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Abstract

The etiology of cognitive dysfunction associated with Alzheimer’s disease (AD) and dementia 

is multifactorial. Yet, mechanistic interactions among key neurobiological factors linked to 

AD pathology are unclear. This study tested the effect of interactions between cerebrovascular 

function, individual genotype, and structural brain pathology on response inhibition performance, 

an early and sensitive indicator of cognitive executive dysfunction with aging.

We quantified cerebrovascular response (CVR) to moderate-intensity aerobic exercise using 

transcranial doppler ultrasound and global amyloid-beta (Aβ) deposition using positron emission 

tomography in a group of cognitively normal older adults genotyped as APOE4 carriers and 

noncarriers. We quantified response inhibition during a cognitive Stroop test.

Individuals with blunted CVR possessed greater Aβ deposition. There was CVR-by-carrier status-

by-Aβ interaction on response inhibition. Blunted CVR was associated with impaired response 

inhibition specifically in carriers. Despite having greater Aβ deposition, carriers with higher CVR 

demonstrated better response inhibition.

Cerebrovascular interactions with individual genotype and structural brain pathology may provide 

a physiologically-informed target for precision-medicine approaches for early treatment and 

prevention of cognitive dysfunction with aging.
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1. Introduction

Among a growing older adult population, the development of cognitive dysfunction is 

common but poorly understood. Profound individual differences in aging trajectories allow 

some older adults to maintain cognitive performance to the end of life while others suffer the 

debilitating loss of cognitive function associated with Alzheimer’s disease (AD) and related 

dementias (ADRD). The field of aging neurobiology increasingly recognizes cognitive 

decline with aging as having a mixed pathology and multifactorial etiology (Iturria-Medina 

et al., 2016, 2017); thus, a trans-disciplinary approach is imperative to enhance our 

understanding of the diverse and interacting mechanisms leading to ADRD. In the present 

study, we provide an initial characterization of interactions among key neurobiological 

factors that have been identified as significant contributors to the development of cognitive 

dysfunction and AD, including cerebrovascular function (Iadecola, 2004; Xie et al., 2016; 

Ouellette and Lacoste, 2021), structural brain pathology (Jack et al., 2010; Hampel, 2013), 

and individual genotype (Heffernan et al., 2016). Further, we investigate the behavioral 

relevance of these interactions on response inhibition performance in cognitively normal 

older adults.

Early detection of pathologic disease processes is imperative as a first step towards 

the development of effective prevention strategies and interventions for age-related 

neuropathologies, in particular those involving vascular aging (e.g. AD, vascular dementia, 

endothelial dysfunction, vascular Parkinsonism) (Pantsiou et al., 2018). One of the earliest 

behavioral manifestations of mild cognitive impairment (MCI) that can progress to dementia 

has been identified as impaired cognitive executive function (Hutchison et al., 2010; Kirova 

et al., 2015). Specifically, the ability to suppress an undesired default or automatic response 

in the presence of interfering stimuli, or response inhibition, can distinguish between older 

adults who are cognitively normal versus MCI (Hutchison et al., 2010). Additionally, 

cortical activity dysfunction during response inhibition may underpin cognitive interference 

in motor behavior (Palmer et al., 2021), a common observation in older adults with MCI and 

early-stage AD (Coelho et al., 2012; Kirova et al., 2015), and older adults at high genetic 

risk for AD (Whitson et al., 2018). Yet the neurobiologic and physiologic mechanisms 

that contribute to the early-stage development of impaired response inhibition behavior 

remain elusive. Such knowledge could be leveraged towards the development of prevention 

strategies for clinical syndromes in the early stages of MCI, AD and related dementias.

Cerebrovascular pathology is commonly detected in older adults who present with 

behavioral deficits associated with clinical AD syndrome (Lorius et al., 2015; Wolters Frank 

J. et al., 2017; Sweeney et al., 2018; Bracko et al., 2021) and is linked to biomarkers of brain 

pathology, particularly the deposition of amyloid-beta (Zlokovic et al., 2005; Sisante et al., 

2019; Solis et al., 2020). The dynamic characterization of cerebral blood flow response 
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under conditions of physiologic stress enables the assessment of the cerebrovascular 

regulatory response to a wide variety of physiological inputs common in daily activities 

(Ferguson, 2014), including altered perfusion pressure, arterial blood gas, neural activity, 

and brain metabolism (Smith and Ainslie, 2017). Indeed, cerebrovascular response under 

such conditions of physiologic stress (e.g. sit-to-stand positional changes, aerobic exercise, 

heat stress, hypoxia) appear to play an important role in maintaining brain metabolism and 

function with aging (Bundo et al., 2002; Ogoh and Ainslie, 2009a, 2009b; Sato et al., 2011; 

Ogoh et al., 2013; Steinback and Poulin, 2016), as the effects of repeated transient disruption 

of blood, glucose, and oxygen supply to brain tissue accumulate over time (Tarumi and 

Zhang, 2018). Impaired cerebral blood flow can promote ischemic microlesions (Iadecola, 

2004), and alter blood-brain barrier trafficking of amyloid-beta (Aβ) (Zlokovic et al., 2005), 

slowing the clearance of Aβ and promoting its accumulation in the brain.

Using transcranial Doppler ultrasound (TCD) to assess cerebral artery blood flow velocity, 

our group previously found that older adults demonstrate a blunted cerebrovascular response 

(CVR) during an acute bout of moderate-intensity aerobic exercise (Sisante et al., 2019; 

Alwatban et al., 2020), which may serve as an early indicator of cerebrovascular dysfunction 

in preclinical older adult populations (Alwatban et al., 2020). Further, CVR was associated 

with elevated levels of Aβ deposition, a hallmark of AD, in the brains of cognitively normal 

older adults (Sisante et al., 2019). Interestingly, cerebrovascular assessments performed at 

rest have not been able to discriminate cognitive status (Xie et al., 2016) or Aβ levels 

(Sisante et al., 2019) in these preclinical older adult populations, suggesting that acute 
aerobic exercise assessment paradigms may enhance the detection of subtle impairments in 
vascular function in the early stages of disease. Consistent with this theory, dysfunctional 

cerebral blood flow has been detected in older adults with MCI (Xie et al., 2016) and 

precedes the onset of dementia, implicating its early mechanistic role in cognitive decline 

with aging (Iadecola, 2004). However, despite the apparent role of CVR dysfunction in 

the preclinical stages of brain pathology, the interactions between CVR and other key 

neurobiological factors linked to early-stage cognitive impairments and AD pathology 

remain unknown.

