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Abstract

Fluorescence microscopy is essential to study biological structures and dynamics. However, 

existing systems suffer from a trade-off between field of view (FOV), resolution, and system 

complexity, and thus cannot fulfill the emerging need for miniaturized platforms providing 

micron-scale resolution across centimeter-scale FOVs. To overcome this challenge, we developed 

a computational miniature mesoscope (CM2) that exploits a computational imaging strategy to 

enable single-shot, 3D high-resolution imaging across a wide FOV in a miniaturized platform. 

Here, we present CM2 V2, which significantly advances both the hardware and computation. 

We complement the 3 × 3 microlens array with a hybrid emission filter that improves the 

imaging contrast by 5×, and design a 3D-printed free-form collimator for the LED illuminator 

that improves the excitation efficiency by 3×. To enable high-resolution reconstruction across 

a large volume, we develop an accurate and efficient 3D linear shift-variant (LSV) model to 

characterize spatially varying aberrations. We then train a multimodule deep learning model 

called CM2Net, using only the 3D-LSV simulator. We quantify the detection performance and 

localization accuracy of CM2Net to reconstruct fluorescent emitters under different conditions in 

simulation. We then show that CM2Net generalizes well to experiments and achieves accurate 3D 

reconstruction across a ~7-mm FOV and 800-μm depth, and provides ~6-μm lateral and ~25-μm 

axial resolution. This provides an ~8× better axial resolution and ~1400× faster speed compared to 

the previous model-based algorithm. We anticipate this simple, low-cost computational miniature 

imaging system will be useful for many large-scale 3D fluorescence imaging applications.

1. INTRODUCTION

Fluorescence microscopy is indispensable to study biological structures and dynamics [1]. 

However, the emerging need for compact, lightweight platforms achieving micron-scale 

resolution across centimeter-scale fields of view (FOVs) has created two new challenges. 

The first challenge is to overcome the barrier of large-scale imaging while preserving 

the resolution [2]. Recently developed tabletop systems [3,4] have enabled multiscale 
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measurements with sufficient resolution; however, they are complex and bulky. The second 

challenge is to perform large-scale imaging in a compact, lightweight platform. Miniaturized 

fluorescence microscopes (i.e., miniscopes) [5] have enabled neural imaging in freely 

moving animals. However, most of the miniscopes rely on a gradient index (GRIN) 

objective lens [5] that limits the FOVs to <1 mm2. Wide FOV miniscopes have recently 

been developed by replacing the GRIN with a compound lens [6,7], but at the cost 

of degraded resolution and increased size, weight, and system complexity. In general, 

fundamental physical limits preclude meeting the joint requirements of FOV, resolution, 

and miniaturization using conventional optics.

Computational imaging techniques have unique capabilities that overcome the limitations 

of conventional optics by jointly designing optics and algorithms. Light field microscopy 

(LFM) [8] and related technologies [9,10], achieve single-shot, high-resolution 3D 

fluorescence imaging [11,12]. LFM works by attaching a microlens array (MLA) to an 

existing microscope to collect both spatial and angular information, which enables the 

reconstruction of the 3D fluorescence from a single shot. Although miniaturized LFMs 

[13,14] enable single-shot 3D imaging on modified miniscope platforms, the FOV is limited 

by the GRIN lens. Lensless imaging is another computational imaging technique for single-

shot 3D imaging, where a mask [15] or a diffuser (random microlens array) [16,17] is placed 

directly in front of a CMOS. However, the removal of focusing optics imposes penalties to 

the measurement’s contrast and SNR [4], severely limiting the sensitivity for imaging weak 

fluorescent signals [4].

We recently developed a computational miniature mesoscope (CM2) [18] that aims to 

overcome all the key limitations of FOV: resolution, contrast, SNR, and the size and weight 

in existing miniature fluorescence imaging systems. The CM2 combines the merits of both 

LFM and lensless designs. It places a 3 × 3 MLA directly in front of a CMOS sensor for 

imaging, like the lensless design. This approach ensures compactness and is lightweight 

while further exploiting the microlens’s focusing power to provide high image contrast. 

The CM2 captures an image with multiple views, which enables robust recovery of 3D 

fluorescence in a single shot, like the LFM. Previously, we demonstrated CM2 V1 that 

achieved 3D fluorescence imaging in a 7 × 8 mm2 FOV with 7-μm lateral and 200-μm 

axial resolution [18]. CM2 V1 is the first standalone computational miniature fluorescence 

microscope with an integrated illumination module. Using a four-LED array in an oblique 

epi-illumination geometry, CM2 V1 can uniformly illuminate a 1 − CM2 FOV and achieves 

a ~24% light efficiency. In this work, we significantly advance the CM2 technology and 

introduce CM2 V2, which integrates innovations in both hardware and computation to 

address limitations in light efficiency, image contrast, reconstruction quality, and speed, as 

summarized in Fig. 1.

On the hardware, we present updates that significantly improve the image contrast and light 

efficiency. First, we complement the 3 × 3 MLA with a hybrid emission filter [19], as shown 

in Fig. 1(a), that suppresses the spectral leakage suffered by the V1 system. Second, we 

design and 3D-print a miniature free-form LED collimator, as shown in Fig. 1(a), that is 

lightweight and improves the excitation efficiency while preserving the compactness. This 

new illuminator achieves ~80% efficiency, a ~3× improvement over the V1 design, and 
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provides a confined uniform illumination with an up to 75 mW excitation power across an 

8 mm diameter FOV. Built around a backside illuminated (BSI) CMOS, as shown in Figs. 

1(a) and 1(b), CM2 V2 achieves a 5× improvement in image contrast and captures high-SNR 

measurements in various experimental conditions, as shown in Fig. 1(c).

For the computation, we present a deep learning model, termed CM2Net, to achieve high-

quality 3D reconstruction across a wide FOV with significantly improved axial resolution 

and reconstruction speed. Deep learning has recently emerged as the state of the art to solve 

many inverse problems in imaging [20]. Deep learning techniques, for example, have been 

developed for LFM to achieve high-resolution 3D reconstruction [21,22]. To devise a robust 

and accurate model, we consider several key features in the image formation of CM2. The 

measurement contains light field information in 3 × 3 overlapped views, and the system 

is 3D linear shift-variant (LSV) [18]. CM2Net solves the single-shot 3D reconstruction 

problem using three functional modules, as shown in Fig. 1(d). The “view demixing” 

module separates the single measurement into 3 × 3 nonoverlapping views by exploiting 

the distinct aberration features from the array point spread functions (PSFs). The “view-

synthesis” module and the “light field refocusing enhancement” module jointly perform 

high-resolution 3D reconstruction across a wide FOV using complementary information.

