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Abstract

Recombinant AAV (rAAV) gene therapy is being investigated as an effective therapy for several 

diseases including hemophilia B. Reports of liver tumor development in certain mouse models 

due to AAV treatment and genomic integration of the rAAV vector has raised concerns about 

the long-term safety and efficacy of this gene therapy. To investigate whether rAAV treatment 

causes cancer, we utilized two mouse models, inbred C57BL/6 and hemophilia B Balb/C mice 

(HemB), to test if injecting a high dose of various rAAV8 vectors containing or lacking hFIX 

transgene, a Poly-A sequence, or the CB or TTR promoter triggered liver fibrosis and/or 

cancer development over the course of the 6.5-month study. We observed no liver tumors in 

either mouse cohort regardless of rAAV treatment through ultrasound imaging, gross anatomical 

assessment at sacrifice, and histology. We did, however, detect differences in collagen deposition 

in C57BL/6 livers and HemB spleens of rAAV-injected mice. Pathology reports of the HemB 

mice revealed many pathological phenomena, including fibrosis and inflammation in the livers 

and spleens across different AAV-injected HemB mice. Mice from both cohorts injected with 

the TTR-hFIX vector demonstrated minimal adverse events. While not tumorigenic, high dose of 
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rAAVs, especially those with incomplete genomes, can influence liver and spleen health negatively 

that could be problematic for cementing AAVs as a broad therapeutic option in the clinic.

1. Introduction

Gene therapy is a powerful biological tool being implemented in researching and treating 

several pathologies. Adeno-associated viral (AAV) vectors, a type of viral gene therapy with 

low immunogenicity and low rate of host genome integration, have been approved to treat 

diseases such as Leber congenital amaurosis and spinal muscular atrophy [1–3]. The clotting 

disorder hemophilia is also being studied with this virus-based gene therapy, as AAVs are 

used to correct defects in the clotting proteins factor VIII (hemophilia A) and factor IX 

(hemophilia B) [4]. While AAV treatments for both types of hemophilia are very close to 

FDA approval, questions of long-term safety and efficacy raised by the research community 

regarding AAVs need to be addressed.

AAV is a nonenveloped DNA virus that contains a genome as large as5 kbs. AAVs are 

desirable for gene therapy as they are reported to cause a relatively low immune response 

in vivo and require helper viruses to achieve successful infection [5–7]. For hemophilia A 

and B, recombinant AAVs (rAAV) containing FVIII or FIX, respectfully, are designed for 

delivery to the liver and induce production of the clotting factor protein that is absent [1, 4]. 

While translational studies and clinical trials demonstrated limited side effects from these 

AAV treatments, concerns about long-term effects of AAV treatments are an area of focus 

for the research community [7–10]. Several research groups report that in mouse models 

of the lysosomal storage disease mucopolysaccharidosis VII (MPSVII) and methylmalonic 

acidemia (MMA), mice injected with AAVs containing strong, nonspecific promoters 

developed hepatocellular carcinoma (HCC) at greater rates than non-AAV controls or AAVs 

containing more specific promoters [11–13]. Moreover, male C3H/HeJ mice subjected to 

liver injury that also received self-complementary (sc) AAV-CMV-eGFP or scAAV-CBA-

null vector treatment developed HCC at a higher rate compared to non-AAV controls [14]. 

In the majority of these AAV murine studies that report HCC incidences, results also show 

the rare, biological phenomenon of AAV genomic integration into the host genome. This 

is concerning, as components of certain promoters and the ITRs of the rAAV insert into 

or shift the genetic sequences of oncogenes and tumor suppressors in ways that potentially 

contributed to HCC development [12–14]. Relating these results to the clinic, persons 

with blood disorders and blood-borne diseases are reported to have elevated incidences 

of lymphomas and liver cancers [15, 16]. Additionally, retrospective analyses of an array 

of 1,461 human patient HCC biopsies revealed AAV2 and AAV13 positivity in 8% of 

tumor tissues, highlighting questions about whether this parvovirus contributed to tumor 

viability and/or progression [17]. Clarifying these safety discrepancies around liver tumor 

development is crucial for the gene therapy field, as research on how AAVs can be used 

to target cancer as a therapeutic agent has increased. To date, AAVs have not been directly 

linked to causing any sort of disease in humans or to any cancer, and these liver pathologies 

are less common in large animal models of AAV therapy such as cats and monkeys [18–

21]. Yet, further investigation into whether liver fibrosis and HCC are caused by AAVs is 

warranted.
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In this study, our goal was to monitor and assess whether a high dose injection of various 

rAAV8 vectors caused detectable liver cancer and/or fibrosis in a healthy mouse model 

(C57BL/6) and a mouse model of hemophilia B (Balb/C, FIX Exon1–3 deleted) over a time 

course of 6.5 months, using body weight, ultrasound imaging, and postmortem histology 

as means of detection [22]. We used rAAVs containing either the commonly used strong 

promoter CB (chicken β-Actin) or the liver-specific promoter TTR (transthyretin), as well 

as the presence or absence of the transgene for factor IX, and a Poly-A sequence, a key 

component for RNA export and translation [23–25]. We implemented ultrasound imaging 

as a means of monitoring liver health during the AAV experiments and compared the 

assessments from that modality to postmortem analyses of the livers and spleens via H&E 

staining and Masson’s Trichrome histology. Our results suggest vector design influences 

several aspects of liver and spleen biology, and numerous methods of analysis are necessary 

to comprehensively detect these pathologies in AAV in vivo studies.

2. Materials and Methods

2.1. In Vivo Mouse Studies with rAAV8.

Two in vivo studies were performed, one using C57BL/6 mice, and the other with 

hemophilia B mice on a Balb/C background [22, 26]. Hemophilia B mice with a 

targeted deletion of Exons 1–3 of the murine FIX gene had been bred on the Balb/C 

background [22]. All animals were maintained in the laboratory animal resource center at 

Indiana University–Purdue University, Indianapolis (IUPUI). All animal experiments were 

performed as per the guidelines of Institutional Animal Care and Use Committee (IACUC). 

