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Prediction of oxygen requirement 
in patients with COVID‑19 using 
a pre‑trained chest radiograph 
xAI model: efficient development 
of auditable risk prediction models 
via a fine‑tuning approach
Joowon Chung 1,3, Doyun Kim 1,3, Jongmun Choi 1, Sehyo Yune 1, Kyoung Doo Song 1,2, 
Seonkyoung Kim 1, Michelle Chua 1, Marc D. Succi 1, John Conklin 1, Maria G. Figueiro Longo 1, 
Jeanne B. Ackman 1, Milena Petranovic 1, Michael H. Lev 1 & Synho Do 1*

Risk prediction requires comprehensive integration of clinical information and concurrent radiological 
findings. We present an upgraded chest radiograph (CXR) explainable artificial intelligence (xAI) 
model, which was trained on 241,723 well-annotated CXRs obtained prior to the onset of the COVID-
19 pandemic. Mean area under the receiver operating characteristic curve (AUROC) for detection of 20 
radiographic features was 0.955 (95% CI 0.938–0.955) on PA view and 0.909 (95% CI 0.890–0.925) on 
AP view. Coexistent and correlated radiographic findings are displayed in an interpretation table, and 
calibrated classifier confidence is displayed on an AI scoreboard. Retrieval of similar feature patches 
and comparable CXRs from a Model-Derived Atlas provides justification for model predictions. To 
demonstrate the feasibility of a fine-tuning approach for efficient and scalable development of xAI 
risk prediction models, we applied our CXR xAI model, in combination with clinical information, to 
predict oxygen requirement in COVID-19 patients. Prediction accuracy for high flow oxygen (HFO) 
and mechanical ventilation (MV) was 0.953 and 0.934 at 24 h and 0.932 and 0.836 at 72 h from the 
time of emergency department (ED) admission, respectively. Our CXR xAI model is auditable and 
captures key pathophysiological manifestations of cardiorespiratory diseases and cardiothoracic 
comorbidities. This model can be efficiently and broadly applied via a fine-tuning approach to provide 
fully automated risk and outcome predictions in various clinical scenarios in real-world practice.

Comprehensive integration of clinical information and radiological findings is required for assessment of disease 
severity and risk prediction. Conventional chest radiography is inexpensive, routinely obtained in the emergency 
department (ED), and available in low resource settings. However, radiographic features have only been utilized 
for fully automated risk prediction in relatively few machine learning models1–5.

We considered various approaches to developing machine learning models for risk prediction. A full training 
approach, which involves end-to-end training from scratch for each prediction task, is disease-specific. However, 
convolutional neural networks (CNNs) for image analysis are computationally expensive to train and can eas-
ily over-fit to small training datasets. A significant amount of time, cost, and expertise is required for accurate 
annotation of large imaging datasets. This limits the scalability and efficiency of the full training approach.

In our proposed fine-tuning approach, an auditable explainable AI (xAI) model is pre-trained on a well-
curated training dataset to detect clinically important radiological features and subsequently applied, in combina-
tion with disease-specific clinical data, to a variety of risk prediction tasks. As safety in medicine is paramount, 
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it is crucial for prediction models to be auditable. This is an important consideration, as careful development of 
high quality xAI models will require time and resources.

We have recently introduced a method for automated labeling of chest radiograph (CXR) using a newly 
developed xAI model6. Prediction uncertainty for detection of pneumonia, pulmonary edema, atelectasis, pleural 
effusion, and cardiomegaly was quantified via (1) feature localization and construction of a patch feature Atlas 
for visual similarity assessment, and (2) computation of calibrated classifier confidence for each prediction.

In this study, we introduce an upgraded CXR xAI model, which can simultaneously detect 20 abnormal 
radiographic features. This CXR xAI model was trained on well-annotated CXRs obtained at a tertiary teaching 
hospital prior to the onset of the COVID-19 pandemic. Patch similarity and calibrated classifier confidence are 
utilized for auditability. In addition, an interpretation table displays coexistent and correlated radiographic find-
ings as well as comparable CXRs extracted from the Model-Derived Atlas for similarity assessment. We further 
demonstrate the viability of a fine-tuning approach for efficient and scalable development of risk prediction 
models by using our CXR xAI model to predict oxygen requirement in patients with COVID-19.

As our CXR xAI model is auditable and captures important pathophysiological manifestations of cardiores-
piratory diseases and cardiothoracic comorbidities, we believe that it can be broadly applied for risk prediction.