To incorporate the 3D-LSV information into the trained CM2Net, we develop an accurate 

and efficient 3D-LSV forward model to synthesize CM2 measurements. Our 3D-LSV model 

is based on a low-rank approximation using a small number of experimentally calibrated 

PSFs taken on a sparse 3D grid. A key difference between our 3D-LSV model and the 

depth-wise LSV model [14] is the reduced model complexity by a global decomposition and 

the resulting shared basis PSFs. We show that the added axial interpolation in our 3D model 

achieves “axial super-resolution” beyond the large axial step used in the PSF calibration. We 

generate all the training data using this 3D-LSV simulator to train CM2Net, which bypasses 

the need to physically acquire a large-scale training data set in our experiments.

We first quantitatively evaluate CM2Net’s performance to reconstruct 3D fluorescent 

emitters in simulation. Our results demonstrate that CM2Net is robust to variations in the 

imaging FOV and fluorescent emitter’s size, intensity, 3D location, and seeding density. 

Our ablation studies show that the view-demixing module significantly reduces the false 

positive rates in the reconstruction, and that the reconstruction module, consisting of 

the view-synthesis-net and light field refocusing enhancement-net, learns complementary 

information and enables accurate 3D reconstructions across a wide FOV. We quantify 

the CM2Net’s detection performance and localization accuracy on fluorescent emitters 

with seeding densities and SNRs approximately matching in vivo cortex-wide, one-photon 

calcium imaging across ~7 mm FOVs. CM2Net achieves an averaged recall and precision 

of 0.7 and 0.94, respectively, that is comparable to the state-of-the-art deep-learning-based 

neuron detection pipeline [23]. It achieves an averaged lateral and axial rms localization 

error (RMSE) of 4.17 μm and 11.2 μm, respectively, indicating close to a singlevoxel 

localization accuracy. We further perform numerical studies to show that the trained CM2Net 

generalizes well to complex neural structures, including sparsely and densely labeled 

neurons across the entire mouse cortex and brain vessel networks.
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We show that the 3D-LSV simulator-trained CM2Net generalizes well to experiments, and 

an example reconstruction on 10-μm beads is shown in Fig. 1(e). We demonstrate CM2Net’s 

robustness to variations in the emitter’s local contrast and SNR on mixed 10-μm and 15-μm 

beads. Notably, CM2Net enhances the axial resolution to ~25 μm—~8 × better than the 

model-based reconstruction. The 3D reconstructions are validated against tabletop widefield 

measurements. The reconstruction quality is quantitatively evaluated and shown to have a 

nearly uniform detection performance across the whole FOV with few incorrect detections. 

In addition, CM2Net reduces the reconstruction time to <4 s for a volume spanning a 7 mm 

FOV and an 0.8 mm depth on a standard 8 GB GPU, which is a ~1400 × faster speed and a 

~19 × less memory cost than the model-based algorithm.

We believe our contribution is, to the best of our knowledge, a novel deep-learning-

augmented computational miniaturized microscope that achieves single-shot high-resolution 

(~6-μm lateral and ~25-μm axial resolution) 3D fluorescence imaging across a mesoscale 

FOV. Built using off-the-shelf and 3D-printed components, we expect this simple, low-cost 

miniature system will be useful in a wide range of large-scale 3D fluorescence imaging and 

neural recording applications.

2. METHODS

A. CM2 V2 Hardware Platform

CM2 V2 is a stand-alone miniature fluorescence microscope built with off-the-shelf and 

3D-printed components, as illustrated in Figs. 1(a) and 2(a). It mainly consists of two 

parts, including a newly designed illumination module and an upgraded imaging module. 

Compared to the V1 platform, the V2 platform features free-form LED collimators that 

improve the illumination efficiency by ~3 ×, and a hybrid emission filter design that 

improves the image contrast by ~5 ×.

For the illumination module, our design goal is to achieve a ~50 mW total excitation power 

across a centimeter-scale FOV, which is sufficient for one-photon widefield calcium imaging 

in mouse brains [4]. In addition, the illumination module must be highly efficient without 

incurring an excessive heat burden. Our solution incorporates a compact, lightweight free-

form collimator in-between the surface-mounted LED (LXML-PB01-0040, Lumileds) and 

the excitation filter (no. 470, Chroma Technology). The collimator is based on a refraction-

reflection, free-form design [24]. It consists of an inner refractive lenslet and an outer 

parabolic reflective surface, as shown in Fig. 2(b). The lenslet collimates the light within 

a ~52-deg conical angle. The parabolic surface satisfies the total internal reflection (TIR) 

condition and collimates the light emitted at high angles. The LED is placed around the 

shared focal point of the lenslet and the parabolic refractor. Each collimator is ~4 × 4 

× 1 mm3 in size, weighs ~0.03 grams, and is 3D printed with clear resin (printed on 

Formlabs Form 2, no. RS-F2-GPCL-04). The design achieves an efficiency of ~80% in a 

Zemax simulation, which considers the finite-sized LED emitter, broadband LED emission 

spectrum, and angle-dependent transmission spectrum of the excitation filter.

The entire illumination module consists of four LED illuminators placed symmetrically 

around the imaging module. After performing an optimization in Zemax, the LED 
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illuminator is placed ~6.7 mm away from the imging optical axis and tilted by ~45 deg 

to direct the light toward the central FOV. The Zemax simulation shows that this design 

provides a nearly uniform illumination confined in an 8 mm circle, as shown in Fig. 

2(c). The experimental validation on a green fluorescence calibration slide (no. FSK2, 

Thorlabs) closely matches the simulation, as shown in Fig. 2(d). The total excitation power 

is measured to be up to 75 mW (at a maximum driving current of 350 mA) at a ~470 nm 

excitation wavelength.

The imaging module is built around an off-the-shelf 3 × 3 MLA (no. 630, Fresnel 

Technologies Inc.) to form a finite-conjugate imaging geometry with ~0.57 magnification. 

The lateral resolution is primarily limited by the NA of a single microlens, which 

is ~6 μm measured experimentally (see Supplement 1). We incorporate an interference-

absorption emission filter pair to improve the signal-to-background ratio (SBR) in the raw 

measurement. An interference filter (no. 535/50, Chroma Technology) is placed in front of 

the MLA. An additional long-pass absorption filter (Wratten color filter no. 12, Edmund 

Optics) is placed after the MLA to suppress the leakage light. The emission spectra of 

the emission and absorption filters are optimized for the green fluorescence, as detailed in 

Supplement 1. Compared to measurement of only the interference filter, this hybrid filter 

design improves the SBR by >5× on a phantom consisting of 10-μm fluorescence beads, 

as shownin Fig. 2(e). This improvement makes the new CM2 V2 platform more robust in 

low-light fluorescence imaging conditions.

