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Abstract

Noncanonical base pairs contribute crucially to the three-dimensional architecture of large RNA 

molecules; however, how to accurate model them remains an open challenge in RNA 3D 

structure prediction. Here we reported a promising coarse-grained IsRNA2 model to predict 

noncanonical base pairs in large RNAs through molecular dynamics simulations. By introducing 

a five-bead per nucleotide coarse-grained representation to reserve the three interacting edges 

of nucleobases, IsRNA2 accurately models various base pairing interactions, including both 

canonical and noncanonical base pairs. A benchmark test indicated that IsRNA2 achieves a 

comparable performance to the atomic model in de novo modeling of noncanonical RNA 

structures. In addition, IsRNA2 was able to refine the 3D structure predictions for large RNAs in 

RNA-Puzzles challenges. Finally, the graphics processing unit (GPU) acceleration was introduced 

to speed up the sampling efficiency in IsRNA2 for very large RNA molecules. Therefore, the 

coarse-grained IsRNA2 model reported here offers a reliable approach to predict structures and 

dynamics of large RNAs.
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Introduction

The accurate determination of the three-dimensional (3D) structure of RNA molecules is 

crucial for a better understanding of their various biological functions1-3, including carrying 

genetic information, regulating gene expression, performing enzymatic activity and so on. 

However, experimental determination of the atomic structures of RNA molecules through 

X-ray crystallography, NMR, or cryo-electron microscopy remains a very challenging 

task, requiring a substantial amount of time and technical resources. Thus, there is a 

huge gap between the number of known RNA sequences4,5 and the number of atomic 

RNA 3D structures available in the Protein Data Bank (PDB)6. As a result, various 

computational approaches have been developed to complement experiments for RNA 3D 

structure determination7-10.

Similar to computational protein structure prediction, different strategies have been adopted 

to predict the RNA 3D structures9, such as homologous modeling11, templated-based 

approach12-15, fragment assembly16-18, and physics-based methodology19-23. Among them, 

the coarse-grained (CG) model is particularly attractive for RNA structure prediction and 

folding simulations24, as it can largely improve the efficiency of conformational space 

sampling, especially for large RNA molecules. In recent years, different CG models 

of various representations of the nucleotides have been developed to predict RNA 3D 

structures and to study RNA folding behaviors, with or without the aid of experimental 

data9,24. For instance, through simplifying the nucleotides into three beads, iFoldRNA19 

and its variations25-26 used discrete molecular dynamics (MD) simulations to predict 3D 

structures for small to medium-sized RNA molecules, with the aid of hydroxyl radical 

probing data25 and sparse NMR constraints26. The multilevel representation CG model, 

SimRNA23, employed a statistical potential and Monte Carlo method to study the structural 

and dynamical properties of RNAs up to 190 nucleotides (nts), with the secondary structure 

and/or additional long-range contact information combined in particular. More recently, we 

developed an iterative simulated reference state approach to model correlated interactions 

in RNA folding (IsRNA) and to accurately parameterize the energy functions in the CG 

model27. Subsequently, through MD simulations, a large-scale benchmark test on RNA 3D 

structure prediction indicated that the updated IsRNA1 (version 1; as compared to version 0 
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IsRNA) model can provide improved performance for relatively large RNAs of complicated 

topologies, such as large stem-loop structures and structures containing long-range tertiary 

interactions28. Moreover, combined with experimental data, the IsRNA/IsRNA1 model 

was able to elucidate the folding pathway of an RNA pseudoknot29, to model the loop 

composition effect in RNA folding stability30, and to characterize binding features of an 

RNA aptamer to its targeted protein31.

As demonstrated by the RNA-Puzzles32-35, a Critical Assessment of Protein Structure 

Prediction (CASP)36-like collective evaluation of RNA 3D structure predictions, an accurate 

description of noncanonical base pairing interactions constitutes the important bottleneck 

in RNA 3D structure modeling and still remains as an open challenge. Though many 

methods have enabled predictions for Watson-Crick (WC) base pairs and native-like 

global folds, the true positive rate for the prediction of noncanonical base pairs is only 

~20% or lower, aside from previously solved templates that happen to recur in new 

challenge34-35. Compared to WC base pairing interactions, the noncanonical base pairs 

are more variable and have abundant covariation rules as they also involve the base’s 

sugar and Hoogsteen edges37-38. These interactions have caused significant challenge for 

ab initio predictions of noncanonical base pairing interactions, even with the additional 

constraints from chemical probing data34,39. However, noncanonical base pairs contribute 

crucially to RNA 3D structures and are central to the 3D architecture of folded RNA 

molecules40. Without realization of these noncanonical interactions, it is hard to explain 

evolutionary data, difficult to predict molecular partners, or almost impossible to be 

prospectively tested by compensatory mutagenesis via RNA computational modeling. 

