTSD CAPS

McFarlane, 2010
Journal of Affective 
Disorders

Clinical, Australia Clinical 
follow-up

48 25.0% NR 34 Urine Candidate 3 PTSD; 
depression

CAPS-II; IES-R; 
Beck Depression 
Inventory (BDI)

Dikanović, 2011
Collegium 
Antropologicum

Clinical/Veteran, 
Croatia

Case-control 100 0.0% NR Range 
30–50

Urine Candidate 1 PTSD DSM-IV; 
International 
Classification of 
Diseases 
(ICD-10)

Steudte, 2013
Biological Psychiatry

Clinical, Germany Case-control 78 92.3% NR 38.7 Hair; 
saliva

Candidate 1 PTSD Munich 
Composite 
International 
Diagnostic 
Interview (CIDI) 
DSM-IV; PDS

Kalinić, 2014
Croatian medical journal

Clinical/Veteran, 
Croatia

Cross-
sectional

62 0.0% NR 47.1 Blood 
serum

Candidate 12 PTSD; 
depressive 
symptoms; 
anxiety 
symptoms

CAPS; Hamilton 
Anxiety Rating 
Scale (HAM-A); 
Hamilton 
Depression 
Rating Scale 
(HAM-D)
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First author, year, journal Cases population, 
country

Study 
Design

N % 
female

Race / 
ethnicity

Mean 
age 
(y)

Tissue Scope Metab
1 Distress 

type
Distress 
measure

de Vries, 2015
Journal of Affective 
Disorders

Clinical, Netherlands Case-control 94 70.2% NR 46.3 Blood 
plasma

Candidate 4 PTSD Structured 
Clinical 
Interview for 
DSM-IV (SCID 
DSM-IV); 
Impact of Event 
Scale-Revised 
(IES-R)

Wingenfeld, 2015
Psychoneuroendocrinology

Clinical/Veteran, 
United States

Cohort 
(cross-
sectional 
analysis)

613 6.4% 57% 
White

58.6 Urine Candidate 4 PTSD; 
depressive 
symptoms

CAPS, PTSD 
Checklist (PCL)

Emmerich, 2016
Journal of Neurotrauma

Military, United 
States

Case-control 120 0.0% 74.2% 
White, 
6.7% 
African 
American, 
10% 
Hispanic, 
7.5% 
Others

26.8 Blood 
plasma

Candidate 8 PTSD PTSD checklist - 
Military (PCL-
M)

Li, 2016
Genetics and Molecular 
Research

Clinical, China Case-control 120 35.0% 50% 
Chinese 
Han, 50% 
Chinese 
Li

38.5 Blood 
plasma

Candidate 1 PTSD IES-R

Schür, 2016
Psychoneuroendocrinology

Military, Netherlands Prospective 
cohort

731 9.3% NR 29 Blood 
plasma

Candidate 1 PTSD 
symptoms; 
depressive 
symptoms; 
overall 
mental 
health 
problems

Self-Report 
Inventory for 
PTSD (SRIP); 
Symptom 
Checklist-90 
(SCL-90) Dutch 
version

Wilker, 2016
Psychoneuroendocrinology

Clinical (war 
survivors), Uganda

Case-control 76 48.7% NR 30.9 Hair Candidate 3 PTSD Posttraumatic 
Diagnostic Scale 
(PDS)

Pineles, 2018
Psychoneuroendocrinology

Clinical, United 
States

Case-control 34 100.0% 32% 
Caucasian, 
41% 
African 
American, 
9% Asian, 
3% 
American 
Indian, 
9% other

NR Blood 
plasma

Candidate 3 PTSD CAPS

Breen, 2019
Human 
Psychopharmacology: 
Clinical & Experimental

Clinical, South Africa Case-control, 
quasi-
experiment

60 100.0% NR 25.3 Urine Candidate 4 PTSD; 
depressive 
symptoms

CAPS; Mini-
International 
Neuropsychiatric 
Interview 
(MINI)

