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Total metabolic tumor volume (TMTV) and tumor dissemination
(Dmax) calculated from baseline 18F-FDG PET/CT images are prog-
nostic biomarkers in diffuse large B-cell lymphoma (DLBCL) patients.
Yet, their automated calculation remains challenging. The purpose of
this study was to investigate whether TMTV and Dmax features could
be replaced by surrogate features automatically calculated using an
artificial intelligence (AI) algorithm from only 2 maximum-intensity pro-
jections (MIPs) of the whole-body 18F-FDG PET images. Methods:
Two cohorts of DLBCL patients from the REMARC (NCT01122472)
and LNH073B (NCT00498043) trials were retrospectively analyzed.
Experts delineated lymphoma lesions from the baseline whole-body
18F-FDG PET/CT images, from which TMTV and Dmax were mea-
sured. Coronal and sagittal MIP images and associated 2-dimensional
reference lesion masks were calculated. An AI algorithm was trained
on the REMARCMIP data to segment lymphoma regions. The AI algo-
rithm was then used to estimate surrogate TMTV (sTMTV) and surro-
gate Dmax (sDmax) on both datasets. The ability of the original and
surrogate TMTV and Dmax to stratify patients was compared.
Results: Three hundred eighty-two patients (mean age6SD, 62.1 y6
13.4 y; 207 men) were evaluated. sTMTV was highly correlated with
TMTV for REMARC and LNH073B datasets (Spearman r5 0.878 and
0.752, respectively), and so were sDmax and Dmax (r5 0.709 and
0.714, respectively). The hazard ratios for progression free survival of
volume and MIP-based features derived using AI were similar, for
example, TMTV: 11.24 (95% CI: 2.10–46.20), sTMTV: 11.81 (95% CI:
3.29–31.77), and Dmax: 9.0 (95% CI: 2.53–23.63), sDmax: 12.49 (95%
CI: 3.42–34.50). Conclusion: Surrogate TMTV and Dmax calculated
from only 2 PET MIP images are prognostic biomarkers in DLBCL
patients and can be automatically estimated using an AI algorithm.
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Diffuse large B-cell lymphoma (DLBCL) is the most common
type of non-Hodgkin lymphoma. In clinical practice, 18F-FDG PET/
CT is a standard of care for staging and assessing response in
DLBCL patients (1). The prognostic value of the total metabolically
active tumor volume (TMTV) measured from the whole-body 18F-
FDG PET/CT images performed before treatment has been widely
demonstrated in lymphoma, especially in DLBCL (2–6). The disease
dissemination reflected by the largest distance between 2 lesions in
the baseline whole-body 18F-FDG PET/CT image (Dmax) has been
recently shown to be a complementary early prognostic factor com-
pared with TMTV (7,8). TMTV and Dmax calculations require
tumor volume delineation over the whole-body 3-dimensional (3D)
18F-FDG PET/CT images, which is prone to observer variability and
complicates the use of these quantitative features in clinical routine.
To address this problem, automated lesion segmentation ap-

proaches using convolutional neural networks (CNNs) have been
proposed (9,10). These methods require high computational resour-
ces to be developed but have shown promising results, despite
missing small lesions (7). Results from CNN still need to be vali-
dated and adjusted by an expert before they are used for further
analysis (7,8). This implies a thorough visual analysis of all 3D
18F-FDG PET/CT images and delineation of the lesions missed by
the algorithm. Consequently, developing a pipeline that would
speed up this checking/adjustment process is highly desirable in
clinical practice.
Nuclear medicine physicians commonly use 2-dimensional (2D)