Possession of Apolipoprotein E4 (APOE4), the strongest known genetic risk factor for 

sporadic Alzheimer’s disease (Heffernan et al., 2016), is strongly linked to cerebrovascular 

dysfunction (Montagne et al., 2020). Cognitively normal older adults with an APOE4 allele 

demonstrate a greater decline in cerebral blood flow with aging compared to noncarriers 

(Thambisetty et al., 2010), and an earlier blood-brain barrier breakdown that precipitates 

subsequent cognitive decline (Montagne et al., 2020). Recently, our group found that 

APOE4 carriers with lowest resting conductance in middle cerebral artery blood flow had 

the greatest Aβ deposition, a relationship that was not present in noncarriers (Kaufman et al., 

2021b). Yet, in the context of early-stage cognitive impairments, the behavioral relevance of 

APOE4 genotype in the presence of multifactorial aging pathologies among a heterogenous 

older adult population is poorly understood.

In this study, we aimed to 1) investigate the interactive effect of APOE4 carrier status on 

the relationship between CVR to exercise and Aβ deposition and 2) test whether interactions 

between APOE4 carrier status, CVR, and Aβ deposition affect cognitive performance 
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involving response inhibition in a group of cognitively normal older adults. We hypothesized 

that 1) older adults with the most robust CVR to a bout of moderate-intensity aerobic 

exercise would have the lowest levels of Aβ deposition, with the strongest effect in APOE4 
carriers, and 2) higher CVR would attenuate the negative effect of Aβ deposition on 

response inhibition performance, particularly in APOE4 carriers.

2. Materials and Methods

2.1. Participants

We selected a subset of 70 older adults from a well-characterized data registry of 125 

cognitively normal older adults from the University of Kansas Alzheimer’s Disease 

Research Center (AHA 16GRNT30450008 (SB)) (Alwatban et al., 2020; Perdomo et al., 

2020; Liu et al.). Our recruitment efforts within this cohort included those individuals 

with complete datasets for cerebrovascular function assessment, genetic APOE profiling, 

and structural neuroimaging for Aβ deposition. Inclusion criteria were (1) between 

65 and 90 years old, (2) normal cognition with the absence of clinical dementia or 

cognitive impairment and (3) physical ability to exercise. Exclusion criteria were (1) insulin-

dependent diabetes; (2) peripheral neuropathy; (3) active coronary artery disease (angina, 

myocardial infarction) within 2 years that, in the investigator’s opinion, could pose a safety 

risk with exercise, unless cleared by the participant’s physician; (4) congestive heart failure; 

(5) the presence of 1 or 2 APOE2 alleles. The experimental protocol was approved by 

the University of Kansas Institutional Review Board (IRB#: STUDY00001444) and all 

participants provided written informed consent.

2.2. Acute bout of aerobic exercise on a recumbent stepper

Participants underwent a bout of moderate-intensity aerobic exercise on a recumbent stepper 

in an experimental protocol previously described in detail (Billinger et al., 2017; Ward et al., 

2018; Witte et al., 2019). Briefly, participants arrived to the laboratory between 7:30–9:00am 

after abstaining from caffeine for 12 hours, physical activity for 24 hours, and consuming 

a large meal for 2 hours. The exercise testing room was quiet, dimly lit, and temperature 

controlled between 22 and 24 degrees Celsius. Following 8 minutes of quiet rest seated on 

the recumbent stepper (NuStep T5XR), participants began an exercise familiarization bout 

to determine target power. Following an 8-minute seated rest recording, participants began 

exercising on the recumbent stepper, maintaining a step rate of 120 steps-per-minute and 

beginning at a resistance of 40W. The work resistance was increased until the participant 

reached the target heart rage range of 40–60% of age-predicted heart rate reserve and 

maintained this target heart rate for one continuous minute (Billinger et al., 2017; Sisante et 

al., 2019). The participant then maintained exercise at this moderate-intensity hear rate zone 

for 8 minutes.

2.3. Cerebro- and cardiovascular assessment and analyses

During rest and exercise bouts, we measured left cerebral blood flow velocity using 

transcranial Doppler ultrasound (TCD) with a 2-MHz probe (RobotoC2MD, Multigon 

Industries) placed over the temporal window. If the left MCA signal was not obtainable, 

the right MCA was used. We used a 5-lead electrocardiogram for continuous heart rate 
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monitoring. All data were sampled at 500 Hz and acquired through an analog to digital 

data acquisition unit (NI-USB-6212, National Instruments) and custom written software 

operating in MATLAB (The Mathworks Inc). MCAv, MAP and end tidal CO2 were 

synchronized across the cardiac cycle (Billinger et al., 2017; Ward et al., 2018; Sisante et 

al., 2019; Perdomo et al., 2020). Data with R-to-R intervals greater than 5 Hz or changes in 

peak blood flow velocity greater than 10 cm/s in a single cardiac cycle were considered not 

physiologically real and censored. Acquisitions with more than 15% of data points censored 

were discarded. Experimenters were blinded to Aβ deposition level, cognitive function, and 

APOE carrier status.

The mean MCA blood flow velocity was calculated during the 8-minute baseline rest 

and 8-minute moderate-intensity exercise bout. We calculated cerebrovascular response 

(CVR) as the difference between mean MCA blood flow velocity during exercise and mean 

MCA blood flow velocity at rest (Sisante et al., 2019). Across all participants (n=70), 

we calculated an average intra-trial coefficient of variation for mean MCAv under resting 

conditions of 8.0% and the moderate-intensity aerobic exercise condition of 9.1%.

2.4. Structural neuroimaging of amyloid-beta (Aβ) deposition

Participants underwent Florbetapir PET scans on a GE Discovery ST-16 PET/CT scanner 

at approximately 50 minutes after administration of intravenous florbetapir 18F-AV45 

(370 MBq). Continuous acquisition of two 5-minute PET brain frames were summed and 

attenuation corrected (Vidoni et al., 2021). The global standardized update value ratio 

(SUVR) was calculated using standard procedures described previously (Liu et al.) to 

determine global Aβ deposition for each participant. Individuals were classified as having 

elevated Aβ deposition with global Aβ levels > 1.1, a threshold previously identified as 

a sensitive detector of neural plaques (Clark et al., 2012; Joshi et al., 2012) and that is 

associated cerebrovascular dysfunction in older adults (Sisante et al., 2019).