Results
Explainable AI (xAI) model development and performance.  We developed a CXR xAI model to 
detect 20 radiographic features using well-annotated CXRs obtained at a tertiary teaching hospital prior to the 
onset of the COVID-19 pandemic. Mean AUROC for detection of the 20 radiographic features was 0.955 (95% 
CI 0.938–0.955) on the posteroanterior (PA) view and 0.909 (95% CI 0.890–0.925) on the anteroposterior (AP) 
view (Table  1). On the PA view, the achieved AUROC was greater than 0.950 for cardiomegaly, pulmonary 
edema, emphysema, pleural effusion, other pleural lesions, non-fracture bone abnormality, mediastinal abnor-
mality, diaphragmatic abnormality, decreased lung volume, and increased lung volume. On the AP view, the 
achieved AUROC was greater than 0.950 for pleural effusion, other interstitial opacity, other pleural lesions, 
emphysema, and foreign body. On the PA view, the achieved AUROC was less than 0.9 for fracture and nod-
ule/mass only. Supplementary Fig. 1 shows the receiver operating characteristic curves (ROCs) for each label, 
derived from the final model applied to the test set.

Spatial localization of abnormal radiographic features was performed using gradient-weighted class activa-
tion mapping (Grad-CAM)7. Figure 1 shows representative examples of attention maps that correctly localized 
the lesions. Figure 2 shows representative examples of attention maps that failed to correctly localize the lesions.

Interpretability of xAI model predictions.  We created a Model-Derived Atlas consisting of representa-
tive feature patches and CXR images from the training set6. For a test image, abnormal features are labelled 

Table 1.   AUROCs derived from application of the final model to the test set. Non-fracture refers to 
non-fracture bone abnormality. Diaphragm, Aorta, Hilar area, and Mediastinum refer to diaphragmatic 
abnormality, aortic abnormality, hilar abnormality, and mediastinal abnormality, respectively. As there were no 
cases with increased lung volume in the test set, the AUROC for this label could not be calculated.

Ensemble (6 models) category PA view AUROC (95% CI) AP view AUROC (95% CI)

Fracture 0.850 (0.774–0.910) 0.721 (0.545–0.895)

Non-fracture 0.988 (0.975–0.998) 0.932 (0.839–0.997)

Diaphragm 0.966 (0.935–0.992) 0.885 (0.735–0.987)

Foreign body 0.948 (0.930–0.965) 0.965 (0.954–0.974)

Aorta 0.938 (0.920–0.955) 0.917 (0.891–0.941)

Cardiornegaly 0.965 (0.952–0.978) 0.917 (0.899–0.935)

Hilar area 0.944 (0.903–0.978) 0.872 (0.725–1.000)

Mediastinum 0.980 (0.954–0.999) 0.889 (0.783–0.968)

Cavity/cyst 0.936 (0.869–1.000) 0.891 (0.781–0.970)

Emphysema 0.998 (0.994–1.000) 0.986 (0.977–0.993)

Atelectasis 0.942 (0.925–0.958) 0.862 (0.840–0.884)

Nodule/mass 0.798 (0.709–0.882) 0.925 (0.874–0.967)

Other interstitial opacity 0.941 (0.888–0.984) 0.991 (0.982–0.998)

Pulmonary edema 0.978 (0.966–0.988) 0.915 (0.897–0.932)

Pneumonia 0.904 (0.875–0.930) 0.805 (0.771–0.838)

Decreased lung volume 0.976 (0.957–0.992) 0.912 (0.891–0.932)

Increased lung volume 0.977 (0.957–0.994) NA

Other pleural lesions 0.980 (0.942–0.999) 0.977 (0.934–1.000)

Pleural effusion 0.982 (0.969–0.991) 0.951 (0.939–0.962)

Pneumothorax 0.950 (0.914–0.978) 0.864 (0.820–0.904)

Average score 0.947 (0.938–0.955) 0.909 (0.890–0.925)
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by the classifier (Fig. 3a), Grad-CAM is applied to high confidence features identified by the AI scoreboard to 
generate an attention map for feature localization (Fig. 3c), and eight similar feature-specific patches are selected 
from the Model-Derived Atlas (Fig. 3b). Dimensionality reduction by uniform manifold approximation and 
projection (UMAP) shows that the test patch is close to corresponding patches from the Model-Derived Atlas in 
the two-dimensional embedding space.

An interpretation table summarizes the prediction probabilities for coexistent and correlated features and 
displays comparable CXRs selected from the Model-Derived Atlas (Figs. 3d, 4). Presentation of similar CXRs 
with ground truth labels and corresponding prediction probabilities provides a reasonable basis for justification 
of the classification results. Clinicians may also select specific labels of interest for further characterization of a 
particular disease.

The AI scoreboard is a single diagram that displays calibrated classifier confidence for predicted features, 
overall model accuracy from the test set for predicted features, and correlation coefficients between selected 
features of interest (Fig. 3e, Supplementary Fig. 4). Highly reliable predictions can be identified from the AI 
scoreboard by high prediction probability and calibrated classifier confidence (≥ 0.9).

Figures 5 and 6 are illustrative examples demonstrating CXR interpretation by our xAI model for pneumonia 
and heart failure, respectively.

Figure 1.   Representative class activation maps (CAMs) with correct lesion localization. (a,b) Cardiomegaly 
(PA), (c,d) Other interstitial opacity (PA), (e,f) Pleural effusion (PA), (g,h) Pneumonia (PA), (i,j) Pneumonia 
(AP), (k,l) Pneumothorax (PA), (m,n) Atelectasis (AP), (o,p) Fracture (AP), (q,r) Pulmonary edema (PA).