PET maximum-intensity projection (MIP) views for visual inter-
pretation as a synthetic representation of the 3D distribution of the
tracer over the whole body. However, to the best of our knowledge,
the prognostic value of PET parameters extracted from 2DMIP has
never been explored. We hypothesized that tumor burden and
spread could be automatically evaluated from only 2 PET MIP
images corresponding to coronal and sagittal views. This would
have 2 advantages: first, result checking and adjustment would be
faster from 2MIP views than the whole-body 3D 18F-FDG PET/CT
images, typically including more than 200 transaxial slices. Second,
a deep learning model for segmenting MIP images would involve
fewer parameters than when segmenting the whole-body 3D 18F-
FDG PET images. It is less computationally expensive and might
require less data for training.
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The purpose of this study was to investi-
gate whether TMTV and Dmax biomarkers
could be replaced by surrogate biomarkers
automatically calculated using an artificial
intelligence (AI) algorithm from only 2 MIPs
of the whole-body 18F-FDG PET images.
We then determined the prognostic values
of the surrogate biomarkers in terms of
progression-free survival (PFS) and overall
survival (OS).

MATERIALS AND METHODS

Patient Cohorts
The study population included DLBCL pa-

tients who had undergone a baseline (before
treatment initiation) PET/CT scan from 2 inde-
pendent trials: REMARC (NCT01122472)
and LNH073B (NCT00498043). The charac-
teristics of these cohorts have been published
elsewhere (6,11,12). PFS and OS as defined
following the revised National Cancer Institute
criteria (13) were recorded. Flow diagrams
for the datasets and the study design are sum-
marized in Figure 1. All data were pseudony-
mized before analysis. The institutional review
board approval, including ancillary studies, was
obtained for the 2 trials, and all patients pro-
vided written informed consent. The demo-
graphics and staging of the patients used for the
survival analysis are summarized in Table 1.

Measurements of Reference TMTV
and Dmax

For the REMARC cohort, the lymphoma re-
gions were identified in the 3D PET images as
previously described (6,14), and the LNH073B
lesions were segmented as previously explained
(7). In all cohorts, physicians removed the re-
gions corresponding to physiologic uptake and
added pathologic regions missed by the algo-
rithm. The supplemental materials (section A;
supplemental materials are available at http://
jnm.snmjournals.org) provide details. Expert-
validated 3D lymphoma regions were used to
compute the reference TMTV and Dmax (based
on the centroid of the lymphoma regions), as
shown in Figure 1B (8).

Calculation of PET MIP Images and 2D
Reference Lymphoma Regions

For each patient whole-body 3D 18F-FDG PET images and associ-
ated 3D lymphoma regions, two 2D MIP views and associated 2D lym-
phoma regions were calculated (Fig. 2). The 3D PET image was
projected in the coronal and sagittal directions, 90� apart (Fig. 2), setting
each pixel value of the projection to the maximum intensity observed
along the ray normal to the plane of projection. Similarly, MIPs of the
expert-validated 3D lymphoma regions were calculated, resulting in
binary images of 2D lymphoma regions (Fig. 2), hereafter called MIP_
masks. As described in the following section, these MIP_masks were
then used as a reference output to train a CNN-based fully automatic
lymphoma segmentation method.

Fully Automatic Lymphoma Segmentation on PET MIP Images
Deep Learning Model Inputs and Architectures. To automati-

cally segment the lymphoma lesions from the sagittal and coronal PET
MIP images, we adapted a previously published supervised 2D deep
learning model (15). The sagittal and coronal PET MIPs were indepen-
dent input images during training. The corresponding MIP_mask was
the output image. The deep learning model was trained to transform a
given sagittal or coronal PET MIP image to the corresponding MIP_
mask with pixels of lymphoma regions set to 1 and pixels of the non-
lymphoma regions set to 0.
Training, Validation, and Testing Configurations. First, using

the REMARC cohort (298 patients), a 5-fold cross-validation technique
was used to train and evaluate the model. Patients were randomly split

REMARC cohort (n = 301):
Baseline whole-body 18F-FDG

PET/CT scans of DLBCL patients 
available for analysis

LNH073B cohort (n = 174):
Baseline whole-body 18F-FDG

PET/CT scans of DLBCL patients 
available for analysis

Study population (n = 297):
Patients with baseline 18F-FDG PET and 
delineated lymphoma regions available 

for deep leaning model training and 
evaluation

Study population (n = 174):
Patients with baseline 18F-FDG PET and 
delineated lymphoma regions available 

for deep leaning model evaluation
(Test set)