2.5. APOE genotyping

Whole blood was drawn and stored frozen at −80 degrees Celsius prior to genetic 

analyses using a Taqman single nucleotide polymorphism (SNP) allelic discrimination 

assay (ThermoFisher) to determine APOE genotype. Taqman probes were used to 

determine APOE4, APOE3, and APOE2 alleles to the two APOE-defining SNPs, rs429358 

(C_3084793_20) and rs7412 (C_904973_10) (Kaufman et al., 2021c; Vidoni et al., 2021). 

Individuals were classified as APOE4 carrier in the presence of 1 or 2 APOE4 alleles 

(e.g. E3/E4, E4/E4). Individuals with homozygous E3 (e.g. E3/E3) were classified as 

a noncarriers. Because APOE2 is associated with reduced risk for Alzheimer’s disease, 

all APOE2 carriers, whether homozygous or paired with a different APOE allele), were 

excluded from analyses in the present study (Whitson et al., 2018; Kaufman et al., 2021a).

2.6. Cognitive behavior assessment

2.6.1. Clinical neuropsychological test battery—The Uniform Data Set (UDS) 

neuropsychological test battery and the Clinical Dementia Rating (CDR) scale employed by 

the United States Alzheimer’s Disease Research Center network (Morris, 1993; Monsell et 

al., 2016) were performed for all participants on a separate day. All participants completed a 
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standard in-person clinical and cognitive evaluation, during which the clinical CDR was 

performed by a trained clinician and the neuropsychological test battery by a trained 

psychometrist. Clinical and cognitive data were reviewed and finalized at a consensus 

diagnostic conference (Graves et al., 2015). All participants in the present analysis were 

rated as CDR = 0 and cognitively normal. Participant also completed a Mini-Mental State 

Exam (MMSE) (Folstein et al., 1975) (Table 1).

2.6.2. Response Inhibition Performance—Participants completed a Stroop test 

during which they were presented with three conditions: 1) Stroop word reading, where 

color words were printed in black ink, 2) Stroop color naming, in which rectangular color 

patches were shown, and 3) Stroop interference, in which color words were printed in an 

incongruent ink color and participants were instructed to ignore the word and state the color 

of the ink. Each of the three conditions was presented individually in a 45-second trial. The 

raw number of correct responses was recorded within the time limit for each condition.

The difference in the time for naming the colors in which the words are printed and the same 

colors printed in rectangles is the measure of the interference of conflicting word stimuli 

upon naming colors, standardized for speed differences between people (raw number of 

word interference on color /raw number of control color squares read) (Stroop, J, 1935).

We calculated response inhibition performance as the Stroop ratio, where:

Stroop   Ratio = Stroop interference condition raw score
Stroop color condition raw score

A Stroop ratio = 1.0 reflects perfect response inhibition performance and no interference of 

conflicting word stimuli. Here, the participant perfectly inhibited interfering word stimuli 

during the Stroop interference condition, with no slowing of response time relative to 

the control Stroop color condition. A Stroop ratio = 0.0 reflects poor response inhibition 

performance and complete failure to inhibit conflicting word stimuli on a color naming task. 

Here, the participant was unable to state any correct responses during the Stroop interference 

condition. Additionally, in the absence of response inhibition, we quantified a cognitive 

processing speed control condition as the Stroop color naming score normalized to the test 

time duration of 45 seconds.

2.7. Statistical analyses

We tested for normality and heterogeneity of variance of all data used for analyses using 

Kolmogorov-Smirnov and Levene’s tests, respectively. To test the effect of APOE4 carrier 

status on the relationship between CVR and Aβ, we performed two-way moderated multiple 

linear regression analysis after controlling for participant age and workload at moderate 

intensity exercise normalized to participant body weight. In an exploratory analyses, we 

tested whether individuals classified as possessing elevated global Aβ levels (>1.1 SUVR) 

displayed differential relationships between CVR and Aβ deposition in each APOE4 carriers 

and noncarriers.
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To test for interactions between APOE4 carrier status, CVR, and Aβ deposition on response 

inhibition performance, we performed a three-way multiple linear regression analyses after 

controlling for participant age. Specifically included in the three-way model were CVR, 

APOE4 carrier status, Aβ deposition, and the interaction CVR × carrier status × Aβ 
deposition. The relationship between Aβ deposition and response inhibition performance 

was compared for participants across the range of CVR to aerobic exercise. Additionally, 

we tested the behavioral specificity for the predictive ability of interactions between CVR, 

APOE4 carrier status, and Aβ deposition by testing the three-way multiple regression model 

against the cognitive processing speed control condition.

In an exploratory analysis, we tested response inhibition performance in APOE4 carriers 

and noncarriers as a function of CVR classification. Here, we dichotomized participants by 

the group median CVR value and performed a two-way analysis of variance (ANOVA). All 

analyses were performed using SPSS version 25 with an a priori level of significance set to 

0.05.

3. Results

Among the 70 total participants included in analyses (67% female, 29% APOE4 carriers, 

71±5 yo) (Table 1), there were no significant differences between APOE4 carriers and 

noncarriers in response inhibition performance (p=.301), age (p=.94), normalized workload 

(p=.966), gender distribution (p=.723), MMSE (p=.916), or CVR to aerobic exercise 

(p=.716) in carriers and noncarriers. APOE4 carriers had greater levels of Aβ deposition 

compared to noncarriers (p=.02).

3.1. Relationship between cerebrovascular function and amyloid beta and effect of 
APOE4

After controlling for age and normalized workload, the two-way multiple regression model 

significantly predicted Aβ deposition, F5,69=4.05, p=0.003, R2=0.24, adjusted R2=0.18. 

Regression coefficients and standard errors are detailed in Table 2. A higher CVR predicted 

lower Aβ deposition across all participants (p=.018) (Figure 1). Though APOE4 carriers 

showed a stronger effect of CVR on Aβ deposition compared to noncarriers, the difference 

of this relationship was not significant (t=−0.50, p=.618). There was a main effect of APOE 
carrier status on Aβ deposition in the model, with APOE4 carriers having greater Aβ 
deposition than noncarriers (p=.041) (Table 2).