Figure 2.   Representative class activation maps (CAMs) with incorrect lesion localization. (a,b) Cardiomegaly 
(PA), (c,d) Cardiomegaly (AP), (e,f) Pneumothorax (PA), (g,h) Other interstitial opacity (AP), (i,j) Other 
interstitial opacity (AP), (k,l) Pneumothorax (AP). (b) Attention map captures the tip and body of the 
implantable cardioverter defibrillator (ICD) rather than the enlarged heart, (d) Attention map captures 
pulmonary edema along with the enlarged outline of heart in cardiomegaly, (f) Attention map captures 
subcutaneous emphysema along with pneumothorax, (h,j) Attention map failed to capture the full area of 
diffuse interstitial opacities, (i) Attention map captures chest tube instead of pneumothorax.
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In Fig. 5a, the interpretation table displays high prediction probabilities for pneumonia and pleural effu-
sion and low prediction probabilities for atelectasis and pulmonary edema, as well as 5 similar CXRs selected 
from the Model-Derived Atlas. Pneumonia and pleural effusion were identified as significant features, based 
on prediction probability and calibrated classifier confidence. Prediction probability for pneumonia and pleural 
effusion was 0.96 and 0.99, respectively, on the AI scoreboard (Fig. 5b). Pneumonia was correctly localized by 
Grad-CAM, and 4 similar pneumonia images were extracted from the Model-Derived Atlas (Fig. 5c). On UMAP, 
the test patch was closely located to eight corresponding feature-specific patches from the Model-Derived Atlas 
in the embedding space after dimensionality reduction (Fig. 5c). Pleural effusion was also correctly localized by 
Grad-CAM, and the test patch is likewise close to corresponding patches from the Model-Derived Atlas in the 
two-dimensional embedding space after dimensionality reduction (Fig. 5d).

In Fig. 6, the interpretation table displays high prediction probabilities for cardiomegaly and pulmonary 
edema and low prediction probabilities for pneumonia and pleural effusion. Cardiomegaly and pulmonary 
edema were identified as significant features, based on prediction probability and calibrated classifier confidence 
(Fig. 6a). Prediction probability for cardiomegaly and pulmonary edema was 0.99 and 1, respectively, on the 
AI scoreboard (Fig. 6b). The regions of interest were correctly localized by Grad-CAM and similar four images 
were extracted for each significant feature from the Model-Derived Atlas (Fig. 6c). Test patches were close to 

Figure 3.   Schematic overview of CXR interpretation by our xAI model using a three-dimensional approach. 
The architecture of our CXR xAI model includes DenseNet-121 pre-trained DCNNs, (a) pipeline of pre-
processing techniques, an Atlas creation module and prediction-based retrieval modules. The xAI model 
produces 3 types of outputs: (1) label prediction and attention map with corresponding feature patches selected 
from the Model-Derived Atlas (b,c). The first one on the upper left is a feature specific patch from the test CXR 
and the other eight are selected from the Atlas, which were closely located to the test patch on UMAP (b). The 
four CXR images were retrieved from the Atlas, which have similar overall characteristics with the test CXR 
(c). (2) an interpretation table displaying prediction probabilities for coexisting labels and comparable CXRs 
selected from the Model-Derived Atlas (d), and (3) an AI scoreboard displaying prediction probabilities and 
calibrated classifier confidence, and histogram for AI prediction, positive and negative percentile (e).
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Figure 4.   Interpretation table with similar CXRs selected from the Model-Derived Atlas. Visual comparison of 
the test image to similar CXRs with ground truth labels provides justification for model predictions. The table 
uses ‘−,’ ‘ + ,’ ‘ ++ ,’ and ‘ +++ ’ symbols to demonstrate similar combinations of pathological findings; prediction 
probability is ≥ 0.90 for ‘ +++ ’, < 0.90 and ≥ 0.80 for ‘ ++ ’, < 0.80 and ≥ 0.70 for ‘ + ’, and < 0.70 for ‘−’.

Figure 5.   CXR interpretation by our xAI model for a patient who presented with respiratory infection. (a) 
The interpretation table shows 5 comparable CXRs selected from the Model-Derived Atlas and prediction 
probabilities for labels associated with respiratory infection. (b) Prediction probability was ≥ 0.90 on the AI 
scoreboard for pneumonia and pleural effusion. (c,d) Pneumonia and pleural effusion were correctly localized 
by Grad-CAM, and similar CXRs and patches were selected from the Model-Derived Atlas. UMAPs show that 
the test patches were close to corresponding patches from the Model-Derived Atlas, which supports that the 
testing patches can be classified as “pneumonia” and “pleural effusion”, respectively.
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eight corresponding feature-specific patches from the Model-Derived Atlas in the two-dimensional embedding 
space after dimensionality reduction (Fig. 6c,d).