Our protocol limited us to a long-term study of 194 days post AAV injection.

8–10-week-old male mice were intravenously injected via the tail vein with 2 × 1012 viral 

genomes with 1 of 5 recombinant AAV (rAAV8) (Supplemental Fig. 1C) constructs in 

a volume of 200 μls. This dose approximately equates to 6 × 1013 vg/kg based on the 

average weight of 24.4 g for the mice at injection used in these studies. PBS was injected 

into the control mice. Prior to injection, mice were placed under a heat lamp for 10 mins 

to dilate vessels to ease injections and then monitored for 30 mins postinjection for any 

complications. After day 0 and day 3 body weight measurements, weights were taken 

weekly for each mouse. At sacrifice or endpoint (D194 postinjection), we measured a final 

body weight before euthanasia and soft tissue collection.

2.2. Ultrasound Imaging.

Using a Vevo 2100, ultrasound images were taken of mouse livers at D90 and D194 

during the in vivo studies [27–30]. Mice were anesthetized using isoflurane and then placed 

supine to expose abdomen for imaging. Hair was removed and imaging gel applied prior 

to imaging livers with an MS550D probe (22–55 MHz). Both M-mode and B-mode images 

at a depth of 10 mm were collected; M-mode images were analyzed for echogenicity 

via average pixels of liver using ImageJ (http://ij.imjoy.io). Whole liver echogenicity was 

assessed by tracing nonvascular components of the liver image and measuring average 

pixels. Additionally, a region of interest near the portal triad present in all the images was 

assessed for differences. B-mode images were used to anatomically identify the portal triad 
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(portal vein, hepatic artery, and bile duct). Heart rate and body temperature of all mice were 

continually monitored during imaging process.

2.3. Histology, Microscopy, and Pathology.

The liver, spleen, heart, and lungs were collected, fixed in 10% neutral buffered formalin 

for 48 hrs at 4C, and then stored in 70% ethanol at 4C prior to histological processing. 

Liver weights and spleen weights were collected at sacrifice. Mouse livers and spleens were 

processed in paraffin for histological analysis. Processed tissues were embedded in paraffin 

blocks and cut into 5-micron sections. Glass slides were stained with hematoxylin and eosin 

(H&E) prior to histopathologic examination. H&E sections were analyzed on an Olympus 

BX41 microscope fitted with a DP71 camera at magnifications of 10, 20, 40, and 60x. Liver 

and spleen fibrosis was scored as per Kleiner et al. and the American Veterinary Medical 

Association [31–35]. Masson’s Trichrome staining and F4/80 immunohistochemistry were 

performed per protocols at the IUSM Immunohistochemistry Core. Trichrome stains were 

imaged on an Olympus IX73 inverted microscope at 4x, 10x, and 20x objectives. Percent of 

collagen area (blue color) of the livers and spleens was assessed via MetaMorph software 

at the Indiana Center for Biological Microscopy [36]. F4/80 stains were also imaged on the 

same microscope at 10x and 20x objectives.

2.4. AAV Construct Design, rAAV Production, and Titer Determination.

The parent plasmids pDS-AAV-CB-EGFP, pDS-AAV-CB-hFIX (co), and pDS-AAV-TTR-

hFIX (co) were in stock in our lab [37]. pDS-AAV-CB-PolyA was constructed by removing 

a 994 bp fragment from pDS-AAV-CB-eGFP using AccI and SacII (New England Biolabs) 

digestion; pDS-AAV-CB was constructed by removing a 1210 bp fragment from pDS-AAV-

CB-EGFP using ClaI and SacII (New England Biolabs) digestion; pDS-AAV-TTR-PolyA 

was constructed by removing a 1413 bp fragment from pDS-AAV-TTR-FIX (co) using 

BamHI and SacI digestion. Subsequently, the above various fragments were filled-in by T4 

DNA polymerase and then self-ligated. The constructs were further confirmed by digital 

droplet PCR (Bio-Rad).

A triple plasmid cotransfection method was used to produce rAAVs as described previously 

[38, 39]. One part vector plasmid (Supplemental Fig. 1A, 1B), one-partAAV8 helper 

plasmid, and one-part miniadenovirus function helper plasmid pFΔ6 were cotransfected into 

HEK293 cells cultured in roller bottles at a ratio of 1 : 1 : 1. The transfected cells were 

harvested 4 days later. rAAVs were then purified by two rounds of cesium chloridegradient 

ultracentrifuge. After extensive buffer exchange against phosphate-buffered saline with 5% 

D-sorbitol, the peak fractions of purified virus were pooled and stored at −80°C before 

administration.

Genome titers were determined by qPCR assay following the previous protocol [39]. Briefly, 

10 μls of purified virus was treated in 90 μls DNase I buffer (DNase I, 1 U) at 37°C for 

one hour and then heated at 85°C for 20 min to inactivate DNase I. Next, 50 μls lysis buffer 

(direct qPCR lysis buffer) containing 0.5 mg/ml proteinase K was added, incubated for 1 

hour at 56°C and heated at 95°C for 15 min. rAAV genomes were amplified using various 

primers, provided in Supplemental Table 1, and the titer for each was calculated. SnapGene 

Mulcrone et al. Page 4

Adv Cell Gene Ther. Author manuscript; available in PMC 2022 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



software was used to document all vector processes, production of new vectors, and storage 

of plasmid maps and enzyme information.

2.5. Activate Partial Thromboplastin Time (APTT).

We collected blood from the mice by retroorbital bleeding on day 90 and at the 

endpoint, day 194 postinjection. After anesthesia using isoflurane gas, nonheparinized 

microhematocrit tubes (Fisherbrand #22–362-574) were applied to the back of the eye with 

pressure, causing slight rupture and blood flow. Two tubes of blood were collected per 

mouse placed into a 1.5 ml tube containing 20 μls of 3.8% sodium citrate on ice, forming a 

solution of approximately 9 : 1 ratio of blood to sodium citrate. Mice were monitored for 15 

mins after blood collection for any complications. Samples were spun for 15–20 minutes at a 

speed of 15,000 rpm at 4°C. We collected the plasma after the centrifugation and performed 

1-step APTT using Stago Diagnostica equipment [40]. Briefly, a 1 : 1 : 1 mixture of Stago 

APTT buffer, murine plasma, and factor IX (FIX)-deficient plasma were incubated for 170 

s in Stago apparatus in the presence of a moving bead. Then, 50μls of calcium chloride 

(CaCl2) was added to induce clot formation. Times were recorded, indicating when the bead 

stopped moving due to clot formation. Clot time is presented as time relative to 1 unit based 

on standards using serial dilutions of FIX-containing plasma.