Exploratory analyses revealed that the negative association between CVR and Aβ deposition 

was driven by individuals classified as having elevated Aβ levels (>1.1), with the strongest 

effect in APOE4 carriers (Figure 1 B&C). We found differential relationships between CVR 

and Aβ deposition in APOE4 carriers with elevated versus nonelevated Aβ levels(CVR- by- 

Aβ interaction, t=−2.39, p=.032) (Figure 1B), in which APOE4 carriers classified as having 

elevated Aβ demonstrated a stronger negative effect of CVR on Aβ deposition compared 

to APOE4 carriers classified as nonelevated Aβ (Figure 1B). In APOE4 noncarriers, 

individuals with elevated Aβ levels also showed a stronger negative association between 

CVR and Aβ deposition compared to those with nonelevated Aβ levels (Figure 1C), but 

differences in this effect were not significant (CVR- by- Aβ interaction, t=−1.11, p=.272).
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3.2. Interactions between cerebrovascular function, amyloid-beta, and APOE genotype as 
predictors of response inhibition behavior

After controlling for age and normalized workload, the multiple regression model 

significantly predicted response inhibition performance, F6,69=2.92, p=.014, R2=0.22, 

adjusted R2=0.14. Regression coefficients and standard errors are detailed in Table 

3. There was a significant three-way interaction between CVR, APOE carrier status, 

and Aβ deposition (t=2.68, p=.010), indicating differences in the predictive value of 

Aβ deposition and CVR on response inhibition performance for APOE4 carriers and 

noncarriers. Specifically, APOE4 carriers with higher CVR demonstrated better response 

inhibition performance (p<.001), while noncarriers showed no significant effect of CVR 

(p=.112) (Figure 2). As illustrated in Figure 3A & B, APOE4 carrier status moderated the 

interactive effect of CVR and Aβ deposition on response inhibition.The model predicted 

that APOE4 carriers who achieved a high CVR would show a positive relationship between 

Aβ deposition and response inhibition, where carriers with a robust CVR to an acute bout 

of aerobic exercise were predicted to perform better on the response inhibition task despite 

having high levels of Aβ deposition. In contrast, the model predicted that Aβ deposition 

would have no effect on response inhibition performance in APOE4 carriers who had 

lower CVR (Figure 3A). Noncarriers showed a lower effect of CVR on the relationship 

between Aβ deposition and response inhibition, where older adult noncarrier performance 

was independent of their CVR to the exercise bout (Figure 3B).

When participants were dichotomized by the group median CVR value (5.7 cm/s), there was 

a significant APOE4 carrier group × CVR interaction ((F3,69)=12.84, p=.001) on response 

inhibition performance (Figure 3C). Post-hoc analyses revealed that APOE4 carriers with 

a high CVR ( ≥ 5.7cm/s) demonstrated higher response inhibition performance compared 

to APOE4 carriers with low CVR (< 5.7cm/s) (t= −3.19, p=.005) and noncarriers with 

high CVR (t=−2.51, p=.017). Among participants with low CVR, APOE4 carriers had 

poorer response inhibition performance compared to noncarriers (t=2.64, p=.013). Within 

the noncarrier group, noncarriers with low CVR had higher response inhibition performance 

compared to those with high CVR (t=2.18, p=.034) (Figure 3C).

3.3. Specificity of physiologic interactions for response inhibition

Controlling for age and normalized workload, the three-way multiple regression model 

(factors: CVR, APOE4 carrier status, and Aβ deposition) failed to predict cognitive 

processing speed (F6,69=1.825, p=.108, R2=0.148, adjusted R2=0.067). Specifically, the 

main effect of CVR remained the only significant predictor in this three-way model (t= 

2.230, p=.029), while no interactive effects (p=.159), effects of Aβ deposition (p=.949), or 

effects of APOE4 carrier status (p=.758) were observed (Supplementary Figure S1).

4. Discussion

Findings of the present study shed light on the complex neurobiological interactions of 

factors known to influence the development of cognitive dysfunction with aging. Our 

results provide novel evidence for the behavioral significance of interactions between 

cerebrovascular function, individual genotype, and structural brain pathology. Despite 
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having higher Aβ deposition, we found that APOE4 carriers who had a more robust 

CVR to exercise had higher response inhibition performance, an effect that was not 

present in noncarriers. These findings imply higher cerebrovascular function may serve 

a neuroprotective role for the preservation of cognitive executive function specifically in 

APOE4 carriers, possibly through increased resiliency to Aβ deposition with aging. Building 

upon previous research, our findings support an individualized framework gleaned from a 

multifactorial approach for detection of subtle impairments in cognitive behavior prior to the 

onset of clinical syndrome associated with AD and age-related neurodegenerative disorders. 

Together, these results may be informative for targeted precision-medicine approaches for 

early intervention and prevention of declines in cognitive executive function with aging.

4.1. Cerebrovascular response (CVR) to exercise is linked to amyloid beta (Aβ) deposition 
in the absence of clinical cognitive dysfunction

Our findings support the assessment of CVR to acute aerobic exercise as a useful functional 

biomarker of structural brain pathology in the absence of clinically detectible impairments 

in cognitive function. In the present study, we found that cognitively normal older adults 

with blunted CVR to aerobic exercise demonstrated greater Aβ deposition (Figure 1A), 

a finding consistent with previous work from our laboratory (Sisante et al., 2019) across 

a larger cohort of older adults. This finding also supports previous research implicating 

cerebrovascular assessments performed under conditions of physiologic stress may be 

sensitive enough to detect the first signs of dysfunction in the modulation of cerebral blood 

flow that may be salient to subtle changes in cognitive function in preclinical older adult 

populations. When Aβ was viewed as a continuous variable, no group differences in the 

association between CVR and Aβ deposition were detected (Figure 1A). Interestingly, when 

participants were classified by the presence of clinically relevant levels of elevated Aβ (>1.1 

SUVR) (Clark et al., 2012; Joshi et al., 2012), we observed an interactive effect in the 

relationship between CVR and AB deposition in APOE4 carriers (Figure 1B). Here, APOE4 
carriers with elevated Aβ deposition were unable to achieve a robust CVR to exercise, an 

effect that was not present in noncarriers. Together, these findings provide evidence that 

the strongest physiologic interactions between CVR and Aβ deposition are present in a 

subgroup of individuals who carry the APOE4 allele and possess elevated levels of Aβ 
deposition. The identification of this subgroup of individuals may provide a useful target 

for precision medicine approaches aimed at modulating cerebrovascular or structural brain 

metrics to influence brain health and function with aging.