Application of xAI model to COVID‑19 for prediction of oxygen requirement.  To evaluate the 
viability of a fine-tuning approach for efficient and scalable development of AI risk prediction models, we used 
our CXR xAI model to predict oxygen requirement in patients with COVID-19. A total of 1740 patients were 
diagnosed in the ED with COVID-19 by detection of SARS-CoV-2 in respiratory specimens by RT-PCR. There 
were 903 male and 837 female patients with a mean age of 59.3 ± 19.3 years (range: 16.0–107.0 years). Oxygen 
requirement was stratified using room air (RA), low flow oxygen (LFO,  ≤ 6L/min), high flow oxygen (HFO,  > 6L/
min or non-invasive ventilation), and mechanical ventilation (MV) as 4 stages of severity.

A 2-step approach was used to predict oxygen requirement in COVID-19 patients at 24 and 72 h from the 
time of ED admission. In the first step, CXRs obtained at the time of ED admission were applied to the CXR xAI 
model to identify abnormal radiographic features. A random forest model was then fitted using 7 infection-asso-
ciated radiographic labels (pneumonia, atelectasis, other interstitial opacity, pulmonary edema, pleural effusion, 
cardiomegaly, and decreased lung volume)8–12, reflecting the severity and pathophysiological characteristics of 
respiratory infection, and 8 clinical parameters (age, gender, heart rate, body temperature, systolic blood pres-
sure, respiratory rate, peripheral oxygen saturation, and initial oxygen requirement).

Predictive performance improved for all stages of oxygen requirement when clinical information was included 
(Table 2). Supplementary Fig. 2 shows the ROCs for each prediction. Absence of pneumonia, absence of pulmo-
nary edema, and absence of pleural effusion on CXR are predictive of low oxygen requirement at 24 and 72 h, 
whereas presence of pneumonia, presence of other interstitial opacity, and presence of pulmonary edema are 
predictive of high oxygen requirement at 24 and 72 h (Supplementary Fig. 3). Low initial oxygen requirement 
was most predictive of low oxygen requirement after 24 h, but radiographic findings were more important for 
predicting high oxygen requirement after 72 h (Supplementary Fig. 3).

In the second step, we derived the most likely stage of oxygen requirement at 24 and 72 h from the time of 
ED admission. For imbalanced classification, threshold tuning is a simple and straightforward approach for 
improving the performance of a classifier, and the geometric mean may be utilized to seek a balance between 
sensitivity and specificity13. Grid search was therefore performed on a held out test dataset to select threshold 
prediction probabilities for each stage of oxygen requirement to maximize the geometric mean of sensitivity and 
specificity. For each test case, we computed the difference between the output prediction probability and cut-off 
prediction probability values to find the stage with the largest positive difference.

Figure 6.   CXR interpretation by our xAI model for a patient who presented with heart failure. (a) The 
interpretation table shows 5 comparable CXRs selected from the Model-Derived Atlas and prediction 
probabilities for labels associated with heart failure. (b) Prediction probability was ≥ 0.90 on the AI scoreboard 
for cardiomegaly and pulmonary edema. (c,d) Cardiomegaly and pleural effusion were correctly localized by 
Grad-CAM, and similar feature CXRs and patches were selected from the Model-Derived Atlas. UMAPs show 
that the test patches were close to corresponding patches from the Model-Derived Atlas, which supports that the 
testing patches can be classified as “cardiomegaly” and “pulmonary edema”, respectively.
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Table 2 shows performance metrics for prediction of oxygen requirement at 24 and 72 h from the time of 
ED admission using radiographic risk predictors and radiographic plus clinical risk predictors. Conventional 
cardiorespiratory radiographic findings alone were predictive of RA at 24 h (0.729) and 72 h (0.783), LFO at 
24 h (0.574) and MV at 24 h (0.588) and 72 h (0.563) from ED admission with reasonable sensitivity (Table 2). 
Addition of clinical risk predictors improved sensitivity for RA, HFO, and MV at 24 h from ED admission from 
0.729, 0.133, and 0.588 to 0.938, 0.533, and 0.765, respectively, and also improved sensitivity for LFO and HFO 
at 72 h from ED admission from 0.320 and 0.250 to 0.497 and 0.550, respectively (Table 2).

Figure 7 illustrates the process of oxygen requirement prediction for COVID-19 patients using clinical infor-
mation and radiographic findings. A 61-year-old female patient was tolerant of RA at the time of admission to 
the ED, witConventional h stable vital signs and normal peripheral oxygen saturation. Our CXR xAI model did 
not identify infection-associated radiographic features except for pulmonary edema and decreased lung volume. 
Our COVID-19 xAI model predicted that the patient could be maintained on RA for 24 h, but LFO would be 
required after 72 h. Normal peripheral oxygen saturation and absence of pneumonia and pleural effusion on 
initial CXR were most predictive of stable respiratory status on RA at 24 h. However, decreased lung volume on 
initial CXR was a significant predictor of adjunctive oxygen therapy requirement after 72 h.