Mellon, 2019
PLOS One

Clinical/Veteran, 
United States

Case-control 165 0.0% 38.8% 
Hispanic, 
61.2% 
Non-
Hispanic

32.8 Blood 
plasma

Agnostic 244 PTSD CAPS; SCID 
(DSM-IV)

Rasmusson, 2019, 
Psychoneuroendocrinology

Clinical, United 
States

Case-control 30 0.0% 43.3% 
Caucasian, 
50% 
African 
American; 
6.7% 

37.2 CSF Candidate 14 PTSD CAPS
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First author, year, journal Cases population, 
country

Study 
Design

N % 
female

Race / 
ethnicity

Mean 
age 
(y)

Tissue Scope Metab
1 Distress 

type
Distress 
measure

Hispanic/
Latino

Kim, 2020
Neurobiology of Stress

Clinical/Veteran, 
United States

Case-control 30 0.0% NR 37.2 CSF Candidate 11 PTSD CAPS-IV

Anxiety

Eriksson, 1991
Psychiatry Research

Clinical, Sweden Case-control 34 64.7% NR 34.1 CSF Candidate 3 Panic 
disorder 
with and 
without 
agoraphobia

SCID (DSM-
III); Hamilton 
Rating Scale for 
Anxiety (HRSA)

Garvey, 1995
Psychiatry Research

Clinical, United 
States

Cases only 45 53.0% NR 45 Urine Candidate 2 Generalized 
anxiety 
disorder

SCID (DSM-
IIIR); HRSA

Yamada, 2000
Psychiatry Research

Clinical, Japan Case-control 238 66.8% NR 37.4 Saliva Candidate 1 Anxiety 
disorders 
[panic 
disorder, 
general 
anxiety 
disorder, 
adjustment 
disorder 
with anxiety 
or 
adjustment 
disorder 
with mixed 
anxiety and 
depresse

SCID (DSM-
IV); HAM-A

Green, 2006
European 
Neuropsychopharmacology

Clinical, Israel Case-control 49 57.4% NR 33.6 Red 
blood 
cells

candidate 22 Social 
anxiety 
disorder

MINI (DSM-
IV); Liebowitz 
Social Anxiety 
Scale (LSAS), 
Hebrew version

Dušková, 2015
Physiological Research

Clinical, Czech 
Republic

Case-control 70 0.0% NR 30.5 Blood 
plasma

Candidate 30 Depressive 
disorders; 
pecific 
anxiety 
disorder 
(phobia, 
panic 
disorder, 
OCD, GAD, 
mixed 
anxiety 
depressive 
disorder, 
acute 
reaction to 
stress, 
adjustment 
disorder, and 
PTSD)

ICD-10; MINI

Black, 2017
Psychological Medicine

Population-based 
cohort, the 
Netherlands

Cohort study 2841 66.4% NR 41.9 Blood 
plasma

Candidate 2 Current or 
remitted 
depressive 
disorder or 
anxiety 
disorder: 
depressive 
disorders 
(major 
depressive 
disorder or 
dysthymia) 

CIDI version 
2.1; Inventory of 
Depressive 
Symptomatology 
(IDS-SR30); 
Beck Anxiety 
Inventory (BAI); 
Fear 
Questionnaire 
(FQ); Life Chart 
Interview (LCI)
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First author, year, journal Cases population, 
country

Study 
Design

N % 
female

Race / 
ethnicity

Mean 
age 
(y)

Tissue Scope Metab
1 Distress 

type
Distress 
measure

and anxiety 
disorders 
(social 
phobia, 
generalized 
anxiety 
disorder, 
panic 
disorder 
and/or 
agoraphobia)

Thesing, 2018a
Psychoneuroendocrinology

Population-based 
cohort, the 
Netherlands

Cohort study 2912 66.4% NR 41.9 Blood 
plasma

Candidate 4 Current or 
remitted 
depressive 
disorder or 
anxiety 
disorder: 
depressive 
disorders 
(major 
depressive 
disorder or 
dysthymia) 
and anxiety 
disorders 
(social 
phobia, 
generalized 
anxiety 
disorder, 
panic 
disorder 
and/or 
agoraphobia)