Our findings implicate common neurobiological mechanisms that contribute to 

cerebrovascular dysfunction and structural brain pathology in the early stages of brain aging. 

In particular, APOE4 carriers demonstrate the strongest negative relationship between CVR 

to exercise and Aβ deposition (Figure 1A&B) that is consistent with a mechanistic link 

between CV dysfunction and deposition of Aβ in the aging brain. However, the causal 

nature of this relationship remains to be tested. For example, the presence of Aβ may blunt 

the CVR to exercise through increased resistance of blood flow and perfusion to cortical 

tissues as blood flow velocity increases during aerobic exercise (Niwa et al., 2002; Iadecola, 

2004). Consistent with this theory, increasing Aβ levels in the brains of rodents can reduce 

cerebral blood flow (i.e. elevated Aβ led to reduced blood flow to the brain) (Suo et al., 
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1998). Conversely, poor cerebrovascular function may alter blood-brain barrier trafficking of 

Aβ, slowing the clearance of Aβ and promoting its accumulation in the brain (Zlokovic et 

al., 2005). This theory is also supported by animal research, where bilateral carotid artery 

stenosis significantly increased Aβ levels (i.e. blunting cerebral blood flow led to increased 

Aβ deposition) (Yamada et al., 2011). The later may also be supported by evidence that 

habitual aerobic exercise appears to have no effect on Aβ deposition in older adults (Vidoni 

et al., 2021), yet can improve cerebrovascular health (Thomas et al., 2013; Whitaker et 

al., 2020) and slow or, in some cases, reverse the development of cognitive impairment in 

older adults (Zhang et al., 2020). These observations may explain the neuroprotective effect 

of aerobic exercise against AD and related dementias (Tarumi and Zhang, 2018). Future 

research aimed at modulating each of these variables (e.g. aerobic exercise interventions 

that improve CVR) will provide insight into the directionality of the relationship between 

cerebrovascular function and structural brain pathology.

4.2. Behavioral significance of interactions between individual genotype, cerebrovascular 
function, and brain structure

Importantly, our findings provide evidence for the behavioral significance of interactions 

between individual genotype, cerebrovascular function, and brain structure. We found that 

cerebrovascular function interacts with individual APOE genotype and Aβ deposition to 

influence an individual older adult’s ability to inhibit a default and undesired response 

(Figure 2 and Figure 3A&B). Our results are consistent with accumulating evidence within 

the field of aging neurobiology and the increasing recognition of the mixed pathology and 

multifactorial etiology that contributes to cognitive decline with aging (Iturria-Medina et 

al., 2016, 2017). Clinically, it is well known that an individual who has structural brain 

biomarker evidence of AD pathology (e.g. high levels of Aβ deposition) may paradoxically 

present with the absence of any behavioral indicator associated with AD clinical syndrome. 

Notably, vascular pathology and individual genotype (e.g. possession of the APOE4 allele) 

are frequently detected in the typical clinical presentation of AD (Iadecola, 2004; Xie et 

al., 2016; Ouellette and Lacoste, 2021), and can significantly increase an individual’s risk 

for developing dementias (Heffernan et al., 2016). Building upon our current knowledge of 

each of these factors individually, our present results provide unique insight into interactions 

between these key neurobiological factors that can be gleaned from an interdisciplinary and 

multifactorial assessment of AD and related dementia risk factors. This rich multifactorial 

approach offers a powerful characterization of factors potentially influencing the early 

development of cognitive behavioral impairment that could have clinically meaningful 

implications for intervention, treatment, and prevention of AD and related dementia in 

preclinical older adult populations.

4.3. Role of cerebrovascular health as a function of individual genotype in the 
preservation of brain behavioral function with aging

Our results suggest cerebrovascular function plays a key role in the early behavioral 

manifestations of cognitive executive dysfunction in older adults who carry the APOE4 
allele. The three-way interaction model found that older adult APOE4 carriers with 

blunted CVR to exercise demonstrated poorer response inhibition performance, while CVR 

did not predict behavioral performance in noncarriers (Figure 2). The characterization 
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of these interactions builds upon previous findings from our laboratory, in which we 

demonstrated measures poor cardiovascular health negatively influenced the CVR to 

exercise preferentially in APOE4 carriers (Kaufman et al., 2021c). Our findings are also 

consistent with previous evidence demonstrating a stronger effect of cardiovascular health 

on cognitive performance metrics in APOE4 carriers (Zade et al., 2010; Caselli et al., 

2011; Shaaban et al., 2019). Specifically within a behavioral context, a key novel finding 

of the present study identifies the unique relationship between cerebrovascular response 

and response inhibition performance in APOE4 carriers compared to noncarriers. The 

positive relationship between CVR and response inhibition performance supports that higher 
cerebrovascular regulatory function may serve a unique neuroprotective function in early 
brain aging processes affecting cognition in APOE4 carriers, while playing less of a role in 

noncarriers. Interestingly, Kaufman et al. (2021a) revealed that cerebrovascular dysfunction 

in APOE4 carriers was differentially modifiable through an aerobic exercise intervention 

compared to noncarriers, with older adult APOE4 carriers showing greater improvements 

in cerebral blood flow following a year-long exercise intervention (Kaufman et al., 2021a). 

Despite the strong ties between physical fitness and cerebrovascular health, we found that 

these physiologic interactions were able to predict cognitive behavior even when controlling 

for normalized workload at a matched heart rate range, a proxy metric for physical fitness 

(Table 3). Interestingly, previous research by Ward et al (Ward et al., 2018) found that older 

and younger adults who were matched to identical workloads during moderate intensity 

exercise demonstrated differences in cardiovascular responsiveness to the acute exercise 

bout, suggesting an influence of aging on these physiologic interactions. Together, these 

findings support that cerebrovascular response during aerobic exercise provides unique 

insight into mechanisms of brain health and behavior that are not available from physical 

fitness assessments alone and may be useful to guide approaches aimed at preventing and 

reversing cognitive decline in aging populations.