2.6. Statistics.

GraphPad Prism 9.1.2 software was used to calculate all statistics. Unless otherwise stated, 

data are presented as means ± the standard error mean (SEM). For experiments comparing 

more than 2 groups, one-way ANOVA was used with Dunnett’s post hoc test unless stated 

differently in a specific figure legend. A simple linear regression analysis was used for all 

correlation data in this manuscript. For all tests, a p value less that 0.05 was considered 

significant. For survival data, a Mantel-Cox Log-rank test was used.

3. Results

3.1. Vector Design for In Vivo Studies.

To design our AAV vectors, we used enzymatic digest to remove specific components of the 

plasmid genome of pDS-AAV-TTR-hFIX and pDS-AAV-CB-eGFP and purified the resulting 

products for in vivo injection [39]. The FIX-containing vectors (pDS-AAV-CB-hFIXco and 

pDS-AAV-TTR-hFIXco) are in-house vectors already produced by our lab. The pDS-AAV-

TTR-hFIX and pDS-AAV-CB-eGFP vectors were used as starting products to produce 

the following vectors: pDS-AAV-CB, pDS-AAV-CB-PolyA, and pDS-AAV-TTR-PolyA. 

Supplemental Fig.1A shows the gel simulation from SnapGene software that contains the 

sequence map information for the plasmids used in this study. Supplemental Fig.1B is 

the actual gel, with the bands identified for excision and purification by the blue arrows. 

Supplemental Fig.1C is graphical representations of the final AAV product that were 

injected in vivo. These 5 vectors were injected into two different sets of mice, a C57 BL/6 

mouse model, and a hemophilia B mouse model on a Balb/C background.
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3.2. Mouse Weights Do Not Differ in C57BL/6 In Vivo Study.

As the main goal of our study is to determine the safety of our AAV8 constructs in vivo, 

we used the common inbred C57BL/6 mouse model. We measured mouse weights weekly 

throughout the study. A common side effect of cancer is cachexia, which includes dramatic 

weight loss and muscle wasting [41]. Therefore, if a severe side effect of the vectors 

occurred, mouse weights would drop. Individual C57BL/6 mouse weights ranged from low 

20 s to low 30 s g at D0 and continued to steadily climb throughout the study (Figure 

1(a)). Some of the mice’s weights dropped in the final two weeks, but not severe enough to 

suggest the presence of a liver tumor. When the individual weights were grouped together, 

all groups exhibited a similar pattern of weight change, and no statistical difference was 

detected (Figure 1(b)).

3.3. Ultrasound Reveals Differences in Liver Echogenicity in C57BL/6 Injected with 
rAAVs.

In order to assess the potential effects of the specific AAV8 constructs injected into the 

C57s on HCC and liver fibrosis development, we implemented ultrasound imaging of mouse 

livers at 2 timepoints during the experiment. M-mode images were collected at day 90 

and endpoint (day 194) and analyzed for echogenicity, which manifests as white sections 

of the M-mode image. Representative images of each group and the two timepoints are 

shown in Figure 2(a). Pixel readouts of the ultrasound images demonstrate that whole 

liver analysis of control mice showed the highest echogenicity at day 90 (Figure 2(b)). 

pDS-TTR-hFIX- injected mice had a similar pixel count as controls, and the other four 

groups had an even lower pixel count. This pattern, however, changes at endpoint; mice 

injected with pDS-AAV-CB and pDS-CB-hFIX have the highest pixel count at endpoint, 

and control and pDS-TTR-hFIX mice have the lowest pixel count (Figure 2(c)); these 

differences trended toward significance. This suggests that different promoter and different 

components of AAV vectors could be affecting overall health of livers over time via changes 

in tissue composition. A region of interest near the portal triad that was consistently bright 

in the ultrasound images (see Materials and Methods) exhibited no significant differences 

among the groups at either timepoint (Figures 2(d) and 2(e)). This highlights how ultrasound 

imaging can be used to monitor liver health of mice with AAV treatment and the importance 

of performing whole-organ assessments and analyzing multiple areas of tissues to determine 

a true effect of AAV treatment.

3.4. Liver and Spleen Weights of rAAV-Injected Mice Trend Heavier in the C57BL/6 Model.

Changes in organ weight, tissue composition, and cellular distribution are indicators of 

pathology and responses to challenges [31]. At sacrifice, we weighed mouse livers and 

spleens to determine if any gross details of these organs differed based on AAV8 injection. 

Whole livers of C57 control mice weighed the least of all groups, and pDS-TTR-hFIX-

injected mice exhibited a similar weight to controls. Interestingly, the other four AAV groups 

(pDS-CB, pDS-CB-PolyA, pDS-CB-hFIX, and pDS-TTR-PolyA) had heavier liver weights 

(Figure 3(a)). This pattern matches that observed in the endpoint whole liver echogenicity 

analysis, suggesting a possible change in liver composition that manifested in a heavier 

organ at endpoint.
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It is documented that AAV vectors can cause immune responses over time, which is a 

very active area of gene therapy research, as strong immune responses to AAV therapy can 

diminish the effects of the treatment and cause negative outcomes for patients [1, 8, 10, 

42–47]. To understand if AAV injection could have altered the spleens in the C57 mice, we 

collected this key organ for the immune system from each mouse at endpoint and measured 

the weights before processing them for histological analysis. Generally, AAV-injected mice 

had slightly heavier spleens compared to controls. Among the AAV-injected groups, the 

spleen weights were similar and showed no significant difference (Figure 3(b)). This result 

suggests that the rAAV8 challenge did not cause an adverse change in spleen weight in the 

C57 mice. In order to relate the livers and spleens of each mouse to each other, the liver 

to spleen weight ratios of each mouse were calculated, revealing similar values among the 

six groups and no significant differences (Figure 3(c)). Of note, liver weights, but not spleen 

weights, positively correlated with endpoint whole body weight (Supplemental Fig. 2A, 2B). 