The CM2 V2 is built around a backside-illuminated (BSI) CMOS sensor (IMX178LLJ, IDS 

Imaging), which gives a 4.15 μm effective pixel size. The dome-shaped. 3D-printed housing 

(printed on Formlabs Form 2, black resin, no. RS-F2-GPBK-04) provides mechanical 

support and light shielding. The size and weight of CM2 V2 is only limited by the CMOS 

sensor. The CM2 V2 prototype is ~36 × 36 × 15 mm3 in size, including the commercial 

CMOS PCB board. The custom parts excluding the PCB are ~20 × 20 × 13 mm3 in size and 

weigh only ~2.5 grams.

B. 3D LSV Model of the CM2

Our goal is to build an accurate, efficient 3D LSV model to describe the CM2 image 

formation. Using the synthetic data simulated from this model, we will later train the 

proposed CM2Net to perform 3D reconstruction. In this section, we describe a sparse 

PSF calibration procedure and a low-rank. approximation-based 3D-LSV model. First, to 

calibrate the spatially varying PSFs, we scan a 5-μm point source on a three-axis translation 

stage. The point source is scanned across an 8 mm × 8 mm × 1 mm volume with steps of 

1 mm laterally and 100 μm axially, which yields a stack of 9 × 9 × 11 calibrated PSFs, as 

illustrated in Fig. 3(a). Several examples of calibrated PSFs are shown in Fig. 3(b), which 

highlight the following key features of the CM2 image formation. At a given lateral position, 

the off-axis foci shift laterally with the depth, akin to the light field. At a given depth, the 

PSFs are still shift variant because of the spatially varying aberrations from the microlenses 

and the missing side foci at large, off-axis locations (when the lateral location >1.7 mm) 

[18]. As a result, a 3D-LSV forward model is necessary to fully characterize the CM2 3D 

PSF. Unfortunately, scanning the point source on the entire dense grid at our desired 3D 
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resolution (4.15 μm × 4.15 μm × 10 μm) across the targeted imaging volume (~8 mm × 8 

mm × 1 mm) would require ~370 million PSF measurements, which is impractical. Next, we 

describe a computational procedure to address this challenge.

We develop a low-rank, approximation-based 3D-LSV model to simulate the CM2 

measurement in four steps:

1. We denote the sparsely calibrated PSFs as H(u, v; x, y, z), where (u, v) are the 

pixel coordinates of the PSF image, and (x, y, z) is the 3D location of the point 

source. In total, the calibrated PSF set contains N = 891 images. Note that the 

effect of the PSF calibration grid is studied in Supplement 1. Each raw PSF 

image contains ~6.4M pixels, which is too large to be directly operated on for the 

low-rank decomposition. To address this issue, we develop a memory-efficient 

scheme by exploiting the highly confined foci in the PSF image. We remove 

most of the dark regions in the images and then align the cropped foci. The 

alignment step essentially compensates for the depth-dependent lateral shift in 

the off-axis foci. We denote this “compressed” and aligned PSF calibration set as 

Hc(u′, v′; x, y, z), where (u′, v′) are the new pixel coordinates after cropping 

and alignment.

2. We approximate the N calibrated PSFs by a rank-K singular value decomposition 

(SVD) using

H u′, v′; x, y, z ≈ ∑
i = 1

K
Mi(x, y, z)Hb

i u′, v′ , (1)

where Hb
i u′, v′ , {i = 1, …, K } denotes the ith basis PSF and Mi(x, y, z) 

is the corresponding coefficient volume. Equation (1) approximates the set of 

calibrated PSFs as a linear combination of K basis PSFs. The first five basis 

PSFs and coefficient volumes are shown in the first two rows in Fig. 3(c). We 

choose K = 64 that has a small ~2.5% approximation error on the calibration 

set, which is shown in Fig. 3(d). The choice of K incurs a trade-off between the 

model accuracy and computational cost. In addition, this low-rank approximation 

also helps suppress noise in the raw PSF measurements. More details can be 

found in Supplement 1.

3. To obtain the coefficient volumes at any uncalibrated 3D location, we 

perform 3D bilinear interpolation from the sparse calibration grid to the 

dense reconstruction grid. This procedure relies on the assumption that the 

PSFs are slowly varying in 3D [25], which means that: 1) The basis PSFs 

can be accurately estimated from a sparse set of PSF measurements, and 2) 

The decomposition coefficients are smooth in 3D. The interpolated coefficient 

volumes for the first five basis PSFs are shown in the third row in Fig. 3(c).

4. The final 3D-LSV model is computed by K weighted 2D depth-wise 

convolutions in the lateral dimension ⊛u,v, followed by a summation along the 

axial dimension z:
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g(u, v) = ∑
z

∑
i = 1

K
Mi(u, v, z)O(u, v, z) ⊛u, v Hb

i(u, v, z) . (2)

Here, O(u, v, z) is the 3D fluorescence distribution of the object. Both the basis PSF 

Hb
i (u, v, z) and coefficient volume Mi(u, v, z) have been placed back to the original sensor 

pixel coordinates by accounting for the expected lateral shift at each depth z. The pixel 

coordinates (u, v) in the image and the object space coordinates (x, y) are related by the 

magnification M by u = Mx, v = My.

More details on this 3D-LSV model can be found in Supplement 1.

C. CM2Net Design

To enable fast and accurate 3D reconstruction from a CM2 measurement, we implement 

a modular deep learning model called CM2Net to incorporate the key feature of the 

CM2 physical model. Each CM2 image contains 3 × 3 multiplexed views to capture 

projection information about the 3D object [18]. This multiview geometry introduces two 

challenges to the network design. First, the image features needed for 3D reconstruction are 

nonlocal, instead they are separated by a few thousand pixels. To fully capture the nonlocal 

information requires a sufficiently large receptive field, which is not easily achieved by a 

standard convolutional neural network. Second, the view-multiplexing requires the network 

not only to reconstruct 3D information, but also to remove crosstalk artifacts. To address 

these challenges, CM2Net combines three modules to break the highly ill-posed inverse 

problem into three simpler tasks, including view demixing, view synthesis, and a light field 

refocusing enhancement, as illustrated in Fig. 4.

The first module, view “demixing-net,” demultiplexes a CM2 image into nine demixed 

views, each corresponding to the image captured by a single microlens without crosstalk 

from the other microlenses. To perform this task, demixing-net synthesizes the information 

contained in the entire CM2 measurement. To facilitate this process, we first construct a 

view stack by cropping and view-aligning nine patches from the raw measurement based 

on the chief ray of each microlens, as shown in Fig. 4. This input view stack contains 

multiplexed information, which demixing-net seeks to demultiplex. The ground truth output 

is the demixed view stack containing nine crosstalk-free images, which is made possible 

on simulated training data using our 3D-LSV model. Our results show that this task can be 

accurately performed by using the distinctive aberration features from different microlenses. 

In Supplement 1, we further perform an ablation study on demixing-net and highlight that it 

significantly reduces the false positives in the reconstructions.