4.4. Genetic mechanisms influencing interactions between cerebrovascular function and 
structural brain pathology in the context of cognitive behavior

Possession of an APOE4 allele may reveal unique genetic mechanisms that influence 

interactions between cerebrovascular response and structural brain pathology to influence 

cognitive behavior in older adults. Specifically, we found differential effects of CVR on the 

relationship between Aβ and response inhibition in APOE4 carriers and noncarriers (Figure 

3A&B). In APOE4 carriers, individuals with a higher CVR and greater Aβ deposition had 

higher response inhibition performance, an effect not observed in APOE4 carriers with low 

CVR or noncarriers (Figure 3A&B). Further, APOE4 carriers with high CVR outperformed 

both carriers with low CVR and noncarriers on the response inhibition task (Figure 3C). 

In the face of age-related neuropathology, some individuals appear to utilize a neurologic 

“reserve” that enables behavioral compensation and attenuates cognitive decline (Stern et al., 

2019). Findings in the present study provide preliminary evidence that the neuroprotective 

effect of high CVR in APOE4 carriers may act mechanistically through increased resilience 

to age-related structural pathology reflected in Aβ deposition, potentially supporting a 

functional neurologic “reserve” in the aging brains of these individuals. We also found 

that, among participants with low CVR, APOE4 carriers had poorer response inhibition 

compared to noncarriers (Figure 3C). This suggests that cerebrovascular health not only 
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serves a specialized protective effect to maintain cognitive function, but may additionally 

attenuate the rate of cognitive decline that is accelerated in APOE4 carriers (Caselli et al., 

2004, 2007). It is conceivable that such differences in the resiliency effect of cerebrovascular 

function between APOE4 carriers and noncarriers may overlap with the neurobiological 

mechanisms that predispose APOE4 carriers to a higher genetic risk for the development 

of AD in the later stages of aging (Farrer et al., 1997; Heffernan et al., 2016). Further, our 

findings that CVR has a greater effect on cognitive function in APOE4 carriers compared 

to noncarriers supports the notion of different etiologies and pathologic disease processes 

leading to the development of AD for each APOE4 carriers and noncarriers (Emrani et 

al., 2020), particularly that cerebrovascular dysfunction may play a preferential role in 

dementia pathogenesis for APOE4 carriers (Høgh et al., 2001; Montagne et al., 2020). These 

preliminary findings motivate future research in a larger cohort of heterogeneous older 

adults that may additionally include APOE2 carriers, for whom the effect of resiliency to 

aging processes has been most consistently observed and reported (Farrer et al., 1997; James 

et al., 2017).

In the present study, the limited range of participants who possessed high levels of Aβ 
deposition (e.g. >1.1 SUVR) may limit the generalization of these findings to older adults 

with the more advanced signatures of structural brain pathology. For example, the low 

representation of participants with both high Aβ deposition and high CVR (as illustrated in 

Figure 3 A&B), could be explained by the fact that high Aβ deposition in these individuals 

may lead to cerebrovascular dysfunction, impeding their ability to achieve robust CVR 

during exercise. As such, a plausible alternative theory would be that individuals in this 

cohort of cognitively normal older adults with high Aβ deposition (and low CVR) may 

possess a neuroprotective resilience against the development of MCI in the presence of high 

levels of Aβ deposition, enabling their inclusion in the present study. Indeed, the expansion 

of the range of cognitive abilities to include those older adults with MCI may increase 

the upper range of AB deposition particularly in APOE4 carriers. Expansion of the range 

of cognitive ability among participants could potentially equalize the differences in levels 

of Aβ deposition between groups (see Table 1) and even lead to an inverse relationship 

between Aβ deposition and response inhibition performance, in contrast to the positive 

relationship observed in Figure 3A. Future studies that include older adults with MCI may 

expand and equalize the range of Aβ deposition across groups and elucidate the presence of 

these interactive relationships and salience to cognitive behavior.

While high cerebrovascular function demonstrated a neuroprotective effect for APOE4 
carriers, an interesting pattern in our data suggests that noncarriers may possess greater 

resiliency to potential negative effects of low CVR and high Aβ deposition. While APOE4 
carriers with high CVR had higher response inhibition performance, noncarriers with low 
CVR tended to have higher response inhibition performance than noncarriers with high 

CVR, though the relationship of this effect did not meet our a priori adopted level of 

significance (Figure 2) and showed a lower magnitude of effect compared to the contrasting 

effect observed in APOE4 carriers (Figure 3C). Previous studies found that, compared 

to cognitively normal APOE4 carriers, noncarriers showed differences in cortical neural 

function (Leuthold et al., 2013) and had greater adaptive processes to repeated trauma 

(James et al., 2017). Although the mechanisms are not yet fully understood, these interactive 
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functional and structural processes appear to increase neuroprotection and promote brain 

resilience to specific disease processes in noncarriers, including the development of MCI 

(Pa et al., 2009), posttraumatic stress disorder (Peterson et al., 2015), and recovery from 

traumatic brain injury (Zhou et al., 2008). A greater ability to repair and protect against 

neuronal damage offered by the noncarrier-specific genotypic interaction (Mahley and Rall, 

2000) may similarly increase noncarriers’ resilience to the chronic neurotoxic effects poor 

cerebrovascular function on both the accumulation of Aβ in the brain (Figure 1) and 

cognitive performance (Figure 2 and Figure 3) compared to APOE4 carriers in the present 

study. This notion of increased resilience to low cerebrovascular function in noncarriers may 

be further supported by the larger range of CVR, particularly in the lower range of response, 

present in noncarriers compared to APOE4 carriers in the present study (Table 1), Notably, 

our exclusion of older adults with MCI would have biased the selection of only individuals 

with such genotypic resiliency (i.e. excluding those with low CVR and high Aβ without 

this protective adaptive characteristic, which could have effectively narrowed the range of 

CVR in APOE4 carriers in the present study). The present participant selection criteria 

may explain poorer response inhibition performance in noncarriers with low Aβ and high 

CVR (Figure 3B & C). Future research in animal models may elucidate our mechanistic 

understanding of risk and resilience associated with individual APOE genotype and further 

identify epigenetic pathways underpinning individual-specific physiologic stress responses 

for neuronal repair and protection in the context of cerebrovascular health and cognitive 

dysfunction with aging.