CIDI, version 
2.1; IDS-SR30; 
BAI: FQ; LCI

Subclinical distress

Sothmann, 1984
Psychosomatic Medicine

Occupational (white 
collar workers)/
nonclinical, South 
Korea

Cross-
sectional

34 0.0% NR Range 
23–46

Urine Candidate 3 Everyday 
stress 
(anxiety and 
depression)

Minnesota 
Multiphasic 
Personality 
Inventory 
(MMPI) anxiety 
and depression 
scales

Barbaccia, 2000,
Psychoneuroendocrinology

Population cohort, 
Italy

Case-control 
based on 
asymptomatic 
and 
symptomatic 
groups

25 100.0% NR 52.3 Blood 
plasma

Candidate 13 Depression 
and anxiety-
related 
symptoms

Zung Self-
administered 
Depression 
Scale (ZSDS); 
Comell’s 
Dysthymia 
Rating Scale 
(CDRS)

Lee, 2011
Journal of Preventive 
Medicine and Public 
Health

Occupational(hospital 
employees)/non 
clinical, South Korea

Cross-
sectional

97 61.9% NR 34.1 Urine Candidate 2 Depression, 
anxiety, and 
stress 
symptoms

DASS

Altmaier, 2013
Psychoneuroendocrinology

Population-based 
cohort, Germany

Cohort study 1502 51.8% NR 58.6

Blood 
serum

Agnostic 668 Type D 
personality; 
depressive 
symptoms; 
generalized 
anxiety 
disorder

Type D Scale-14 
(DS-14); 
PHQ-9; GAD-7

Adachi, 2018
2018 Japan Geriatrics 
Society

Population-based, 
Japan

Cross-
sectional

119 63.9% NR 76.3 Blood 
plasma

Candidate 44 Depressive 
symptoms

Geriatric 
Depression 
Scale-15 
(GDS-15)
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First author, year, journal Cases population, 
country

Study 
Design

N % 
female

Race / 
ethnicity

Mean 
age 
(y)

Tissue Scope Metab
1 Distress 

type
Distress 
measure

Thesing, 2018b
Journal of Psychosomatic 
Research

Population-based 
cohort, the 
Netherlands

Cohort study 2912 66.4% NR 41.9 Blood 
plasma

Candidate 2 Cognitive 
reactivity 
(based on 
symptoms of 
depression 
and anxiety)

Leiden Index of 
Depression 
Sensitivity-
Revised 
(LEIDS-R) and 
the Anxiety 
Sensitivity Index 
(ASI)

Liu, 2019
Journal of Affective 
Disorders

Population-based, 
United States

Cross-
sectional

2136 52.0% 70% Non-
Hispanic 
White; 
10.7% 
Non-
Hispanic 
Black; 
8.6% 
Mexican 
American; 
10.7% 
Other

49.6 Blood 
plasma

Candidate 5 Depressive 
symptoms

PHQ-9

Chojnacki, 2020
Nutrients

Population-based, 
Poland

Case-control 90 66.7% NR 64 Urine Candidate 8 Depressive 
symptoms

HAM-D

Hashemi, 2020
Iran Journal of Psychiatry

University students, 
Iran

Case-control 82 100.0% NR 23.3 Red 
Blood 
Cells

Candidate 9 Depression, 
anxiety, and 
stress 
symptoms

21-item 
Depression, 
Anxiety, and 
Stress Scale 
(DASS-21)

Huang, 2020
Molecular Psychiatry

Propspective cohorts, 
United States

Cross-
sectional

2469 100.0% 18.5% 
non-White

66.4 Blood 
plasma

Candidate 46 Depression 
status

Presence of 
elevated current 
depressive 
symptoms 
(CESD-6 and 
CESD-10), 
history of 
depression 
(based on self-
report of 
physician 
diagnosis) or 
antidepressant 
use.

Szabo de Edelenyi, 2020
European Journal of 
Nutrition

Population-based 
cohort, France

Case-control 89 100.10% NR Range 
45–65

Urine Candidate 1 Depressive 
symptoms

CES-D-20

1
Number of metabolite assessments

2
NR: not reported
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