The demixed view stack is akin to a 3 × 3 view light field measurement, which is processed 

by two reconstruction branches. The first branch is “view-synthesis-net,” which directly 

performs the 3D reconstruction based on disparity information in the views, as inspired 

by the deep-learning-enhanced LFM [22]. The second branch explicitly incorporates the 

geometrical optics model of the light field. The demixed views are first processed by the 

light field refocusing algorithm [26] to generate a refocused volume, and then are fed into 

Xue et al. Page 7

Optica. Author manuscript; available in PMC 2022 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



“enhancement-net” to remove any artifacts and enhance the reconstructed resolution. The 

refocused volume already provided most of the 3D object information, but suffers from 

three artifacts, including severe axial elongation due to limited angular coverage, boundary 

artifacts from the “shift-and-add” operation, and missing object features at the peripheral 

FOV regions due to inexact view matching between the 3 × 3 MLA. To achieve the 

best performance, the outputs from the two branches are summed and further processed 

to yield the final 3D reconstruction. To highlight the effectiveness of this design, we 

conduct ablation studies and visualize the respective activation maps of the two branches 

in Supplement 1. Our results show that the light field refocusing enhancement-net achieves 

a high-quality reconstruction at the central FOV region, and the view-synthesis-net improves 

the performance at the peripheral FOV regions. Together, the two reconstruction branches 

use complementary information to achieve high-resolution reconstruction across a wide 

FOV.

Overall, CM2Net is trained entirely on simulated data from our 3D-LSV model. The loss 

function combines a demixing loss and a reconstruction loss loss = α1ldemix + α2lrec, which 

promotes, respectively, the fidelity of the demixed views and the 3D reconstruction results. 

For both loss components, we use binary cross entropy (BCE) since it promotes sparse 

reconstructions [27], which are defined by BCE y, y = ∑iyi log yi + 1 − yi log 1 − yi . The 

summation is over all the voxels indexed by i, and y and y denote, respectively, the ground 

truth and the reconstructed intensity The weights of the two loss functions (α1, α2) are set 

to be (1, 1) after performing hyperparameter tuning, which concluded that the demixing and 

reconstruction losses have equal importance.

CM2Net is implemented in Python 3.7 with TensorFlow 2.3. The multiple subnetworks 

are trained together in an “end-to-end” fashion on an Nvidia P100 GPU (16 GB) with a 

batch size of 2. We use Adam optimizer with an adaptive learning rate schedule. The initial 

learning rate is 10−4 and automatically decreases by a factor of 0.9 after the loss on a small 

validation set (~400 patches) plateaus for two consecutive epochs. The training takes ~48 h 

to complete. Additional implementation details are provided in Supplement 1.

D. Synthetic Training Data Generation

We generate a large-scale training dataset for CM2Net based on the 3D-LSV model [Eq. 

(2)] from a set of synthetic volumes. The FOV of each synthetic volume follows a uniform 

random distribution between 6.5 mm and 7.5 mm, U [6.5 mm, 7.5 mm]. The degree 

of view multiplexing is determined by the FOV [18]. For FOV < 2.7 mm, no view 

multiplexing is present. As the FOV increases, the overlap between neighboring views 

increases approximately quadratically. At the largest FOV = 7.5 mm, ~64% of overlap is 

present. The depth range is fixed at 800 μm. The volumes are sampled at 4.15 μm laterally 

(matching the effective pixel size of CM2 V2) and 10 μm axially (10× higher sampling than 

the physical scanning step size).

We randomly place spherical emitters into the volumes by the following steps. Due to the 

large sampling grid size, we first generate each ground-truth emitter on a 5× finer grid 

(0.83 μm × 0.83 μm × 2 μm). Next, we perform 5 × 5 × 5 average binning to make 
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the ground-truth volume have the same grid size as the final reconstruction. The emitter’s 

diameter follows a uniform random distribution U [8 μm, 20 μm], which approximately 

matches the typical size of neuronal cell bodies. The emitter’s intensity is set by the 

surface area; i.e., proportional to the diameter squared, which matches our experimental 

measurements. The size range used in our data leads to a 6.25× intensity variation range. 

To further vary the emitter’s intensity at a given size, a random scaling factor following a 

uniform distribution U [0.8, 1.2] is added, which approximately matches the contrast from 

one-photon fluorescence microscopes on calcium indicators [28]. The emitter density in 

each volume follows a uniform random distribution U [10,100] (number of emitters/mm2), 

which simulates different fluorescence labeling densities used in cortex-wide neuronal 

imaging applications [3,4].

We first generate noise-free measurements using the 3D-LSV model. We then add realistic 

levels of mixed Gaussian and Poisson noise. The parameters for the additive Gaussian 

noise (normalized mean = 0.048, standard deviation = 0.017) are estimated by multiple 

dark measurements taken with the same acquisition parameters as the real experiments (30 

ms exposure time, 40 dB gain). The Poisson noise is added by estimating the expected 

photon budget (~500 peak number of photons and a unit effective gain) in typical widefield 

one-photon imaging [4]. To train the view demixing-net, we generate the ground-truth 

nonoverlapping views using the same 3D-LSV model with the single microlens PSF.

After synthesizing the measurements, we crop the overlapped views (1920 × 1920 pixels) 

based on the chief ray location of each microlens at the in-focus image plane. Next, we 

stack the nine cropped views to form a 1920 × 1920 × 9 multichannel input to CM2Net. 

Finally, CM2Net is trained on 9700 uniformly cropped patches (320 × 320 pixels) from 270 

synthetic objects.

3. RESULTS

A. 3D-LSV Simulator Enables Accurate 3D Reconstruction Across a Wide FOV

To demonstrate that our 3D-LSV model is essential to achieve accurate 3D reconstruction 

across a wide FOV, we compare two CM2Net models trained with two different forward 

models. The first network, termed LSV-CM2Net, is trained by our 3D-LSV model. The 

second network, termed LSI-CM2Net, is trained by our previous depth-wise LSI model [18], 

which assumes the on-axis PSF is invariant at each depth. We also benchmark the network 

reconstructions against the depth-wise LSI model-based deconvolution algorithm [18].

The 3D reconstructions on a cylindrical volume (~7-mm diameter, 0.8-mm depth) from 

LSV-CM2Net, LSI-CM2Net, and a model-based deconvolution are shown, respectively, in 

Figs. 5(a)–5(c). In each figure, we overlay the reconstruction (in red) onto the ground truth 

(in green) and visualize the XY and XZ maximum intensity projections (MIP). When the 

reconstruction matches with the ground truth (i.e., true positives), the overlayed region 

appears in yellow. When the reconstruction misses certain particles (i.e., false negatives), 

the region appears in green. When the reconstruction creates false particles (i.e., false 

positives) or suffers from axial elongations, the region appears in red. By visual inspection, 

LSV-CM2Net can accurately reconstruct the entire 7 mm FOV throughout the 0.8-mm depth 
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range, as highlighted by the three zoomed-in regions of the XZ MIPs taken from the central 

and two peripheral regions. In contrast, the LSI-CM2Net suffers from severe artifacts, 

especially beyond the central 3 mm diameter region. The model-based reconstruction 

matches well with the ground truth across the entire volume, but suffers from severe axial 

elongations [18].