Study population (n = 95):
Patients available for survival analysis 

(PFS and OS) using 3D 18F-FDG PET/CT 
and 2D PET-MIP-based biomarkers

Study population (n = 287):
Patients available for survival analysis 

(PFS and OS) using 3D 18F-FDG PET/CT 
and 2D PET-MIP-based biomarkers

Excluded patients (n = 4)
- 18F-FDG PET delineated 

lymphoma regions unreadable

Excluded patients (n = 79)
- Patients with no survival data 

or with 1 lesion only

Excluded patients (n = 10)
- Patients with no survival data 

or with 1 lesion only

3D 18F-FDG PET/CT images

Lymphoma regions delineation 
(expert)

Maximum intensity
projection (MIP) PET images

Artificial intelligence
(AI)

Volume based biomarkers 
(expert)

Tumor burden 
TMTV

Dissemination 
Dmax

Dissemination 
sDmax

Tumor burden 
sTMTV

Are all predictive of lymphoma patient survival with respect to PFS and OS?

A

B

FIGURE 1. (A) Study flowchart. (B) Study design.

1926 THE JOURNAL OF NUCLEAR MEDICINE � Vol. 63 � No. 12 � December 2022

http://jnm.snmjournals.org
http://jnm.snmjournals.org


into 5 groups, and then 5 models were trained on 80% of the population
and the remaining 20% was used for validation. The detailed network
architecture (15,16) and the training procedures are fully described in the
supplemental materials (section B; Supplemental Fig. 1) (17), following
the CLAIM guidelines (18) and Society of Nuclear Medicine and Molec-
ular Imaging AI Task force recommendations (19). The deep learning
model is publicly available at https://github.com/KibromBerihu/ai4elife.

Second, we tested the model trained from the REMARC cohort (298
patients) on the independent LNH073B cohort (174 patients) to charac-
terize its generalizability and robustness. The REMARC and LNH073B
cohorts were acquired from 2 different trials. The REMARC study was
a double-blind, international, multicenter, randomized phase III study,
which started inclusion in 2010. In contrast, the LNH073B study was a
prospective multicenter, randomized phase II study that started includ-
ing patients in 2007.

Calculation of Surrogate TMTV (sTMTV) and Surrogate
Dmax (sDmax)

The sTMTV and sDmax were defined and computed from the MIP_
masks automatically segmented from the coronal and sagittal PET MIP
images using the deep learning method.
Tumor Burden Analysis. To characterize tumor burden, we defined

a surrogate tumor volume sTMTV from the MIP_mask as the number
of pixels belonging to the tumor regions in MIP_mask multiplied by the
pixel area. For a given patient, sTMTV was calculated from the coronal
and the sagittal MIP_masks as sTMTV5 sTMTVcoronal1 sTMTVsagittal.
Tumor Dissemination Analysis. The spread of the disease was ana-

lyzed by estimating the largest distance between the tumor pixels belonging
to the MIP_mask, using a new robust largest distance estimation approach.
First, we separately calculated the sum of pixels along the columns and the
rows of MIP_mask, yielding x and y profiles (Supplemental Fig. 2). Second,

TABLE 1
Population Characteristics

Characteristic REMARC LNH073B

No. of patients 287 95

Sex

No. of men 165 (57.5%) 42 (44%)

No. of women 122 (42.5%) 53 (56%)

Median age (y) 68 (IQR, 64.0–73.0) 46 (IQR, 33.25–55.0)

Median weight (kg) 72 (IQR, 63.0–84.2) 68 (IQR, 58.0–80.0)

Median height (cm) 167.5 (IQR, 160.0–175.0) (1 case missed) 173 (IQR, 140.0–193.0)

Ann Arbor stage

,I 1 (0.4%) 0 (0%)

$II 286 (99.6%) 95 (100%)

Performance status

0 115 (40%) 0 (0%)

1 121 (42%) 27 (28.4%)

2 42 (14.6%) 43 (45.3%)

3 2 (0.7%) 20 (21.1%)

4 2 (0.7%) 5 (5.3%)

Missing 5 (1.7%) NA

IQR 5 interquartile range (quartile 1 to quartile 3); NA 5 not applicable.