Figure 8 shows an example of severe COVID-19 infection requiring intensive respiratory support. A 79-year-
old man with shortness of breath, elevated respiratory rate of 34 breaths/min, low peripheral oxygen saturation 
of 73%, and an elevated heart rate of 110 bpm required immediate initiation of HFO on admission to the ED. 
Our COVID-19 xAI model correctly predicted that MV would be required after 24 and 72 h, based on elevated 
respiratory rate, low peripheral oxygen saturation, and radiographic evidence of pneumonia on initial CXR.

Discussion
To interpret CXRs, radiologists must first detect and characterize normal and abnormal lesions in order to assign 
the most appropriate diagnostic labels to these radiographic findings. Existing machine learning models have 
achieved comparable performance to practicing radiologists in detecting solitary and discrete radiographic 
findings, such as cardiomegaly, pleural effusion, and some focal lung opacities14–21. However, the radiographic 
appearance of other respiratory diseases is quite variable. Different diseases may have similar radiographic 
appearances, and the characteristic findings of a specific disease may only emerge later in the disease course. 
As such, classification performance is poorer for most pulmonary opacities, including pneumonia, pulmonary 
edema, atelectasis, and interstitial lung disease14–21. This reflects inherent limitations of the CXR itself as a diag-
nostic tool and associated interobserver variability.

Variability and overlap in radiographic appearance gives rise to unavoidable prediction uncertainty. The inci-
dence of some respiratory diseases may also be low, making it difficult to obtain sufficient data for model training. 
For this reason, calibrated classifier confidence should be reported to qualify a prediction, and explainability 
techniques such as feature localization should be employed. Atlas-based explanations using nearest-neighbour 
image retrieval methods are practicable and frequently preferred by expert radiologists22–24.

Integration of coexistent radiographic findings is required for formulation of a disease diagnosis and assess-
ment of disease severity. Our CXR xAI model retrieves and displays comparable CXRs from the Model-Derived 
Atlas with ground truth labels and corresponding prediction probabilities, permitting visual and probabilistic 
comparison to justify model predictions. This method has potential to build trust with physicians and improve 
clinical decision-making25,26. Labels of interest may be selected by physicians and incorporated into the inter-
pretation table. In this work, pneumonia, atelectasis, other interstitial opacity, pulmonary edema, pleural effu-
sion, decreased lung volume, and cardiomegaly were selected as labels of interest for predicting the severity of 
COVID-19 infection in ED patients.

Fully automated risk prediction using radiographic features has not been well-investigated. Only a few 
machine learning models have been recently developed to predict mortality or critical illness in patients with 
COVID-191,2,4,5. Risk prediction using “deep learning extracted” radiographic features sidesteps the need for 
accurate image annotation. However, these black box models suffer greatly from lack of accountability and 
interpretability, which are crucial for responsible implementation of AI systems in safety–critical applications2,3,5. 

Table 2.   Performance metrics for prediction of oxygen requirement in patients with COVID-19 using the 
CXR xAI model with and without clinical information. RF random forest, RA room air, LFO low flow oxygen, 
HFO high flow oxygen and MV mechanical ventilation.

Outcome

RF without clinical data RF with clinical data

Cutoff value Sensitivity Specificity PPV NPV Accuracy Cutoff value Sensitivity Specificity PPV NPV Accuracy

24 h

RA (N = 192) 0.504 0.729 0.786 0.791 0.723 0.756 0.326 0.938 0.767 0.811 0.916 0.852

LFO (N = 141) 0.296 0.574 0.741 0.583 0.735 0.677 0.400 0.518 0.951 0.869 0.758 0.784

HFO (N = 15) 0.100 0.133 0.986 0.236 0.964 0.951 0.032 0.533 0.974 0.471 0.980 0.956

MV (N = 17) 0.014 0.588 0.902 0.227 0.978 0.888 0.030 0.765 0.908 0.289 0.988 0.901

72 h

RA (N = 166) 0.398 0.783 0.754 0.726 0.807 0.767 0.608 0.759 0.884 0.846 0.815 0.827

LFO (N = 147) 0.386 0.320 0.858 0.603 0.652 0.641 0.322 0.497 0.872 0.723 0.720 0.721

HFO (N = 20) 0.070 0.250 0.942 0.200 0.956 0.912 0.016 0.550 0.913 0.268 0.972 0.893

MV (N = 32) 0.002 0.563 0.793 0.207 0.950 0.773 0.010 0.531 0.823 0.224 0.948 0.797
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Figure 7.   CXR interpretation and AI prediction of most likely stage of oxygen requirement at 24 and 72 h from 
the time of ED admission in patients with COVID-19. (a) Input: For a test case, prediction probabilities for each 
stage of oxygen requirement at 24 and 72 h from the time of ED admission are derived from the random forest 
model. (b) Output: The stage with the largest positive difference between prediction probability and the cut-off 
value is selected as the predicted stage of oxygen requirement. (c) Interpretation: Prediction probabilities for 7 
infection-associated radiographic labels are summarized in the interpretation table and comparable CXRs were 
selected from the Model-Derived Atlas. Decreased lung volume was identified as a significant feature, based on 
high prediction probability and calibrated classifier confidence on the AI scoreboard. Feature localization with 
Grad-CAM and close location on UMAP to the similar feature patches from the Model-Derived Atlas provide 
visual evidence of decreased lung volume to support the prediction.
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According to the authors, regions of airspace and interstitial opacification were apparently highlighted by saliency 
mapping. Such generalized observations may engender a false sense of safety and perpetuate confirmation bias27.