To test the activity of the rAAV8 vectors, activated partial thromboplastin time (APTT) 

assays using plasma collected fromC57BL/6 mice plasma was run; a reduction in clot time 

was observed in the pDS-TTR-hFIX C57BL/6 group at endpoint, demonstrating that the 

rAAV8 vectors were functioning properly in our animal study (Figures 3(d) and 3(e)).

3.5. Histological Analyses Reveal Collagen and Cellular Composition Differences in 
Livers and Cellular Differences in Spleens of C57BL/6 Mice Injected with CB-Containing 
rAAV8s.

To better understand the pathological effects of our rAAVs, we supplemented weights 

and ultrasound imaging analyses with histopathological analysis, which provides more 

comprehensive assessment of tissue composition, cellular distribution, and cellular health 

of the livers and spleens. Fibrosis is a concern, as this is the result of active tissue repair 

and increased activity of fibroblasts. This biological phenomenon can manifest as increased 

collagen deposition and affect organ function, with the possibility of cancer development 

[28, 48, 49]. Therefore, we performed Masson’s Trichrome staining to assess the levels of 

collagen in the livers and spleens of the C57 mice. We observed elevated collagen area in 

livers of pDS-CB-PolyA- and pDS-CB-hFIX-injected mouse groups compared to the control 

group in the C57 mice (Figures 4(a) and 4(b)). Mice injected with the pDS-TTR-hFIX 

vector, an rAAV8 that restores FIX levels in hemophilia B mouse models, and pDS-CB had 

a similar collagen deposition area compared to the controls, suggesting a low possibility 

of fibrosis induction in the liver. pDS-TTR-PolyA-injected mice had a slightly elevated 

collagen area compared to the controls. When analyzing the Trichrome stains of the spleens, 

no differences were observed among the groups, although four mice (2 controls, 2 pDS-CB) 

did have elevated collagen deposition in the spleens (Supplemental Fig. 3A, 3B). H&E 

staining of the C57BL/6 mice livers revealed both extramedullary hematopoiesis (EMH), 

which can be common in livers of mice, and cytoplasmic clearing, a reversible phenomenon 

connected to liver injury, in several samples (Figure 4(c)). Interestingly, no fibrosis or 

inflammation was observed in these livers, In the spleens, several mice across 4 groups had 

detectable hemosiderin, iron deposits caused by erythrocyte injury, and dysregulated iron 

metabolism (Supplemental Fig. 3C) [50]. The H&E staining we performed also showed 

no presence of HCC or tumors in the spleens, supporting the ultrasound and Trichrome 

staining data and reinforcing the safety of these AAVs regarding HCC development in 
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vivo. Overall, these results demonstrate that C57BL/6 mice experienced minimal negative 

pathological changes in response to our selected AAVs and did not present with HCC 6.5 

months postinjection. However, the promoter type and design of our selected vectors might 

play a role in altering collagen deposition and cellular iron metabolism in the livers and 

spleens.

3.6. Mouse Weights Differ in Hemophilia B In Vivo Study.

Along with the C57BL/6 mouse model, we conducted our safety and efficacy in vivo study 

and assessments using the Balb/C hemophilia B mouse model [22, 44]. AAV gene therapy is 

near clinical approval for hemophilia, a blood disorder in which clotting proteins factor VIII 

(hemophilia A) and factor IX (hemophilia B) do not function properly, resulting in excessive 

bleeding after injury and abnormal clotting [1]. Therefore, concerns of long-term safety 

and efficacy of rAAV design and vector components is a key in improving gene therapy 

treatment for hemophilic patients. Hemophilia B mice were weighed weekly throughout the 

study; many of the mice exhibited a steady increase in weight over time (Figures 5(a) and 

5(b)). pDS-CB mice had lower body weight during most of the study, while the other 5 

groups had comparable weights. One-third of the mice, however, died or were euthanized 

prior to endpoint based on animal health and our IACUC protocol. However, these pre 

endpoint deaths did not lead to any survival differences among the groups (Supplemental 

Fig. 4).

3.7. HemB Mice Injected with rAAV8s Containing Incomplete Genomes Have Lower 
Liver : Spleen Weight Ratios and Increased Clotting Time.

HemB mouse livers and spleens were collected at sacrifice or endpoint and weighed. Livers 

of the HemB mice trended toward significantly different, with TTR-hFIX, CB-hFIX, and 

TTR-PolyA averaging 1.3–1.6 g. Four mice were moribund (red dots) and had to be 

sacrificed prior to endpoint. They belonged to the CB (1 mouse) and CB-PolyA (3 mice) 

groups, and these mice had substantially lighter livers upon organ collection (Figure 6(a)). 

Upon organ harvest, no observable lesions or diseased areas were noticeable in the livers of 

the HemB mice.

The spleens of these mice, however, yielded more interesting results. Spleens from all rAAV 

groups were heavier than the control mice, with TTR-hFIX mice having the least heavy 

spleens across the rAAV groups (Figure 6(b)). The other four groups (CB, CB-PolyA, CB-

hFIX, and TTR-PolyA) had at least one mouse with visible splenomegaly upon sacrifice, 

indicated also by weights over 0.100 g [51]. Like the C57BL/6 mice, final spleen weights 

do not correlate with endpoint body weight, but final liver weights correlate positively 

with body weights (Supplemental Fig. 5A, 5B). Interestingly, liver : spleen weight ratios 

showed a lower ratio for the rAAV8s encoding incomplete genomes compared to the TTR-

hFIX group (Figure 6(c)). A similar ratio between the control and TTR-hFIX groups was 

observed, and CB, as well as CB-PolyA, ratios were significantly lower compared to that 

of TTR-hFIX. These results suggest that TTR-hFIX caused a minimal effect on the spleen 

compared to the other rAAV8 groups. To analyze the activity of the rAAV8 vectors, we 

ran APTT assays using plasma collected from HemB mice at day 90 and endpoint (day 

194 postinjection). The clot times of TTR-hFIX injected HemB mice were significantly 
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lower at both timepoints when compared to all other groups (Figures 6(d) and 6(e)). Of 

note, CB-hFIX-injected mice also exhibit a low clot time, though not to the extent of the 

TTR-hFIX group.