A major improvement of CM2Net over the model-based deconvolution is the significantly 

reduced axial elongation, as also shown in our experiments in Section 3.C. In addition, 

CM2Net dramatically reduces the reconstruction time and memory burden. To perform the 

large-scale reconstruction in Fig. 5 (~230 million voxels), the model-based method requires 

~1.4 h and ~150-GB RAM. In contrast, CM2Net takes only ~3.6 s on an entry-level GPU 

(Nvidia RTX 2070, 8 GB RAM), which is a ~1400 × increase in speed and a~19 ×reduction 

in memory cost.

To demonstrate the potential applications of CM2Net to reconstruct complex brain 

structures, we perform simulation studies on imaging 3D neuronal populations and mouse 

brain vessels in Supplement 1. Our results on neuronal imaging show that CM2Net can 

achieve high reconstruction performance on both sparsely (20 neurons/mm2) labeled and 

densely (100 neurons/mm2) labeled neuronal populations across a cortex-wide (7.5 × 6.6 

mm) FOV and is robust to the complex brain geometry. Our results on a mouse blood 

vessel network highlight a few key properties of the particle-dataset trained CM2Net. First, 

the view-demixing module can perform reliable demultiplexing on axially overlapping 

small vessels. The demixing results highly match with the ground truth, demonstrating 

that the demixing network is robust to overlapping views from continuous objects, even 

though it is trained entirely on sparse fluorescent beads. Second, the light field refocused 

volume on demixed views can correctly resolve complex 3D geometry, which lays the 

foundation for the final 3D reconstruction. Third, the reconstruction module can correctly 

reconstruct the vessel network, albeit with discontinuity artifacts. We attribute the artifacts 

to the sparsity constraint implicitly enforced by the particle-dataset trained CM2Net on 

the 3D reconstruction. Overall, CM2Net can provide high-quality reconstruction on brain 

vasculature across a wide (6 × 4 mm) FOV and can resolve the complex 3D geometry.

B. Quantitative Analysis of CM2Net Performance

We quantitatively show that the trained CM2Net can provide high-quality reconstruction and 

is robust to variations in the emitter’s lateral location (FOV), seeding density, depth, size, 

and intensity in simulation. To perform the evaluation, we simulate a testing set consisting 

of 180 volumes that uniformly fall in nine density ranges [10:10:100] (number of emitters/

mm2). The data synthesis procedure follows the procedure in Section 2.D.

We quantify the detection capability of CM2Net using recall, precision, F1 score, and 

the Jaccard index. Recall measures the sensitivity/detection rate by the ratio between the 

correctly reconstructed and the actual total number of emitters. Precision measures the 

specificity by the ratio between the correctly reconstructed and the total reconstructed 

number of emitters. The F1-score and Jaccard index combine these two complementary 

metrics. In addition, we quantify the 3D localization accuracy by a lateral and an axial rms 

localization error (RMSE) [29]. A global threshold needed to binarize the reconstructed 
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volume when computing the metrics is set by maximizing the F1 score on the testing set 

[23]. More details on the quantitative metrics are provided in Supplement 1. We compute 

the statistics of each metric at a given condition (e.g., a lateral location), when all other 

parameters (e.g., emitter’s depth, density, size) are randomized.

First, the performance at different lateral locations are evaluated in Fig. 6(a). We aggregate 

the emitters into seven bins [0 mm: 0.5 mm: 3.5 mm] (distance from the center) and 

compute the statistics. The averaged precision and recall (blue) remain >0.93 and >0.68 

when the distance is <3 mm (i.e., FOV < 6 mm). Precision and recall reduce, respectively, 

to ~0.85 and ~0.37 when the distance is ~3.5 mm (FOV = 7 mm). Lateral/axial RMSE 

(orange) is less than 5 μm/15 μm within the 6 mm FOV and degrade to 8.7 μm/21 μm at 

the edge. The standard deviation (the error bar) increases with the distance, indicating that 

the reconstruction is more consistent at the central FOV. To better visualize the detection 

performance, we calculate recall and precision maps in Fig. 6(a) and the details are provided 

in Supplement 1. The precision map shows that CM2Net provides nearly isotropic, high 

specificity within the 7 mm FOV. The recall map shows that CM2Net provides a high 

detection rate in the central 6 mm FOV, and degrades at the outer regions.

To understand the origin of the degradation in the peripheral FOV, we perform ablation 

studies by feeding the CM2Net’s reconstruction module with the ground truth demixed 

views (see Supplement 1). The results show consistently high recall (>0.89) for the entire 

7 mm FOV, showing the robustness of the reconstruction module. This implies that the 

degraded recall is due to imperfect view-demixing at the outer FOV regions. To further 

diagnose the system, we compare the intensity distribution of the point source for PSF 

calibration and the recall map, and find qualitative correspondence. We hypothesize that the 

training of view-demixing net is affected by the rapid intensity fall-off (~85% drop at the 7 

mm FOV edge) of the imperfect point source.

We evaluate the metrics for different emitter densities in nine bins: [10: 10: 100] (emitters/

mm2) in Fig. 6(b). As expected, both the precision and recall decrease, whereas both lateral 

and axial RMSEs increase with the density. Precision remains >0.92 for all emitter densities, 

indicating very few false positives in the reconstruction, despite the large (10× span) density 

variations. Recall decreases approximately linearly from ~0.83 at 10 emitters/mm2 to ~0.61 

at 100 emitters/mm2. The lateral/axial RMSE increases approximately linearly from 2 

μm/9.3 μm at the lowest density to 6.4 μm/14 μm at the highest density. This means that, 

as the density increases, CM2Net suffers from more false negatives and lower localization 

accuracy.

We evaluate the metrics for different emitter depths in nine bins: [−400 μm, −350 μm), 

[−350 μm: 100 μm: 350 μm), [350 μm, 400 μm] in Fig. 6(c). The smaller bin size in 

the first and last bins are due to the limited depth range used in the study. Precision is 

consistently >0.85 for the entire range. Recall is >0.7 within [−400 μm, 200 μm], and 

gradually decreases to ~0.54 at 400 μm. To explain the decrease in the recall at these large 

defocus depths, we visualize the on-axis PSF and show that it degrades more severely as 

the source moves closer to the MLA. This results in lower SNRs in the measurement, 

which leads to more false negatives. Lateral/axial RMSE is <5 μm/14μm for all depths, 
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and degrades only slightly in a large defocus. The slight drops in the first and last bins are 

attributed to the smaller sample size (in combination with the smaller bin size and fewer true 

positives), which introduces errors in the statistics. We observe that the minimum RMSE is 

centered around the 100 μm bin, which suggests that there may be a slight defocus between 

our nominal and the actual focal plane. Overall, the RMSE analysis shows that the 3D 

localization is generally robust to defocus within the 800 μm depth range.