Our risk prediction model considers and validates the relevance of cardiorespiratory comorbidities, such as 
decreased lung volume, pleural effusion, pulmonary edema, atelectasis, and cardiomegaly, to COVID-19 disease 
severity. For example, as illustrated by our case vignette, decreased lung volume is relevant for prediction of 
impending oxygen requirement (Fig. 7). In addition, radiographic findings were more important than clinical 
information for predicting high oxygen requirement at 72 h (Supplementary Fig. 3). In comparison, previously 
developed full training risk prediction models have focused only on a few visual aspects of pulmonary opacities, 
such as “extent of lung involvement” and “degree of opacification” as candidate radiographic predictors1,4 and do 
not capture a broad scope of cardiorespiratory pathophysiological manifestations and comorbidities. Moreover, 
“extent of lung opacification” may not be superior or even non-inferior to well-established clinical predictors, 
such as peripheral oxygen saturation and C-reactive protein in serum1.

At the derived best operating points, our full RF model demonstrates high sensitivity for RA and MV at 24 h 
from ED admission, and high sensitivity for RA at 72 h from ED admission, with corresponding high specificity, 
and may potentially be deployed in the ED to guide patient triage into low risk and high risk categories (Table 2). 
Unsurprisingly, predictive performance was relatively poorer at 72 h from ED admission. Time-dependent 

Figure 8.   AP CXR of a 79-year-old man with COVID-19 and respiratory insufficiency and AI prediction of 
most likely stage of oxygen requirement at 24 and 72 h from the time of ED admission. (a) AP CXR obtained 
on ED admission, (b) Clinical information and infection-associated radiographic labels identified by our CXR 
xAI model, (c) Final prediction of oxygen requirement after 24 and 72 h. Our COVID-19 xAI model predicted 
that the patient would require MV after 24 and 72 h, (d) Prediction probabilities for 7 infection-associated 
radiographic labels are summarized in the interpretation table and 4 similar CXRs with characteristic findings 
for pneumonia were selected from the Model-Derived Atlas, (e) Pneumonia was identified as a significant 
feature, based on high prediction probability and calibrated classifier confidence on the AI scoreboard, 
(f) Pneumonia was correctly localized by Grad-CAM, and on UMAP, the test patch was closely located to 
corresponding patches from the Model-Derived Atlas in the embedding space after dimensionality reduction.
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predictors such as changes in vital signs and evolution of radiographic findings may be more predictive of delayed 
respiratory deterioration. Lower sensitivity for LFO at both interrogated time points may reflect more variable 
indications for LFO administration, as well as wider availability and lower cost, compared to HFO and MV.

While sensitivity and specificity are characteristics of a test, PPV and NPV are influenced by prevalence of 
the disease or outcome in the test population. As such, PPV for HFO and MV in our cohort is low. In order to 
provide clinical users with reliable estimates PPV and NPV, which may vary significantly from smaller commu-
nity hospitals to larger tertiary referral centers, a pre-deployment phase, in which a risk prediction model runs 
in the background to generate population specific performance metrics, appears to be necessary.

Future studies should validate the performance of our CXR xAI model on other clinically important risk 
prediction tasks. For example, fully automated prediction of unplanned return to the ED with or without hos-
pitalization or intensive care unit (ICU) admission in patients with acute decompensated heart failure, patients 
with acute exacerbation of chronic obstructive pulmonary disease (COPD), and elderly patients with community 
acquired pneumonia may be investigated, as these indicators are key measures of the quality and safety of care 
provided by an ED28.

Limitations.  This study has several limitations. Training data was collected from a single institution. This 
affects the generalizability of our CXR xAI model and COVID-19 xAI model to patient cohorts from other insti-
tutions due to population differences and use of different imaging equipment. Model performance was also not 
compared to the performance of practicing radiologists.

Approximately 270,000 CXRs were used in model development. However, we were unable to collect suf-
ficient training data for certain features, such as emphysema and cavity/cyst. Nevertheless, our CXR xAI model 
performed well even in these categories. Training data may be supplemented through continuous updates in 
the future.

Ground truth labels were assigned for classification of 20 abnormal radiographic features based on keywords 
extracted from the radiology reports. Common limitations arising from use of natural language processing (NLP) 
for ground truth labelling include usage of diverse descriptions for similar lesions, usage of implicative terms, 
and use of non-specific language by radiologists. It is necessary for clinicians to develop standardized radiology 
reports for more generalizable and unbiased AI model development.