FIGURE 2. Example of 18F-FDG PET MIP images (left) and associated
lymphoma regions (right) based on expert delineation of the 3D 18F-FDG
PET images.
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in each of these 2 profiles, the distances between
the 2% percentile and the 98% percentiles (x2%
and x98% in the x profiles, y2% and y98% in the y
profiles) were calculated, yielding ðx98%2x2%Þ
and ðy98%2y2%Þ, respectively. These percen-
tiles were chosen to improve the robustness of the
calculation to outliers. The largest distance was
defined as sDmaxsagittal=coronal5 ðx98%2x2%Þ1
ðy98%2 y2%Þ. For a given patient, the surro-
gate tumor dissemination sDmax was the sum
of the coronal and sagittal disseminations using
sDmax5 sDmaxsagittal1 sDmaxcoronal.

Statistical Analysis
Using the MIP_masks obtained from the

expert-delineated 3D lymphoma regions (Fig. 2)
as a reference, the segmentation performance of
CNN was evaluated using the Dice score, sensi-
tivity, and specificity. The difference between
the CNN-based segmentation results and the
expert-delineated 3D lymphoma regions was
quantified using Wilcoxon statistical tests.
Univariate and multivariate survival analyses
were performed. For all biomarkers, we calcu-
lated a time-dependent area under the receiver
operating characteristics curve (AUC) (20).
Bootstrap resampling analysis was performed to
associate CIs to the Cox model hazard ratio (HR)
and the time-dependent AUC (supplemental
materials, section C, provide details). Test results
were considered statistically significant if the
2-sided P value was less than 0.05.

RESULTS

A total of 475 patients from 2 different
cohorts were included in this study, of
which 93 patients were excluded from the
biomarker and survival analysis because the
provided baseline 18F-FDG PET/CT images
were not suitable to analyze all biomarkers
(no PET segmentation by an expert or less
than 2 lesions). Summary statistics of patients
are presented in Table 1.

Lymphoma Segmentation
The performance of the proposed segmen-

tation method was evaluated patientwise. The
CNN segmentation method achieved a 0.80
median Dice score (interquartile range [IQR]:
0.63–0.89), 80.7% (IQR: 64.5%–91.3%) sen-
sitivity, and 99.7% (IQR: 99.4%–0.99.9%)
specificity for the REMARC cohort. On
the testing set composed of 174 LNH073B
patients, the CNN yielded a 0.86 median
Dice score (IQR: 0.77–0.92), 87.9% (IQR:
74.9.0%–94.4%) sensitivity, and 99.7%
(IQR: 99.4%–99.8%) specificity. In the
LNH073B data, the CNN yielded a mean
Dice score of 0.806 0.17 (mean6SD) on
the coronal view and 0.796 0.17 on the
sagittal view. Figure 3 shows segmentation
result examples from experts (MIP_masks)

FIGURE 3. 18F-FDG PET MIP images and segmentation results (blue color overlapped over PET
MIP images) by experts (MIP_masks) and by CNN for 4 patients: from REMARC cohort (A) and from
LNH073B cohort (B).
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and CNN (Supplemental Fig. 3 provides more segmentation results).
The Dice score was not significantly different (P . 0.05) between
the coronal and sagittal views, both for the REMARC and the
LNH073B cohorts.
In both cohorts, there was a significant correlation between

ranked TMTV and Dmax values and the associated surrogate val-
ues obtained using CNN. For REMARC, TMTV was correlated
with sTMTV (Spearman r5 0.878, P, 0.001), and Dmax was cor-
related with sDmax (r5 0.709, P , 0.001). Of 144 patients who
had TMTV greater than the median TMTV (242 cm3), 121
(84.02%) patients had also sTMTV greater than the median sTMTV
(174.24 cm2). One hundred forty-four patients had Dmax greater
than the median Dmax (44.8 cm), and 113 (78.5%) of these patients
also had sDmax greater than the median sDmax (98.0 cm).
For LNH073B, TMTV was correlated with sTMTV (r5 0.752,

P , 0.001), and Dmax was correlated with sDmax (r5 0.714, P ,
0.001). Of 48 patients who had TMTV greater than the median
TMTV (375 cm3), 42 (87.5%) patients had also sTMTV greater than
the median sTMTV (307.2 cm2). Forty-eight patients had Dmax
greater than the median Dmax (44.1 cm), and 39 (81.3%) of these
patients also had sDmax greater than the median sDmax (116.4 cm).
Table 2 shows the descriptive statistics for the surrogate PET features.