4.5 Cerebrovascular dysfunction affects neural networks involved in response inhibition 
in the early stages of cognitive dysfunction with aging

Our hypothesis-driven analyses in the present study focused on the neurobiological 

factors influencing a highly specific aspect of cognition involving inhibition of a default 

and undesired response (Stroop, J, 1935; Hutchison et al., 2010). While interactions 

between CVR, APOE4 genotype, and Aβ deposition were predictive of response inhibition 

performance (Table 2), the failure of these physiologic interactions to predict general 

cognitive processing speed implicates their functional neural specificity (Wessel and Aron, 

2017; Wessel et al., 2019). The present findings are in line with previous research supporting 

the specificity of cerebrovascular function and individual APOE genotype (Whitson et al., 

2018) effects on response inhibition behavior that engages inhibitory neural networks within 

the prefrontal cortex (PFC) (Wessel and Aron, 2017; Wessel et al., 2019). In neurologically-

intact young adults, differences in acute cerebrovascular changes within the frontal cortical 

regions could be dissociated during a challenging Stroop task; here, participants with a 

greater frontal cortical hemodynamic response demonstrated higher response inhibition 

performance (Gratton et al., 2020). In aging populations, previous studies have demonstrated 

n that cortical inhibitory function is one of the earliest neural mechanisms affected by aging 

processes in cognitively normal older adults (Nielson et al., 2002; Heise et al., 2013; Levin 

et al., 2014; Rossiter et al., 2014; Legon et al., 2016), which may explain the presence 

of impaired response inhibition in older adults with absent clinical cognitive syndrome 

in the present study. Interestingly, PFC brain regions may preferentially benefit from the 

therapeutic effects of aerobic exercise interventions on cognition (Duchesne et al., 2015; 

Levin and Netz, 2015), supporting the robust interactive effect of cerebrovascular function 
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on response inhibition performance in the present study. Taken together, these findings 

may inform the development of individualized approaches for therapeutic noninvasive brain 

stimulation (e.g. neuromodulation of PFC brain regions in preclinical APOE4 carriers) for 

the treatment and prevention of cognitive dysfunction with aging (Hsu et al., 2015).

4.6 Limitations

When no signal in the left MCA could be detected, we used the right MCA response to 

aerobic exercise in the present study, as previous results from our laboratory found no 

systematic differences in cerebrovascular kinetic responses to aerobic exercise between left 

and right MCA (Billinger et al., 2017). However, others have reported differences between 

left versus right sided hemisphere pulsatility (Atwi et al., 2020). Whether measurements of 

cerebrovascular function between left and right MCA can be substituted interchangeably 

remains to be tested in a larger study across more diverse aging populations, and should be 

considered carefully in the interpretation of the results of the present study.

Assessment of CVR during a validated acute moderate-intensity aerobic exercise paradigm 

(Billinger et al., 2008, 2017) is behaviorally relevant to activities commonly faced by older 

adults in the community (e.g. ascending a flight of stairs). It remains to be seen how the 

CVR to other types of acute physiologic stressors compare to an aerobic exercise paradigm. 

It is possible that the high demand of the cerebrovascular regulatory response required for 

brain blood flow during a bout of moderate-intensity aerobic exercise is an earlier and more 

sensitive detector for autonomic nervous system dysfunction with aging, and could provide 

unique physiologic information independent of gravity-dependent activities. Alternatively, 

the temporal demand required for rapid cerebrovascular response during a behavior such 

as a sit-to-stand positional transfer may reveal insight into autonomic nervous system 

dysfunction with aging not available during activities with prolonged duration responses 

such as aerobic exercise. Future research is warranted to compare paradigms involving 

physiologic stressors that are behaviorally relevant to older adults.

It is important to consider the limitations of the statistical modeling approach used in the 

present study within the context of the relatively modest sample size. In particular, the 

higher levels of AB deposition in the APOE4 carrier group compared to the noncarrier 

group (difference magnitude of 0.07 SUVR, see Table 1) could influence the present 

results; future studies that increase the heterogeneity of cognitive inclusion criteria and in 

a larger cohort of older adults could help to mitigate these limitations. Given the novelty 

of the present dataset, our dichotomization of CVR using the group median provides a 

first step towards better understanding the influence of CVR on other physiologic and 

behavioral metrics. While providing an interesting illustration of the relationship between 

Aβ deposition and response inhibition performance in individuals with high versus low CVR 

to exercise (Figure 3 A&B), this sample-based classification method is likely sub-optimal 

in comparison to a physiologically-informed CVR classification method. Notably, given 

the significant interaction of CVR as a continuous variable with APOE4 carrier status and 

Aβ deposition for the prediction of response inhibition performance, we cannot rule out 

the possibility that CVR may not possess a behaviorally salient threshold. As such, we 

expect that these results will guide future studies with larger sample sizes that will be more 
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adequately powered to determine whether the presence of a physiologically-based threshold 

for CVR classification exists for the detection of interactive physiologic effects on cognitive 

behavior. The speed dependence of the Stroop task in the present study could influence 

results compared to other methods of assessing response inhibitory control (e.g. The Tower 

of Hanoi task, the WCST, and the Iowa Gambling task). Thus, results of the present study 

may not be generalizable to generalized inhibitory control outside of this temporal context.

In the present study, we do not account for individual chronotype, which can have an effect 

on physical and cognitive performance (Facer-Childs et al., 2018). While all participants 

performed CVR assessment in the morning, diurnal variation and sleep pattern could have 

influenced cognitive performance (Song et al., 2019), as the time of cognitive testing was 

not controlled in the present study.

Sex as a biological variable has been shown to have complex interactions with each APOE 
genotype and cardiovascular function with aging (Farrer et al., 1997; Riedel et al., 2016; 

Ward et al., 2018; Vermunt et al., 2019). In the present study, there were no differences 

in gender distribution between APOE4 carrier groups (Table 1). However, these findings 

together with previous research motivate an in-depth exploration of the effect of sex and 

interactions with key physiologic factors known to influence the development of structural 

brain pathology and early cognitive impairment with aging.