We used a cohort of COVID-19 patients to provide an example of how our CXR xAI model can be applied in 
a real world clinical setting. However, our study only includes patients who visited the ED in the first 2 months 
of the COVID-19 outbreak, and additional clinical data, such as comorbidities and follow-up clinical outcomes, 
was not available.

Conclusion
We have developed an auditable CXR xAI model, which captures a broad scope of cardiorespiratory patho-
physiological manifestations. and comorbidities. Our CXR xAI model may potentially be broadly and efficiently 
applied via a fine-tuning approach in real world clinical situations to produce fully automated risk and outcome 
predictions.

Methods
Data collection.  CXRs obtained at our institution from February 2015 to February 2019 were identified 
from our Radiology Information System (RIS) and Picture Archiving and Communication System (PACS). A 
total of 440,852 studies from 117,195 patients were retrospectively retrieved after excluding studies without an 
associated radiology report and studies without view position information. After automated NLP data min-
ing and clean-up steps, we acquired 151,700 AP views from 49,096 patients and 90,023 PA views from 69,404 
patients.

Label extraction from radiology reports.  We developed an automated NLP program for label extrac-
tion from radiology reports using binary classification and a rule-based approach. Data processing was per-
formed in 3 stages. First, we constructed a dictionary for extraction of radiological terms using RadLex Lexi-
con ontology data (version 4.1)29 and manually added terms based on manual review of the radiology reports. 
Second, we extracted lemmatized terms from the dictionary, checked for negation and double negation, and 
modified the result to prevent false positives and false negatives. Third, we constructed a “clean negative” dataset 
containing categorically negative labels, such as “no pulmonary edema or pneumonia”. This dataset was used 
to check for conflicting descriptions within a radiology report due to physician error and for labelling errors 
from the first and second steps. Negative labels from the second step but not in the “clean negative” dataset were 
ignored in the NLP extraction performance test and CNN training.

For these steps, we used NLTK, tokenizer for sentence parsing, Spacy for word tokenizing, and Parts of Speech 
(POS) for tagging and dependency parsing. Using our rule-based NLP program, 4,383 feature-related keywords 
were automatically extracted from radiology reports. Feature-related keywords were then categorized using 20 
feature labels, and assigned a “positive”, “negative” or “ignore” value. Supplementary Table 1 shows the prevalence 
of each feature label in the train, validation, and test sets and Supplementary Table 2 shows high accuracy and 
precision for extraction of the 20 feature labels using our NLP program.

Multilabel classification.  We built a keyword library with RadLex Lexicon ontology data and terms 
extracted from the radiology reports. Each keyword was reviewed and categorized with consensus by 3 Korean 
board-certified radiologists and 3 physicians. Finally, the features were classified into 7 anatomy-based catego-
ries (Lung volume, Lung opacity, Hilum/mediastinum, Pleural lesion, Bone, Diaphragm, and Foreign body). 
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Lung volume was further classified into 2 subcategories (Increased lung volume and Decreased lung volume), 
lung opacity was further classified into 7 subcategories (Atelectasis, Pneumonia-like lesion hereinafter referred 
to as Pneumonia, Nodule/Mass, Pulmonary edema, and Other interstitial opacity); Hilum/mediastinum was 
further classified into 4 subcategories (Hilar area, Mediastinum, Cardiomegaly, and Aorta); Pleural lesion was 
further classified into 3 subcategories (Pleural effusion, Pneumothorax, and Other pleural lesion); and Bone 
was further classified into 2 subcategories (Fracture and Non-fracture). Each CXR may contain multiple labels.

Comprehensive feature set for a specific disease by regrouping of 20 labels.  Our xAI model 
produces predictions for 20 labels. In comparison, a maximum of 14 labels have been used in prior studies14–21. 
To use these labels for description of specific diseases, we identified groups of abnormal features associated with 
specific conditions or diseases, which can be displayed in the interpretation table. For example, labels associated 
with respiratory infection may include lung opacity-related features such as pneumonia and atelectasis, as well 
as additional features as complications, such as pleural effusion and pulmonary edema. To evaluate for acute 
exacerbation of heart failure, cardiomegaly, pulmonary edema, and pleural effusion should be displayed. If trau-
matic chest injury is suspected, predictions for bone fracture, pneumothorax, and pleural effusion are relevant, 
and additional predictions for diaphragm, mediastinum, and cardiomegaly may also be necessary, depending 
on the clinical context.

Regrouping of abnormal features may be performed as required by physicians in different clinical settings, 
and more comprehensive xAI models can also be developed by addition of clinical information, such as age, 
gender, respiratory symptoms, vital signs, and laboratory results. In this study, we developed a comprehensive 
xAI model for prediction of oxygen requirement in COVID-19 patients using 7 radiographic features and 8 
clinical parameters as predictors.