Survival Analysis
The time-dependent AUC and HRs with 95% CI of the meta-

bolic tumor volume and tumor spread are shown in Table 3 for
the REMARC and LNH073B data. All PET features extracted
from the baseline 3D 18F-FDG PET/CT images and using AI

(sTMTV and sDmax) were significant prognosticators of the PFS
and OS.
When TMTV and Dmax (or their surrogates) were combined,

3 risk categories could be differentiated in the REMARC data
(Fig. 4): using the 3D features, category 1 corresponded to low
TMTV (#222 cm3) and low Dmax (#59 cm) (low risk, n5 108);
category 2 corresponded to either high Dmax or high TMTV
(intermediate risk, n5 112); category 3 corresponded to both
high Dmax and high TMTV (high risk, n5 67). This stratification
was similar when using the MIP features–based categories using
AI (Fig. 4). The accuracy of the CNN-based classification into
3 categories with respect to the 3D biomarkers–based classifica-
tion was 71.4%.
In the LNH073B cohort, when TMTV and Dmax (or their surro-

gates) were combined, 3 risk categories could be differentiated
(Fig. 5): using the 3D features, category 1 was defined as low
TMTV (#468 cm3) and low Dmax (#60 cm) (n5 45); category 2
corresponded to either high Dmax or high TMTV (n5 37); cate-
gory 3 corresponded to both high Dmax and high TMTV (n5 13).
Of the 13 patients classified as high risk, 9 (69.2%) patients had less
than 4 y of OS, and 10 (76.9%) patients had less than 4 y of PFS.
This stratification was similar when using the CNN-based results.
The sTMTV cutoff value was 376 cm2, and the sDmax cutoff value
was 122 cm. There were 38 patients in category 1, 35 in category 2,
and 22 in category 3. Of the 22 patients classified as a high risk, 19
(77.3%) patients had less than 4 y of OS, and 19 (86.4%) patients
had less than 4 y of PFS. The accuracy of the AI-based classifica-
tion into 3 categories with respect to the 3D biomarkers–based

TABLE 2
Statistics for Surrogate TMTV and Surrogate Dmax

Cohort sTMTV/sDmax Mean SD Minimum Q1 (25%) Median Q3 (75%) Maximum

REMARC sTMTV (cm2) 252.27 245.75 0.48 77.04 174.24 350.56 1339.36

sDmax (cm) 100.16 49.89 0.40 66.20 98.0 135.0 225.20

LNH073B sTMTV (cm2) 388.12 249.91 63.68 224.48 307.2 450.08 1186.24

sDmax (cm) 121.82 41.10 43.20 92.00 116.40 145.60 222.40

Q1 5 first quartile (25% percentile); Q3 5 third quartile (75% percentile).

TABLE 3
Results of the Univariate Analyses for PFS and OS Using Time-Dependent AUC Analysis and Cox Models (HR)

3D 18F-FDG PET/CT estimates 2D PET MIP estimates

Data PFS/OS Metrics TMTV Dmax sTMTV sDmax

REMARC PFS AUC 0.67 (0.60–0.73) 0.65 (0.58–0.72) 0.65 (0.58–0.72) 0.68 (0.62–0.75)

HR 11.24 (2.10–46.20) 9.0 (2.53–23.63) 11.81 (3.29–31.77) 12.49 (3.42–34.50)

OS AUC 0.67 (0.58–0.76) 0.62 (0.53–0.71) 0.67 (0.58–0.76) 0.68 (0.59–0.76)