5. Conclusions

Interactions between cerebrovascular function, individual genotype, and structural brain 

pathology may offer a useful and sensitive biomarker for early preclinical behavioral 

manifestations of cognitive impairment in older adults. Additionally, cerebrovascular 

response to aerobic exercise may provide a physiologically-informed target for precision-

medicine approaches aimed at attenuating negative effects of structural brain pathology and 

preventing age-related declines in cognitive executive function. Future research may reveal 

that individuals with APOE4 carrier genotype show the highest therapeutic benefit for such 

intervention approaches.
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Highlights

• Interactions between CVR, APOE genotype, and Aβ are relevant to cognitive 

behavior.

• Blunted CVR to exercise is associated with impaired response inhibition 

specifically in APOE4 carriers.

• APOE4 carriers with more robust CVR have higher response inhibition 

performance, despite having greater Aβ deposition.

• Assessment of multifactorial neurobiological variables offers an early and 

sensitive biomarker of cognitive behavioral dysfunction with aging.
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Figure 1. 
Relationship between cerebrovascular response to moderate-intensity exercise and global 

amyloid-beta (Aβ) burden. A higher CVR predicted lower Aβ deposition across all 

participants (p=.013) (A). In APOE4 carriers, individuals classified as having elevated Aβ 
(solid line) demonstrated a stronger negative effect of CVR on Aβ deposition compared 

to APOE4 carriers classified as nonelevated Aβ (broken line) (p=.032) (B). In APOE4 
noncarriers, there were no significant differences in the effect of CVR on Aβ deposition 

between individuals with elevated versus nonelevated Aβ deposition (p=.272) (C).
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Figure 2. 
Association between cerebrovascular response to moderate-intensity aerobic exercise and 

response inhibition performance predicted from the regression model in APOE4 carriers 

(n=20) (solid line) and noncarriers (n=50) (broken line). In APOE4 carriers, greater 

cerebrovascular response to exercise was associated with better performance on the Stroop 

response inhibition task (p<.001). In noncarriers, no relationship was observed (p=.112).

Results for this regression model are detailed in Table 3.
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Figure 3. 
Association between Aβ deposition and response inhibition performance illustrated as 

a function of cerebrovascular response (CVR) to moderate-intensity aerobic exercise in 

APOE4 carriers (black color) (n=20) (A) and noncarriers (grey color) (n=50) (B). APOE4 
carriers with high CVR (≥ 5.7cm/s) (solid line) showed a positive relationship between 

Aβ deposition and response inhibition performance, while APOE4 carriers with low CVR 

(< 5.7cm/s) (broken line) showed no positive effect. CVR also showed a lower effect on 

response inhibition in noncarriers. Results for this regression model are detailed in Table 

3. (C) Response inhibition performance in APOE4 carriers and noncarriers with low and 

high CVR. There was a significant APOE4 carrier group × CVR interaction. APOE4 
carriers with high CVR had higher response inhibition performance compared to APOE4 
carriers with low CVR (p=.005) and noncarriers (p=.017). Among individuals with low 

CVR, APOE4 carriers had lower response inhibition performance compared to noncarriers 
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(p=.013). Within the noncarrier group, noncarriers with low CVR had higher response 

inhibition performance compared to those with high CVR (p=.034). *p<.05, **p<.01.

CVR is illustrated as a median (5.7cm/s) split of the group, where High CVR ≥ 5.7cm/s; 

Low CVR < 5.7cm/s.
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Table 1.

Participant characteristics.

All 
(n=70)

APOE4 (+)
(n=20)

APOE4 (−)
(n=50)

Age (years) 71±5
[65–87]

71±7
[65–87]

71±5
[65–81]

Workload (W/kg BW) 0.80±.0.27
[0.20–1.46]

0.81±.0.39
[0.20–1.46]

0.80±.0.21
[0.24–1.17]

Gender F=47
M=23

F=13
M=7

F=34
M=16

MMSE 28.6±1.8
[22.0–30.0]

28.6±1.4
[25.0–30.0]

28.7±2.0
[22.0–30.0]

Aβ Deposition 1.09±.17
[0.86 to 1.6]

1.16±.17
[ 0.98 to 1.6]

1.07±.17
[0.86 to 1.6]

CVR 5.55±5.29
[−13.00 to 21.88]

5.18±4.58
[−3.57 to 13.78]

5.69±5.58
[−13.00 to 21.88]

Stroop ratio 0.52±.12
[0.29 to 1.0]

0.51±.12
[0.33 to 0.82]

0.53±.17
[0.29 to 1.00]

MMSE = Mini-Mental State Exam; Aβ = amyloid-beta; CVR = cerebrovascular response to moderate-intensity aerobic exercise; Aβ = amyloid-
beta; [Range]; W= Watts at moderate intensity exercise workload; kg BW = kilograms of body weight. Values are depicted as mean ± SD.
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Table 2.

Two-way moderated multiple regression analysis testing the effect of APOE4 carrier status on the relationship 

between CVR and Aβ deposition after controlling for age, N = 70; Regression model predicting Aβ 
deposition, p=.003.

Variable B SEB β p-value

Intercept 0.794 0.278 .006*

Age 0.004 0.004 0.138 .227

Workload (W/ kg BW) −0.054 0.075 −0.084 .474

CVR −0.056 0.023 −0.308 .018*

APOE4 carrier status (+) 0.087 0.042 0.227 .041*

Interaction APOE4 carrier status (+) × CVR −0.025 0.050 −0.063 .618

Aβ = amyloid-beta; CVR = cerebrovascular response to moderate-intensity aerobic exercise; SEB = standard error of the coefficient; B = 

unstandardized regression coefficient; β = standardized coefficient;

*
p<.05
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Table 3.

Three-way multiple regression analysis results to predict response inhibition performance after controlling for 

age, N = 70; Regression Model, p=.014.

Variable B SEB β p-value

Intercept 0.674 0.207 .002*

Age −0.006 0.003 −0.257 .033*

Workload (W/kg BW) 0.004 0.52 0.009 .942

CVR −0.002 0.003 −0.080 .557

APOE4 carrier status (+) −0.130 0.044 −0.509 .004*

Aβ deposition 0.236 0.085 0.356 .007*

Interaction APOE4 carrier status (+) * Aβ * CVR 0.015 0.005 0.485 .001*

Aβ = amyloid-beta; CVR = cerebrovascular response to moderate-intensity aerobic exercise; SEB = standard error of the coefficient; B = 

unstandardized regression coefficient; β = standardized coefficient;

*
p<.05
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