Finally, we quantify the metrics for different emitter diameters in seven bins: [7 μm: 2 

μm: 21 μm]. For diameters ranging from 11–20 μm, the precision is >0.9 and the recall is 

>0.71. As the diameter decreases, both the precision and recall drop approximately linearly 

to, respectively, 0.55 and 0.48 for 8 μm emitters,. The lateral/axial RMSE decreases from 

5.9 μm/12.7 μm for 8 μm emitters to 2.8 μm/11.5 μm for 20 μm emitters. We attribute the 

worse performance for smaller emitters to two factors. First, since the emitter’s intensity is 

proportional to the size squared, the SNR rapidly decreases as the size reduces. Second, due 

to the coarse sampling in the reconstruction, the number of voxels for each emitter is <5 

when the diameter is <11 μm, as shown in the top panel of Fig. 6(d).

The averaged precision and recall for the entire testing set is, respectively, ~0.7 and ~0.94, 

which is comparable to the state-of-the-art deep learning neuron detection algorithm [23]. 

The averaged lateral and axial RMSEs are, respectively, 4.17 μm and 11.2 μm, which is 

close to the reconstruction grid size (lateral 4.15 μm and axial 10 μm) and indicates that 

the localization accuracy is close to one voxel. This study establishes that CM2Net can 

detect emitters with few “hallucinated” sources (an average ~4% false positive rate) and high 

detection rates (an average ~30% false-negative rate) with good localization accuracy in a 

broad range of conditions.

C. CM2Net Achieves High 3D Resolution, Wide-FOV Reconstruction in Experiments

We demonstrate that the generalization capability of simulator-trained CM2Net enables high 

3D resolution reconstruction in experiments with high detection performance.

We first image a cylindrical volume embedded with 10 μm green-fluorescent beads. The 

details about the sample preparation and experimental setup are provided in Supplement 1. 

The phantom is estimated to have 10–20 emitters/mm2. First, to remove the nonuniform 

background and match the intensity statistics with the simulation data, we preprocess the 

raw experimental measurements with histogram matching. Next, we manually cropped nine 

views to input to CM2Net for the 3D reconstruction. Supplement 1 provides additional 

details.

The CM2Net reconstruction is shown in Fig. 7(a) and is validated against wide-field 

measurements from a standard tabletop epifluorescence microscope in Fig. 7(b). First, we 

validate the full FOV reconstruction by comparing the XY MIPs of the reconstruction and 

the wide-field z stack from a 2×, 0.1 NA objective. To further assess the reconstruction 

at a greater resolution, two zoomed-in XY MIPs of the reconstruction from the central 

and edge of the FOV are compared to the high-resolution z stack from a 20×, 0.4 NA 

objective. A visual inspection shows that the reconstruction matches well to the wide-field 
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measurements. The reconstruction quality maintains at the peripheral FOV regions, which is 

a marked improvement over our previous model-based reconstruction [18].

A major goal we aim to achieve using CM2 is 3D high-resolution imaging across a wide 

FOV. To highlight this capability, we compare the FOV achieved by CM2 V2 (~7 mm) with 

the 2× objective (~8 mm) and 20× objective (~800 μm), which is marked in Figs. 7(a) and 

7(b). Representative axial profiles of the 10 μm beads reconstructed by the CM2Net, model-

based deconvolution, and 2× and 20× wide-field measurements are compared in Fig. 7(d). 

CM2Net achieves an axial elongation of ~24 μm, which is ~8 × better than the model-based 

deconvolution (~184 μm) and outperforms the 20×, 0.4 NA measurement (~39.7 μm).

To quantify the detection performance, we compute the recall, precision, and F1 score by 

comparing the XY MIPs of the CM2Net reconstruction and wide-field 2× measurement. 

CM2Net achieves recall ~0.78 and precision ~0.80. In comparison, the recall and precision 

in the simulation at the corresponding density are, respectively, ~0.83 and ~0.97. The 

simulator-trained CM2Net degrades slightly in an experiment, with a ~5% higher false 

negative rate and ~17% higher false-positive rate. We attribute the reduced performance to 

the undesired extra views in the experimental measurements. See the analysis in Supplement 

1.

To quantify spatially variations in performance, we construct the recall and precision maps 

in Supplement 1. The recall in most regions is >0.75, indicating <25% false-negative rates. 

The precision is >0.8, except for a few patches with <2 beads, indicating only a few false 

positives in the reconstruction. In Fig. 7(c), we show that the F1 score map generally 

achieves a high value of >0.75. An overlay between the full FOV reconstruction and the 

wide-field 2× measurement is shown in Supplement 1 to provide further visual inspections.

This experiment shows that CM2Net provides high 3D resolution reconstruction across a 

wide FOV with high sensitivity and precision. The 24 μm axial elongation achieved by 

CM2Net is ~4 × better than the 100 μm axial spacing in the PSF calibration. This shows that 

the axial interpolation in our 3D-LSV model is effective to achieve axial super resolution in 

real experiments. Both the recall and precision agree with the simulation, validating that the 

3D-LSV simulator-trained CM2Net can generalize well to experimental measurements.

D. Experimental Demonstration on Mixed-size Fluorescent Beads

Fluorescent emitters with different sizes and brightness result in different local contrast and 

SNRs in the CM2 measurement [18]. This is an important consideration as we develop CM2 

toward realistic biological applications. To demonstrate this capability, we conduct proof-of-

concept experiments on mixed-size fluorescent beads. Our result shows that CM2Net can 

robustly handle such sample variations in real experiments.

We image a cylindrical volume (diameter ~6.5 mm, depth ~0.8 mm) embedded with mixed 

10 μm and 15 μm beads, and provide more details in Supplement 1. The phantom is 

estimated to have 10–20 emitters/mm2. In the CM2 measurements, the 15 μm beads are 

~2.2× brighter than the 10 μm beads, matching with their surface area ratio and our 

synthetic data model in Sec. 2.4. The CM2Net reconstruction is shown in Fig. 8(a). The 
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3D reconstruction is validated against wide-field measurements in Fig. 8(b). First, we assess 

the full-FOV reconstruction by comparing the XY MIPs of the CM2Net reconstruction 

and the 2× z stack measurement. We further compare two zoomed-in regions from the 

center and corner FOVs with the high-resolution 20× z stack measurement. By visual 

inspection, CM2Net reliably reconstructs both 10 μm and 15 μm beads. The XZ MIPs of 

the CM2Net 3D reconstruction are in good agreement with the 20× z stack measurements. 

The axial confinement on both 10 μm and 15 μm beads by CM2Net are better than the 20× 

measurements.