HR 16.43 (2.42–77.29) 8.60 (1.47–28.33) 22.14 (4.73–69.06) 22.79 (3.80–79.21)

LNH073B PFS AUC 0.62 (0.49–0.75) 0.56 (0.39–0.72) 0.66 (0.53–0.80) 0.58 (0.41–0.74)

HR 13.79 (0.45–86.80) 32.83 (0.4–220.8) 9.24 (0.95–37.94) 16.79 (0.69–86.41)

OS AUC 0.65 (0.46–0.82) 0.51 (0.31–0.72) 0.64 (0.45–0.82) 0.50 (0.29–0.72)

HR 64.30 (0.74–384.80) 49.21 (0.07–258.3) 14.17 (0.59–67.02) 20.39 (0.08–93.66)

PET MIP PROGNOSTIC BIOMARKERS IN DLBCL � Girum et al. 1929



classification was 64.2%. All patients classified as high risk using
the 3D biomarkers were also classified as high risk using the CNN,
except 1 patient who had an OS of 36.6 mo. Of the 9 patients classi-
fied as high risk when using the CNN but not when using the 3D
biomarkers, 8 (88.9%) patients had less than 4 y of OS, and the
remaining 1 (11.1%) patient had 21.95 and 57.99 mo of PFS and
OS, respectively.
In Supplemental Figure 4, the confusion matrices show the

agreement between the 3D-based biomarkers and the surrogate
MIP biomarkers in the LNH073B data. The percentage of the data
classified into high, low, and intermediate risk is also shown. When
a classification in 2 groups based on 1 biomarker only (either tumor
burden or dissemination biomarkers) was used, the AI-based classi-
fication had a 79% accuracy compared with the 3D-based clas-
sification.

DISCUSSION

We developed and evaluated a new framework to calculate
sTMTV and sDmax (the largest distance between lymphoma sites)
features from 2D PET MIP images. The motivation for consider-
ing tumor delineation on 2D MIP views instead of the 3D volume
was 2-fold: first, checking lymphoma regions on 2D PET MIP
images is much faster than on the 3D 18F-FDG PET/CT volumes.
Second, training an automated AI tumor segmentation algorithm is
easier in 2D than in 3D from a practical point of view (fewer
parameters to be tuned, less data to be used for training, and less

computational cost). We thus investigated
the prognostic values of these surrogate
biomarkers using 2 independent retrospec-
tive cohorts of DLBCL patients with base-
line 18F-FDG PET/CT. Characterizing
tumor burden and its dissemination was
feasible using features extracted from the
2D PET MIP images. TMTV and Dmax
were highly correlated with sTMTV and
sDmax, respectively.
Developing automatic and robust lym-

phoma segmentation methods on PET MIP
images could cost less data and less com-
putational resources than when using the
whole-body 18F-FDG PET images. It could
allow AI experts to quickly investigate
appropriate segmentation approaches to
tackle the challenging lymphoma segmen-
tation task and reduce intercenter and inter-
expert variations in lymphoma delineation.
Experts can validate and correct, if neces-
sary, AI results on 2D MIP images easier
and faster than on their 3D volume coun-
terparts. We also showed that a CNN could
segment lymphoma lesions fully automati-
cally from the given 2D PET MIP image
with high accuracy compared with expert
readers. This result was confirmed on the
independent LNH073B cohort. The pro-
posed CNN-based segmented regions
enabled features extraction with predictive
values comparable to when these features
are calculated from the areas delineated by
experts in the 3D image. The main strength

of this work was that we validated our findings using an external
cohort from a different retrospective trial. However, training the
proposed deep learning model from an increased training sample
size, preferably from different centers and acquisition parameters,
might further improve its performance. No correlations were
observed between the segmentation errors made by the model and
lesion size. Previous lymphoma segmentation methods used the
whole-body 18F-FDG PET/CT images (9,10). Most of these meth-
ods involved complex preprocessing, CT and PET image alignment,
and did not investigate whether both TMTV and Dmax remained
good prognosticators when calculated from the automated segmen-
tation. Recent studies have also demonstrated that CNN-based
results need corrections by experts (7,8). Correction of results on 3D
volume could be time-consuming, observer-dependent, and difficult.
In contrast, corrections, and validations (if necessary) could be eas-
ier and faster on 2D PET MIP images, allowing easy use of these
features in clinical routine.
Interestingly, the surrogate biomarkers automatically calculated