3.8. Ultrasound Imaging and Trichrome Staining of Livers Reveal No Differences in 
Echogenicity or Collagen Area of Hemophilia B Mice Injected with Various rAAV8s.

Given the published reports of HCC and liver pathologies in many mouse models of 

disease, we elected to image livers of the HemB mice via ultrasound to detect any possible 

liver masses during the study. Whole liver imaging at day 90 postinjection revealed no 

significant difference in echogenicity among the groups, although the TTR-hFIX group had 

the highest echogenicity signal. By endpoint analysis, the average pixels of each group were 

comparable, suggesting no detectable pathology caused by the rAAV8 at these timepoints 

via this modality (Supplemental Fig. 6A, 6B, 6C). A similar result was observed with the 

ROI near the portal triad at the endpoint analysis (Supplemental Fig. 6D, 6E). The day 90 

analysis trended toward a significant difference, with the TTR-hFIX mice exhibiting the 

highest average pixel value compared to all other groups.

In support of these ultrasound results, Masson’s Trichrome staining revealed that collagen 

areas of the livers were not significantly different in our HemB mice regardless of treatment 

(Figures 7(a), 7(b)). Our data for the HemB mice, as well as the C57BL/6 study, show a 

strong positive correlation between these two assessments. Moreover, ultrasound imaging 

seems to be a reliable noninvasive method of monitoring liver health in hemophilia B mice.

3.9. Trichrome Staining of Hemophilia B Spleens Shows High Collagenous Area in Mice 
Injected with CB and TTR-PolyA Vectors and Minimal Collagenous Area in TTR-hFIX-
Injected Mice.

While we detected no differences in collagenous area in the livers, there were significant 

differences in collagenous area of the spleens of the HemB mice (Figures 7(c) and 

7(d)). Control mice presented with approximately 5% collagen area in their spleens. 

Encouragingly, TTR-hFIX mice exhibited the least collagenous area, even lower than the 

controls, at endpoint of all groups and no splenomegaly, suggesting this rAAV8 vector did 

not cause a detrimental collagen deposition response in these mice and was safe. CB-PolyA- 

and CB-hFIX-injected mice presented with a collagen area higher than TTR-hFIX mice 

but lower than the control mice. TTR-PolyA- and CB-injected mice, however, had average 

collagenous areas greater than that of the controls, with CB mice collagen area being 

statistically different from those of TTR-hFIX, control, CB-PolyA, and CB-hFIX groups.

3.10. Pathology Report of Hemophilia B Mice Supports Safety of pDS-TTR-hFIX Vector.

To further explore the cellularity and tissue composition of the livers and spleens 

of the HemB mice injected with different rAAVs, organ sections were stained with 

H&E and analyzed for steatosis, fibrosis, inflammation, injury, and abnormalities 

related to cell population, tissue structures, or growths. Across all groups, including 

controls, the most common feature detected in HemB livers was cytoplasmic clearing, a 

reversible phenomenon connected to glycogen accumulation, early cell swelling, metabolic 

dysregulation, and liver injury (Figures 8(a) and 8(c), Supplemental Fig. 7A) [49]. We also 
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observed small foci of EMH in the livers of 11 mice, which can occur in response to changes 

in the hematopoietic environment, and was observed in some of the C57 mice; none of the 

HemB mice that presented with EMH were injected with the TTR-hFIX vector [52]. Liver 

fibrosis, indicated by collagen fibers and deposition by fibroblasts in the periportal region, 

was detected in 5 mice, and again, not in mice injected with the TTR-hFIX vector. These 

results infer that the TTR-hFIX vector had minimal negative effects on the livers of HemB 

mice compared to the CB-containing vectors and the TTR-PolyA vector at our 6.5-month 

timepoint. Importantly, no hepatocellular tumors were observed through the H&E staining, 

a result that matches our ultrasound imaging and Trichrome staining analyses and our data 

from the C57BL/6 experiment.

Evaluation of the spleens of the HemB mice revealed that congestion of the red pulp 

was frequently identified across all groups and typically associated with distension of the 

sinuses. Three mice, one each injected with the CB, CB-hFIX, or TTR-PolyA vector, had 

noticeable splenic fibrosis. Interestingly, megakaryocytes, immune cells involved in the 

production of platelets used in the initial phases of clot formation, were observed in 1 

TTR-hFIX mouse and 2 CB-PolyA mice (Figures 8(b) and 8(c), Supplemental Fig. 7B). 

Additionally, mononuclear cells were detected in livers and spleens of several HemB mice 

injected with an rAAV (Supplemental Fig. 7).

To further investigate this presence on mononuclear cells, we performed F4/80 staining 

for macrophages in livers and spleens. We detected a significant increase in F4/80+ area 

in the livers CB- and CB-PolyA-injected HemB mice compared to TTR-hFIX-injected 

mice (Supplemental Fig. 8A, 8B). Control mice exhibited a low F4/80+ area, while the 

CB-hFIX and TTR-PolyA groups had moderate F4/80+ areas. Interestingly, we calculated 

no differences in F4/80+ area in spleens; we did notice, however, F4/80+ groups of cells 

situated in the marginal zones of the spleen in some mice of the CB, CB-PolyA, and TTR-

PolyA groups, an area of the spleen typically negative for this marker (Supplemental Fig. 

8C, 8D). Of note, one mouse from the TTR-PolyA group presented with a hemangiosarcoma 

in his spleen and granulomas in his liver. These pathology results, along with the Trichrome 

and F4/80 staining analyses, allude to potential effects of strong promoters, presence of 

PolyA sequences, and vectors that lack a gene target for transcription being problematic 

regarding spleen health, liver composition, and immune responses across organs [24]. They 

also demonstrate that a high dose of the completely designed TTR-hFIX rAAV8 vector 

caused minimal changes to liver and spleens at 6.5 months posttreatment in our HemB 

mouse model.