To quantitatively assess the CM2Net reconstruction, we compute recall, precision, and F1 

score maps in Supplement 1 by comparing the XY MIPs from the CM2Net reconstruction 

and wide-field 2× measurement. CM2Net achieves an averaged recall ~0.73 and precision 

~0.84 across the 6.5 mm FOV. Compared to the mono 10 μm bead experiment, we attribute 

the slightly decreased recall to the greater intensity and SNR variations. We attribute the 

increased precision to the reduced FOV and less contamination from the extra views, and 

provide an analysis in Supplement 1. An overlay between the full FOV reconstruction 

and the 2× measurement is shown in Supplement 1 to provide further visual inspections. 

The results show that CM2Net is robust to the emitter size and intensity variations in the 

experiment.

This experiment again highlights the wide FOV and high-resolution 3D imaging capability 

of CM2 V2. Our training data containing randomized emitter sizes and intensities are 

effective to make CM2Net robust to experimental variations. As a result, CM2Net can 

provide high-quality 3D reconstruction with good sensitivity and precision on mixed-size 

emitters that have large differences in the feature size and local SNR.

4. CONCLUSION

In summary, we have presented what we believe, to the best of our knowledge, a new 

computational miniature mesoscope (CM2) system, which is a deep learning-augmented 

miniaturized microscope for single-shot, 3D high-resolution fluorescence imaging. The 

system reconstructs emitters across a ~7-mm FOV and an 800 μm depth with high sensitivity 

and precision, and achieves ~6-μm lateral and ~25-μm axial resolution.

The main hardware advancement in CM2 V2 includes a novel 3D-printed free-form 

illuminator that increases the excitation efficiency by ~3 ×. Each 3D-printed LED collimator 

can provide up to 80% light efficiency, but weighs only 0.03 grams. It is low cost and rapidly 

fabricated on a tabletop 3D printer. In addition, we adapted a hybrid emission filter design 

that suppresses the excitation leakage and improves the measurement SBR by more than 5×.

The computational advancement includes three main parts. First, we developed an accurate 

and computationally efficient 3D-LSV forward model that characterizses the spatially 

varying PSFs across the large (CM2 × mm scale) imaging volume supported by the CM2. 

Second, we developed a multimodule CM2Net that achieves robust, high-resolution 3D 

reconstruction from a single-shot CM2 measurement. Third, using the 3D-LSV simulator 

to generate the entire training dataset, CM2Net provides high detection sensitivity and 
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precision and good localization accuracy on fluorescent emitters across a wide FOV and 

they generalize well to experiments. In addition, our numerical studies show that CM2Net 

can achieve high reconstruction performance on both neuronal populations and vascular 

structures across a cortex-wide FOV and is robust to the complex mouse brain geometry.

Our demonstration on the utility of free-form optics fabricated by 3D printing may be a 

fruitful area for future research, especially for miniature microscopes and other miniature 

optical devices. In recent years, free-form optics has emerged as the ideal solution to bypass 

many limitations in conventional optics, such as compactness and imaging performance 

[30]. At the same time, nonconventional optics has been enabled by novel 3D printing 

processes, such as micro-optics [14,31], diffractive optics [32], and volume optics [32]. We 

envision that 3D-printed free-form optics can be incorporated into future CM2 platforms to 

enhance the imaging capabilities of these platforms.

The CM2 V2 platform is built on a backside illuminated (BSI) CMOS sensor, which 

significantly improves the measurement’s SNR and dynamic range over a conventional 

CMOS sensor in the V1 platform. The size and weight of the CM2 V2 prototype is limited 

by the availability of a miniature BSI CMOS sensor. However, we do not anticipate this 

to be a major roadblock for future development, thanks to the recent development of the 

MiniFAST [33] BSI CMOS-based miniscope. With further advancement on the high-speed 

data transmission and high pixel-count BSI CMOS sensor platform, we expect CM2 can be 

further miniaturized to be suitable for wearable in vivo neural recordings on mice and other 

small animals.

We believe our 3D-LSV model is essential to achieve high 3D resolution reconstruction 

across a large imaging volume. A notable result we have demonstrated is that the axial 

resolution is not limited by the axial step used for the 3D PSF calibration. This allowed 

us to bypass the large data requirement in the alternative depth-wise LSV framework 

[14,16,21] and to perform data-efficient PSF calibrations across a centimeter-scale FOV and 

millimeter-scale depth range. We expect that the same sparse 3D PSF calibration, low-rank 

decomposition, and 3D interpolation procedure are applicable to other computational 3D 

microscopy techniques, such as LFM and lensless imaging. In addition, it may be possible 

to develop hybrid 3D PSF calibration procedures by combining physical measurements and 

numerical modeling to further improve model accuracy, as recently shown in high-resolution 

LFM imaging [34,35].

Our CM2Net incorporates both the view-multiplexing and light field information in the CM2 

image formation. We have shown that the view-demixing module significantly suppresses 

the false positives in the 3D reconstruction. The simulator-training scheme was essential to 

enable the training of the view-demixing subnetwork. This highlights several key advantages 

of simulator-based training over experiment-based training schemes. It not only forgoes the 

laborious physical data collection process, but also enables access to novel data pairs that 

are impractical to collect experimentally. The reconstruction module combining the light 

field refocusing enhancement and view-synthesis branches is able to learn complementary 

information from the demixed views to create highly accurate 3D reconstructions, which 

makes it readily applicable to other LFM modalities.
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Our numerical study on brain vasculature reconstruction indicates that the emitter-dataset 

trained CM2Net implicitly enforces a sparsity constraint to the 3D reconstruction that 

produces discontinuity artifacts. We trained CM2Net on individual emitters since our 

targeted application is to image neurons labeled with genetically encoded calcium indicators 

in mouse brains [36]. To better adapt CM2Net to other complex structures such as blood 

vessels, one can perform transfer learning on a dataset tuned to a specific application. 

Conveniently, our 3D-LSV simulator is directly applicable to generate non-emitter data, as 

shown in our study.

An outstanding challenge to expand the utility of CM2 is tissue scattering [18]. There are 

several promising solutions we envision that are applicable to CM2, such as the miniature 

structured illumination technique [37] and scattering-incorporated 3D reconstruction 

frameworks [38,39], which will be investigated in our future work.
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Fig. 1. 
Overview of the computational miniature mesoscope (CM2) V2. (a) CM2 V2 hardware 

platform features miniature LED illuminators for high-efficiency excitation, hybrid filters 

for spectral leakage rejection, and a BSI CMOS sensor for high-SNR measurement. (b) 

Photo of the assembled CM2 V2 prototype. (c) Example CM2 measurement from a volume 

consisting of 10-μm fluorescent beads. (d) CM2Net combines view demixing (demix), view 

synthesis (synthesis) and light-field refocusing (RF) enhancement (enhance) modules to 

achieve high-resolution, fast, and artifact-free 3D reconstruction. (e) CM2Net reconstruction 

from the measurement in (c), spanning a 7 mm FOV and 800-μm depth range.
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Fig. 2. 
CM2 V2 hardware platform. (a) A cross-sectional view of the CM2 V2 platform. The 

platform incorporates an MLA, free-form illuminators, a hybrid interference-absorption 

emission filter pair, and a BSI CMOS sensor. (b) The free-form LED collimator combines 

a singlet and a TIR parabolic surface. (c) Zemax simulation of the four-LED array 

demonstrates high-efficiency, uniform excitation onto a confined 8 mm circular region. 