using AI (sTMTV and sDmax) had strong prognostic values regard-
ing PFS and OS, comparable to the prognostic importance of
TMTV and Dmax obtained from the 3D volumes. The classification
of patients into the 3 risk groups using the 3D TMTV and Dmax
agreed with the patient’s classification based on the 2D sTMTV and
sDmax (71.4% and 64.2%, respectively, in REMARC and LNH037
cohorts). Patients classified as high-risk using 3D-based biomarkers
and low-risk (or vice versa) using 2D-based biomarkers had values

FIGURE 4. Kaplan–Meier estimates of OS and PFS from REMARC cohort according to 3D 18F-
FDG PET/CT image–based features TMTV (cm3) and Dmax (cm) (A and C), and according to PET
MIP image–based features sTMTV (cm2) and sDmax (cm) estimated from AI (B and D).
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close to the cutoff values. Visual assessment of the segmentation
results suggested that the 2D-based biomarkers tend to perform
well compared with the 3D-based biomarkers when the patient had
lesions spread over the body and performed less well when the
patient had a large bulky lesion.
In this work, we defined and calculated the surrogate biomarkers

from both the coronal and the sagittal PET MIPs. However, experi-
ments showed that characterizing the lymphoma disease using
sTMTV and sDmax calculated from either coronal or sagittal also
had good predictive values, comparable to these features obtained
from 3D volumes. The same cutoff values were used to analyze the
PFS and OS. The cohorts were from 2 independent studies with
varying stages of cancer (Table 1). Thus the (s)TMTV cutoff val-
ues were different between the 2 cohorts. Interestingly, the cutoff
values to characterize the lesion dissemination (Dmax and sDmax)
in DLBCL patients on baseline PET images were almost identical
on the independent cohorts. Dmax and sDmax were defined empiri-
cally, yet a recent study has shown that the distance between
lesions calculated using different distance measurement methods
(namely Euclidean, Manhattan, and Chebyshev) in 3D yielded sim-
ilar results in predictions of the outcome (21).
Our study has limitations. Although we validated the CNN on

2 independent retrospective studies, validating the proposed
CNN in larger multicenter cohorts will be required to develop it
into a clinical tool. In addition, although the CNN results can be
easily visually checked, they should ideally be provided with a

confidence level, which could be turned
into a confidence associated with the risk
classification.

CONCLUSION

In this study, we introduced biomarkers
extracted from PET MIPs as surrogates of
the total metabolic tumor burden and tumor
dissemination. To our knowledge, this is
the first study showing that PET parameters
extracted from 2D MIP images are pre-
dictive of outcome in a large series of
patients with DLBCL, with results com-
parable to these features calculated from
the 3D 18F-FDG PET/CT images. We dem-
onstrated that surrogate TMTV and Dmax
calculated from lymphoma regions auto-
matically delineated on PET MIP images
using AI have strong prognostic values
in stratifying patients with DLBCL. This
result might considerably facilitate the cal-
culation and usage of these features in
clinical practices.
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KEY POINTS

QUESTION: Are surrogate tumor burden and dissemination features
calculated from PET MIP images prognostic biomarkers in DLBCL
patients and can they be automatically measured using an AI?

PERTINENT FINDINGS: sTMTV and sDmax calculated from MIP of
whole-body 18F-FDG PET images are predictive of PFS and OS in
DLBCL patients from 2 independent cohorts. A CNN could segment
lymphoma lesions from 2D PET MIP images automatically and the
resulting CNN-based sTMTV and sDmax estimates were predictive
of PFS and OS in 2 independent cohorts.

IMPLICATIONS FOR PATIENT CARE: Surrogate tumor burden
and dissemination features automatically calculated using AI from only
2 PET MIP images are prognostic biomarkers in DLBCL patients.
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