4. Discussion

Recombinant adeno-associated viral vectors (rAAV) are a versatile and popular gene therapy 

tool currently being used to study and treat myriad of genetic diseases [1–4, 7, 9, 10, 13, 

18, 20, 22, 23, 40, 43, 45, 47, 53–57]. Concerns about possible links between rAAV and 

the development of liver cancer and fibrosis have been raised due to the occurrence of these 

pathologies in certain mouse models of various diseases [11–14, 21, 58]. More focus on this 

field of study is a key in order to determine a more comprehensive understanding of the 

safety and efficacy of this genetic tool and to support use of AAVs broadly in the clinic.
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We explored the effects of five distinct rAAV8 vectors on liver and spleen pathology in 

two different mouse models, the healthy C57BL/6 line and a hemophilia B mouse line on 

a Balb/C background. All the C57BL/6 mice and a majority of the HemB mice lived to 

endpoint (day 194 post-rAAV). As groups, these mice consistently gained weight over the 

course of the study. The livers and spleens of rAAV-injected mice in both sets of mice 

weighed more than their control counterparts upon sacrifice. Collagen analysis via Masson’s 

Trichrome staining, H&E staining for cellularity, and ultrasound imaging to measure liver 

echogenicity revealed differences in liver echogenicity and collagenous areas in the liver 

and spleen and verified in both the liver and spleen on histopathologic analysis of certain 

AAV-injected mice in each of the tested mouse lines. Importantly, no liver tumors were 

detected via ultrasound or histology in our study, suggesting that our constructed AAVs are 

not directly related to HCC development in these mouse models at a timepoint of 6.5 months 

[59]. This data supports a broad collection of research from murine and large animal studies 

of various diseases, including hemophilia, and epidemiological studies of human cancers, all 

of which claim that AAVs are not tumorigenic [9, 19, 21, 23, 45, 47, 54, 60]. One group 

reports the presence of wild-type AAVs in human HCC samples, yet these analyses are 

retrospective and provide no evidence of causation of the HCCs due to the AAV genome [8, 

17, 61].

In the rAAV-injected C57 mice, whole liver echogenicity at endpoint is lowest in TTR-

hFIX mice. This result is closely mirrored in the liver Trichrome staining analysis, which 

shows that TTR-hFIX mice had collagenous area comparable to controls, and CB-PolyA-, 

CB-hFIX-, and TTR-PolyA-injected mice had elevated collagen area. While the spleens of 

the AAV-injected C57s were heavier than the controls, no collagen area differences were 

detected with Trichrome staining. In accordance with the Trichrome staining, H&E staining 

of the livers and spleens of C57BL/6 mice showed no liver fibrosis or inflammation but did 

reveal EMH and cytoplasmic clearing in the livers across several groups, and hemosiderin in 

mouse spleens also in many of the different groups. Many of the aforementioned features are 

related to organ injury. It is reported that use of cisplatin, a platinum-based chemotherapy, 

and a CXCR3 inhibitor used to reduce inflammation, caused hemosiderin accumulation in 

rodent models of disease [50, 62]. In connection with hemophilia, Sun et al. published data 

showing that hemosiderin deposition in joints decreased in a mouse model of HemA when 

AAV8-FVIII was supplemented with recombinant AAV9-FactorVIIa, which was used to 

prevent the effects of autoinhibitory antibodies [63].

In the HemB mice, liver echogenicity and collagen analysis correlated positively in showing 

no differences among the groups. Interestingly, collagen area in the spleens of TTR-hFIX 

HemB mice was lower than the controls and all other AAV-injected groups; CB-injected 

HemB mice exhibited the highest splenic collagen area. The pathology report of the 

HemB mice illuminated several detailed features of liver injury, EMH, spleen injury, 

and presence of specific immune cells that connected and supported data gathered from 

organ weights, ultrasound imaging, and Trichrome staining. Control mice demonstrated no 

inflammation in livers. CB-injected and TTR-PolyA-injected HemB mice had detectable 

fibrosis, extramedullary hematopoiesis (EMH), necrosis, and inflammation in their livers. 

Comparatively, TTR-hFIX-injected HemB mice presented with splenic cytoplasmic clearing 

(2 mice) and inflammation (1 mouse).CB-hFIX and CB-PolyA HemB mice had high levels 
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of liver EMH as well as cytoplasmic clearing. In correlation with these results, F4/80 

staining showed the TTR-hFIX HemB mice exhibited the smallest F4/80+ area in their livers 

compared to all other groups. F4/80 cells, which identifies Kupffer cells and macrophages, 

are known to contribute to fibrosis [56]. Overall, these results demonstrate ranges of possible 

pathological effects of rAAV design and promoters on liver and spleen health, with TTR-

hFIX vector causing minimal changes in echogenicity, liver and spleen composition, and 

collagen deposition when compared to multiple mice injected with the vectors containing the 

CB promoter and the TTR-PolyA vector.

Interestingly, of the rAAV-injected mice, those given the CB vector had the greatest 

collagenous area in their spleens in both mouse models tested. In the spleens of HemB 

mice, this CB group had significantly detectable fibrosis and congestion. We recognize the 

relatively small number of HemB mice (N = 3) that received an I.V. pDS-AAV-CB rAAV8 

injection as a limitation of our data. This limitation was due to restricted availability of 

HemB mice from our collaborator’s lab that has active research on Hemophilia B, and the 

loss of one CB-injected mouse at D0 due to an embolism during injection. Nevertheless, 

this result strengthens the importance of vector design and the use of specific promoters 

for specific illnesses and performing in-depth immune profiling of spleens for future AAV 

studies, as this organ seemed to be greatly affected in the HemB mouse model in our study.

Our results also demonstrate a strong positive correlation between the analyses used to 

assess liver fibrosis, the ultrasound imaging and the two histological staining protocols. This 

encouraging result suggests that non-invasive ultrasound imaging across AAV experiments 

could be used to detect gross anatomical changes in multiple soft organs early on and at 

multiple timepoints for long-term experiments [27, 28, 30]. Adverse events due to AAV 

injection could be detected early using ultrasound, which would permit better analysis of 

AAV effects in animal models.