(d) Experimental validation of the illumination module. (e) The hybrid emission filter pair 

improves the raw measurement’s SBR by > 5× (sample: 10-μm fluorescent beads in clear 

resin). Intensity profiles taken from several fluorescent beads show the SBR improvement by 

the hybrid filter design.
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Fig. 3. 
3D LSV model of the CM2. (a) Illustration of the sparse PSF calibration process. A point 

source is scanned through the 8 × 8 × 1 mm3 imaging volume with a 1 mm lateral and 

100-μm axial steps, generating in-total 891 calibrated PSFs. (b) Example preprocessed 

calibrated PSFs. The shift variance in 3D is clearly visible. (c) Results of the low-rank 

decomposition. Rows 1–2: Computed basis PSFs and coefficient volumes, respectively, from 

the decomposition on the calibrated PSFs. Row 3: 3D-interpolated coefficient volumes. 

(d) A total of 64 basis PSFs are chosen for our 3D-LSV model that yields a small 0.025 

normalized mean squared error (MSE). (e) Validation of the simulated PSF using our 

3D-LSV model at an unseen location. The error between the numerically simulated and 

experimentally measured PSFs is small, as quantified by the pixel-wise absolute error.
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Fig. 4. 
CM2Net structure. The raw CM2 measurement is first preprocessed to form a multiplexed 

view stack. The demixing-net removes the crosstalk artifact and outputs the demixed view 

stack by learning view-dependent aberrations. The demixed view stack is processed by 

the “shift-and-add” light field refocusing algorithm to form a geometrically refocused 

volume. The enhancement-net branch removes the refocusing artifacts and enhances the 

reconstructed 3D resolution. The view-synthesis-net branch directly processes the demixed 

views to perform the 3D reconstruction. The sum of the output from the two branches is 

further processed to form the final reconstruction. CM2Net is trained with a mixed loss 

function combining the demixing and reconstruction losses.
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Fig. 5. 
3D-LSV simulator enables wide-FOV, high-resolution 3D reconstruction. Reconstructions 

from (a) LSV-CM2Net trained with the 3D-LSV simulator, (b) LSI-CM2Net trained with the 

depth-wise LSI simulator, and (c) depth-wise LSI model-based deconvolution. LSV-CM2Net 

provides accurate and high 3D resolution reconstruction across the entire volume. LSI-

CM2Net suffers from many false negatives. The model-based deconvolution suffers from 

severe axial elongations. In all figures, the positive z-axis points at the direction towards the 

CM2 system.
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Fig. 6. 
Quantitative evaluation of CM2Net in simulation. Detection performance quantified by recall 

and precision (blue) and localization accuracy by lateral and axial RMSE (orange) when 

varying the emitter’s (a) lateral location, (b) seeding density, (c) depth, and (d) size. (a) 

CM2Net achieves precision > ~ 0.85 for a lateral location <3.5 mm (FOVs < 7 mm). Recall 

drops from 0.97 at the central FOV to 0.35 near the edge. Lateral/axial RMSE increases 

from 1.24 μm/4.7 μm at the central FOV to 8.7 μm/21 μm near the edge. The recall and 

precision maps (250 μm patch size) show nearly isotropic, high-detection performance 

across the central 6 mm FOV. (b) Precision is >0.92 for all emitter densities. Recall 

decreases from ~0.83 at the lowest density to ~0.61 at the highest density. Lateral/axial 

RMSE degrades linearly from 2 μm/9.3 μm at 10 emitters/mm2 to 6.4 μm/14 μm at 100 

emitters/mm2. Three example image patches are shown to visualize the density variations. 

(c) Precision is >0.85 throughout the depth, and recall is >0.7 within the [−400 μm, 200 

μm] depth range and drops to ~0.54 at 400μm. Lateral/axial RMSE is <5 μm/14 μm for all 

depths. The foci from the central microlens at −400 μm, 0 μm, and 400 μm are shown in the 

top panel to visualize the depth-dependent aberrations. (d) Precision is >0.9 and the recall is 

>0.71 for the emitter’s diameter >11 μm. Lateral/axial RMSE decreases almost linearly from 

5.9 μm/12.7 μm for 8 μm emitters to 2.8 μm/11.5 μm for 20 μm emitters. Both the detection 

rate and localization accuracy degrade for smaller emitters since the local SNR and emitter’s 

intensity scales with the diameter squared. The top panel shows examples of reconstructed 

emitters of diameters 8,14, and 20 μm.

Xue et al. Page 24

Optica. Author manuscript; available in PMC 2022 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
CM2Net achieves high 3D resolution reconstruction across a wide FOV in an experiment. 

(a) Visualization of the CM2Net reconstruction. Measurement shown in the inset (sample: 

10 μm fluorescent beads in a cylindrical volume with ~6.7-mm diameter and ~0.5-mm 

depth). (b) Validation using 2×, 0.1 NA, and 20×, 0.4 NA objective lenses on a wide-field 

(WF) microscope. CM2Net provide high-quality reconstruction across the 6.7 mm FOV 

as validated by the 2× measurement. Both lateral and axial reconstructions are in good 

agreement with the high-resolution 20× measurement. (c) F1 score map computed by 

comparing the XY MIPs of CM2Net reconstruction and WF 2× measurement (500 μm 

patch size). “x” marks the F1 score = 0, resulting from either the WF measurement or 

CM2Net reconstruction is empty. (d) The axial elongations are 195 μm, 184 μm, 39.7 μm, 

and 24.4 μm for, respectively, WF 2×, model-based deconvolution, WF 20×, and CM2Net 

reconstruction.
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Fig. 8. 
Experiment on mixed fluorescent beads. (a) Visualization of the CM2Net reconstruction. 

The CM2 measurement shown as the inset. (b) Validation measurements from wide-field 2×, 

0.1 NA, and 20×, 0.4 NA objectives (sample: mixed 102 μm and 15 μm fluorescent beads 

in a cylindrical volume with ~6.5-mm diameter and ~0.8-mm depth). The CM2Net full 

FOV reconstruction is in good agreement with the 2× measurement. The lateral and axial 

reconstructions are validated by the high-resolution 20× measurement in both the central and 

peripheral FOV regions.
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