Test set annotation.  We randomly selected 1000 PA views and 1000 AP views for model testing. CXRs in 
the test set were annotated by 3 United States board-certified radiologists at our institution, with 1–6 years of 
experience in emergency radiology. For each label, majority voting was employed to resolve annotator disagree-
ment and derive a single ground truth. To annotate cases in the test set, we used MarkIt, a web-based annotation 
tool (Supplementary Fig. 5), as described in our previous study6,30.

Model development.  Explainable AI algorithm (xAI).  A detailed description of xAI model development, 
including CNN training, ensemble model construction, and distribution Atlas creation, is provided in our previ-
ous study6.

Patch Atlas creation based on CAM ensemble method.  We developed a CAM ensemble method for patch atlas 
creation to improve the localization performance of CAM. For each label, representative features from the train-
ing set were included in the patch atlas if the corresponding prediction probability was ≥ 0.9. Feature patches 
were applied to a cosine metric-based UMAP model and coordinates for each feature patch in the two-dimen-
sional embedding space were obtained6,31.

Interpretation table.  Multilabel classification output for the test image is summarized in the interpretation 
table using symbols to demonstrate similar combinations of pathological findings, where prediction probability 
is ≥ 0.90 for ‘ +  +  + ’, < 0.90 and ≥ 0.80 for ‘ +  + ’, < 0.80 and ≥ 0.70 for ‘ + ’, and < 0.70 for ‘-’. N-nearest images are 
selected from the Model-Derived Atlas based on Euclidean distance from an L-dimensional probability vector 
of the test image, as shown in Fig. 4, where N = 5.

where �pb = Sort
(

||
(

p− AP(i)
)

· c||2
)

fori = 1, . . . , n(AP) , c is an L-dimensional vector with one for the target 
classes and zeros for the others, p is an L-dimensional probability vector of the test image, and AP(n) denotes 
n-th probability vector in our probability atlas. � denotes the set with elements of a sorted index, �(m) is m th 
index, and ρ means the selected group.

AI scoreboard.  The AI scoreboard displays essential execution metrics including prediction probabilities, cali-
brated classifier confidence, and correlation between classes, as shown in Supplementary Fig. 6.

Prediction probabilities and correlation between classes were computed in a single inference step, in which 
Pearson correlation coefficients were used to calculate the correlation between class weights from the trained 
neural network.

Calibrated classifier confidence represents how much we can trust the prediction given the prediction prob-
ability. It is calculated as the difference between a percentile from the probability density distribution for the 
positive class and a percentile from probability density distribution for the negative class.

where yC is the predicted probability for the c-class, f cP (yC) is a percentile from the probability density distribu-
tion for the positive class, and f cN (yC) is a percentile from the probability density distribution for the negative 
class.

(1)�pb = {�pb(1), . . . ,�pb(N)},

(2)ConfidenceP = max
(

f cP (y
C)− (1− f cN (y

C)), 0
)

,

(3)ConfidenceN = max
(

(1− f cN (y
C)− f cP (y

C), 0
)
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Application to COVID‑19.  We identified patients who visited the ED between March 2, 2020 and May 7, 2020 
and were diagnosed with the SARS-CoV-2 virus by positive RT-PCR assay. Among the 1798 patients, 58 patients 
were excluded because an admission CXR was not available. We randomly selected 1375 patients (80%) for 
model development and 365 patients (20%) for model testing. Demographic and clinical data were obtained 
including age, gender, systolic blood pressure, heart rate, respiratory rate, body temperature, peripheral oxygen 
saturation, initial oxygen requirement, and oxygen requirement at 24 and 72 h from the time of admission to the 
ED. Oxygen requirement was recorded as room air (RA), low flow oxygen (LFO, ≤ 6L/min), high flow oxygen 
(HFO, > 6L/min or non-invasive ventilation), or mechanical ventilation (MV). Supplementary Table 3 summa-
rizes the demographic and clinical characteristics of COVID-19 patients in our study.

Using predictions from our pre-trained CXR xAI model for 7 radiographic labels (Cardiomegaly, Atelectasis, 
Pulmonary edema, Pneumonia, Other interstitial opacity, Decreased lung volume, and Pleural effusion) and 8 
clinical parameters (age, gender, heart rate, body temperature, systolic blood pressure, respiratory rate, peripheral 
oxygen saturation, and initial oxygen requirement) as inputs, we trained a random forest model using 500 trees 
in the forest, Gini criteria to measure the quality of a split, and bootstrap samples when building trees.

IRB approval.  IRB approval for retrospective analysis was obtained from our institution (IRB approval 
#2019P002432). Informed consent was waived due to the retrospective nature of the study.

Statistical analysis and evaluation.  Model performance was evaluated using AUROC, sensitivity (same as 
recall), specificity, positive predictive value (PPV, same as precision), negative predictive value (NPV), and F1 
score, with 95% confidence intervals (CIs) for these 7 performance metrics.

Data availability
Data sharing is restricted by our institution’s policies. De-identified patient level data for participants in this study, 
our statistical analysis plan, and the statistical coding can be made available with approval of the IRB. Requests 
should be made to the corresponding author.
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