These reported results support the concept that AAVs are not tumorigenic as no HCC 

was detected in any of our AAV-injected mice over the 6.5-month timeline. No AAV has 

been directly linked to cancer development; therefore, we lacked a true positive control for 

these studies, but our results do support the documented safety of AAVs [18–21]. While 

we detected differences and observed changes in spleen and liver tissue in our mouse 

models, the selected timeline of 6.5 months is in the short to moderate range compared 

to other studies using AAV [7, 9, 11–14, 18, 21, 24, 38, 47, 64]. Hemangiosarcomas can 

arise spontaneously in older mice, and hepatic microgranulomas are often idiopathic and 

an incidental finding in aging mice. Yet, our mice lived to be 8.5 months old, which 

is considered near middle-aged for this animal model. While not found in the spleen, a 

research group reported development of hemanigosarcomas in fat tissue of C57BL/6 mice at 

4.5 months of age injected with a lung-targeted AAV6 vector encoding the envelope protein 

of the Jaagsiekte sheep retrovirus, suggesting that presence of this type of tumor could be 

related to contents of AAV [65]. Longer term studies of at least 1 year and a range of rAAV 

doses using these same vectors and greater numbers of mice in each group could reveal 

greater differences in collagen area and potential fibrosis or other pathologies associated 

with the liver and spleen.
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Additionally, testing vectors with other commonly used strong promoters besides CB and 

TTR, such as elongation factor 1 alpha (Ef1α), thyroxine binding globulin (TBG), and 

cytomegalovirus (CMV), could reveal details about how promoters may be specifically 

contributing to changes in liver and spleen composition. Moreover, staining the livers 

and spleens for specific immune cells and inflammatory proteins would enlighten about 

mechanisms regarding splenomegaly and collagen deposition we observed in our studies 

[42, 43]. The pathology reports indicate the presence of megakaryocytes (MKs) and 

mononuclear populations in the livers and spleens of some mice. We confirmed the 

mononuclear result via F4/80 staining, detecting greater F4/80 area in CB and CB-PolyA 

HemB livers compared to TTR-hFIX HemB mouse livers, and potential spatial disruptions 

of this cell population in CB, CB-PolyA, and TTR-PolyA HemB spleens. It is reported 

that MKs and monocyte-derived macrophages, along with various types of endothelia, 

can produce clotting factor proteins [56, 66]. Specific immunohistochemistry for a wide 

variety of immune subpopulations, particularly macrophages and other mononuclear cells, 

and colocalization of Factor IX in the HemB mouse groups would provide quantifiable 

analysis of any potential differences in immune responses caused by these different AAVs 

and whether any relationship exists between the type of injected rAAV, and immune cell 

infiltrates found in livers and spleens.

We report that the liver weights and final mouse body weights correlated, underscoring 

the need for more comprehensive and specific analyses beyond weight as an indicator of 

pathology. The liver is the largest internal organ in mice and accounts for approximately 

3–5% of the animal’s body weight [35]. Notably, the area of collagen in each liver did not 

correlate with weight (data not shown). The addition of biochemical assays to assess liver 

enzymes such as aspartate transaminase (AST) and alanine aminotransferase (ALT) would 

be a strong supplement to the ultrasound imaging, pathology analysis, and the Trichrome 

staining we present here in this manuscript [48].

A well-documented mechanism of HCC development reported in various mouse models 

treated with AAVs is genomic integration of the vector in manners that activate oncogenes 

or silence tumor suppressors [12–14, 58, 64]. Strong promoters, such as CB and CMV, 

are reported to exhibit read-through activity, a mechanism that is problematic in causing 

genomic integration of AAV and activation of off-target genes [12–14, 64]. Donsante et al. 

show that a sequence of the 5′UTR of the AAV2 vector encoding GUSB was discovered 

in murine cancerous liver tissue of MPSVII mice analyzed 9–18 months postinjection; this 

AAV2 contains the β-actin promoter (CBA) and a CMV enhancer, both considered strong 

cis AAV elements [12]. Chandler et al. published data that also show the CBA promoter; 

this time in an AAV8 vector, was linked to increased HCC occurrence in a mouse model 

of methylmalonic acidemia (MMA). This effect was also dose-dependent and seen after 22 

months of treatment. Interestingly, the same effect was not seen in MMA mice injected 

with an AAV8-MUT vector that housed the α−1 anti-trypsin (AAT) promoter, a weak liver-

specific promoter [13]. Li and colleagues published data in support of the AAT promoter not 

inducing HCC development, even at a high dose of 1 × 1014 vg/kg [64]. Rosas et al. report 

that C3H/HeJ mice at 9–15 months of age injected with 2 × 1012 of a CB-containing null 

scAAVrh74 developed HCC at a greater rate than noninjected controls and mice injected 

with a CMV-GFP scAAVrh74; this tumor development was exacerbated when coupled with 
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liver injury. The same effect was not seen in SCID mice injected with these same scAAVs 

and liver injury regimens [14]. Results such as this reinforce how promoter choice, vector 

dose, mouse strain and disease model, and vector design can influence organ health and 

cause different side effects from AAVs in vivo.

Future work assessing any potential AAV components that integrated into the livers and 

spleens could provide insight into which components of these vectors could be important for 

preventing or facilitating integration. Prior work from our group has revealed the production 

of satellite subgenomic particles during the AAV life cycle in cell culture models that could 

be problematic in leading to genomic integration and a possible cancer risk [10, 39, 67]. 

One class of subgenomic particles, snapback genomes (SBGs), can contain promoter-only 

genomes, a vector that could be risky for genomic integration and read-through if insertion 

occurs in an oncogene. Indeed, the mice injected with the pDS-AAV-CB vector, which 

can mimic a strong promoter-only SBG, presented with elevated collagen deposition in the 

spleens, high F4/80+ area in livers, and several liver pathologies in the case of the HemB 

cohort. The vectors used in this paper should be analyzed for genomic integration and 

production of different SBGs that are created, as one would expect them to be unique based 

on their specific promoter and the presence of a Poly-A sequence and the gene of interest.

Of note, 3 HemB mice in the CB-PolyA group that were moribund presented without 

spleens upon sacrifice. Deficiencies in plasminogen are reportedly linked to cases of splenic 

rupture, but no such rupture has been linked to hemophilia B [68]. Isolation of primary cells 

from hemophilic spleens and conducting in vitro studies with different AAV vectors could 

reveal the reason for why these mouse spleens were not present upon sacrifice.

5. Conclusion

Overall, our results reported herein demonstrate that rAAV8 vectors containing either the 

liver-specific TTR promoter or the strong CB promoter that either contain or lack a PolyA 

sequence and the transgene encoding human FIX have distinct effects on liver and spleen 

health yet caused no HCC development during the 6.5-month experiments in the inbred 

C57BL/6 or the Balb/C hemophilia B mouse models. We analyzed the animals, livers, 

and spleens by mouse and organ weights, liver echogenicity, Masson’s Trichrome and 

H&E staining, F4/80 immunohistochemistry, and veterinary pathology reports. Ultrasound 

imaging of the livers, a noninvasive imaging modality used during the in vivo studies, is 

sensitive enough to detect composition differences that correlated well with histopathology. 

Veterinary pathology reports identified several biological features and cellular composition 

details that should be investigated further. More detailed analysis of rAAV design and how 

specific DNA components affect organ health will lead to greater efficacy, safer design, and 

broader use of AAVs in the clinic.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
C57BL/6 mice have similar weights regardless of AAV injection. (a) Individual weights 

across experiment. (b) Weights grouped by injected vector. No significant differences in 

weights found at endpoint (D194) postinjection.
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Figure 2: 
Echogenicity measurement of all C57BL/6 mice injected with AAV. (a) Representative day 

90 and day 194 liver ultrasound images for all groups of C57BL/6 mice. Arrows indicate 

Portal Triad features on D90 images: blue: portal vein; red: hepatic artery; and green: 

bile duct. (b, c) Whole-liver echogenicity analysis via average pixels of liver images. (d, 

e) Echogenicity analysis of a region of interest near the Portal Triad. ANOVA p value 

significant for (b) only. p values for (c–e) are 0.1705, 0.0658, and 0.4697. N = 7 for all 

groups except CB-PolyA (N = 14).
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Figure 3: 
Liver weights vary while spleen weights trend heavier in rAAV-injected C57BL/6 Mice. 

(a) Endpoint liver weights of C57 mice. ANOVA p = 0.4017. (b) Endpoint spleen weights. 

ANOVA p = 0.4182. N = 7 for all groups except CB-PolyA (N = 14). (c) Liver : spleen 

weight ratios of C57BL/6 mice injected with rAAVs. Ratios reflect variability of the organs’ 

weights but are all similar. Kruskal-Wallis p = 0.0595. (d, e) Clot times via APTT of 

C57BL/6 mice injected with various rAAVs at day 90 and 194 postinjection. N = 14 for 

CB-PolyA, N = 7 for all other groups. ANOVA tests performed for (d) and (e).
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Figure 4: 
Histology of livers reveals alterations in collagenous area of AAV-injected C57s. (a) 

Representative 10x images of collagenous area in C57 livers. (b) Collagen area low in 

livers of TTR-hFIX, and high in CB-PolyA and CB-hFIX-injected mice. Kruskal-Wallis test 

performed. (c) H&E 20x images of C57 livers. Cytoplasmic clearing and EMH detected in 

several mice. N = 14 for CB-PolyA, N = 7 for all other groups.
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Figure 5: 
HemB mice injected with CB vector have lower weight compared to other groups. (a) 

Individual weights across experiment. (b) Weights grouped by injected vector. CB mice were 

significantly lighter at D194 postinjection.
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Figure 6: 
HemB mice injected with rAAVs containing incomplete genomes exhibit reduced liver: 

spleen weight ratios and greater clot time compared to TTR-hFIX-injected mice. (a) Liver 

weight mice trended towards significantly different. Kruskal-Wallis test performed, N = 

3–8. (b) Spleen weights reveal some mice with very heavy spleens. TTR-hFIX had lowest 

average spleen weight of vector-injected groups. Red dots: moribund mice, Kruskal-Wallis 

test performed, N = 3–5. (c) Liver to spleen weight ratios of HemB mice injected with 

rAAVs. TTR-hFIX mice and controls are higher than other four groups. CB and CB-PolyA 

ratios are significantly lower compared to TTR-hFIX. (d) Clot time analysis of HemB 

mice via APTT at D90. N = 3–6. (e) Endpoint (D194) analysis shows similar pattern to 

D90 results, hFIX-containing vectors functioned properly throughout the study. N = 2–5. 

ANOVA p values reported for both (d) and (e).
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Figure 7: 
Trichrome staining of HemB mouse livers and spleens reveals differences in collagenous 

area of the spleens AAV-injected HemB mice. (a) Representative 10x images of collagenous 

area in HemB livers. (b) Collagen area analysis via microscopy. N = 3–6, ANOVA test 

performed (p = 0.1618). (c) Representative 10x images of collagenous area in HemB 

spleens. d) Collagen area analysis via microscopy. N = 3–6, ANOVA test performed.
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Figure 8: 
Pathology report of HemB livers and spleens via H&E. (a) Images of livers from designated 

groups. Cytoplasmic clearing is seen in most groups, as well as EMH. Liver fibrosis seen in 

TTR-PolyA. (b) Images of spleens from designated groups. Splenic congestion of red pulp 

was common across groups. Black arrows indicate megakaryocytes in TTR-hFIX mouse. (c) 

Pie charts indicating number of mice from each group positive for specific features. Most 

common features across groups were cytoplasmic clearing in livers and splenic congestion. 

Total mice analyzed for study is 28 (Control = 6, TTR-hFIX = 3, CB = 3, CB-hFIX = 5, 

CB-PolyA = 7, and TTR-PolyA = 4).
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