In some pioneering works, Das and coworkers have proposed an all-atom refinement 

based on atomic energy functions41 (FARFAR) and enhanced conformational sampling 

methods, including enumerative stepwise assembly42 and stepwise Monte Carlo method 

with a unique add-and-delete move set43, to predict noncanonical RNA motifs at atomic 

resolution. Recently, deep learning-based methods have been developed to better describe 

the noncanonical base pairs for structure refinement44 and assessment45. Despite their 

success, all these methods demand huge computational resources and are thus less suitable 

for modeling large RNA molecules. Therefore, it is desired to balance the efficiency and 

accuracy in the CG model to appropriately describe noncanonical base pairs in RNA 

molecules.

The previous benchmark test28 has shown that IsRNA1 CG model failed to recover some 

noncanonical base pairs in large RNAs, especially for the multi-way junctions. One reason is 

that the 2-bead CG representation for pyrimidine bases in previous IsRNA1 model could 

not fully capture noncanonical base pairing interactions such as the difference among 

base’s WC, sugar, and Hoogsteen edges37. Hence, through systematic analyses of various 

noncanonical base pairs, we here developed an updated CG model, named IsRNA2 (version 

2), to better account for noncanonical base pairing interactions in large RNAs. In this 

updated IsRNA2 model, both the purine and pyrimidine bases are represented by three CG 

beads and the WC, Hoogsten, and sugar edges of bases are sufficiently preserved. After 

reparameterization of the energy functions through the iterative simulated reference state 

approach27, the ability of the updated IsRNA2 model in simulating noncanonical motifs was 

tested. Then, the IsRNA2 model was used to refine our previous predictions in the RNA-
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Puzzles challenges. Moreover, apart from the multi-thread central processing unit (CPU) 

parallel calculations, we also developed the graphics processing unit (GPU) acceleration for 

IsRNA2, which significantly improved the simulation speed. Overall, the updated IsRNA2 is 

a promising CG model to study the folding dynamics and predict the 3D structures of large 

RNA molecules.

Simulation model and method

CG representation of RNA nucleotide.

Same as the previous IsRNA, IsRNA1 versions27-28, the backbone of RNA is represented by 

two CG beads P and S located at atoms P and C4’, which define the phosphate group and 

the ribose sugar ring, respectively. However, for the base moiety, the updated IsRNA2 model 

uses three CG beads for both purines and pyrimidines (see Figure 1). To reduce the overall 

degree of freedoms, the nucleotides adenine and guanine share a common CG bead R1, and 

the cytosine and uracil share two common CG beads Y1 and Y2. All the base’s CG beads 

are positioned at the center-of-mass of the grouped heavy atoms. Compared to the previous 

IsRNA/IsRNA1 models (ten CG beads in total), the current IsRNA2 model introduces 

eleven unique types of CG beads to better describe both the canonical and noncanonical base 

pairing interactions in RNA molecules. Then, the topology file of RNA is more complicated 

in IsRNA2 and it requires moderately more computational resources relative to IsRNA1. The 

properties of those eleven CG beads are summarized in Table 1.

Updated CG force field in IsRNA2.

Generally, the force field in the updated IsRNA2 model can be written as

Etotal = Ebond(b) + Eangle(θ) + Etorsion(ϕ) + Ebp(r, θ, ϕ) + Epair(r) (1)

Same as our previous models27-28, the bond stretching energy Ebond (b) and bond angle 

bending energy Eangle (θ) have a form of harmonic function plus a Gaussian term, and the 

torsion angle energy Etorsion(φ) is in a quadruple Fourier form; see Supporting Information 

(SI) for details. The base pair energy Ebp(r, θ, φ) is used to restrain the predefined secondary 

structure and is defined as

Ebp(r, θ, ϕ) = Ebond(r1) + Ebond(r2) + Eangle(θ) + ∑i = 1
5 Etorsion(ϕi) (2)

Here Ebond, Eangle, and Etorsion share the identical formulas for those in Eq. 1 and the 

definitions of the structural parameters (r1, r2, θ, and φi) for all the three canonical base pairs 

are listed in Table 2. Only the canonical base pairs (GC, AU, and GU) are restrained by the 

energy Ebp (r, θ, φ) through the whole work.

To enable GPU acceleration in the LAMMPS platform46, the pairwise interaction Epair 

(r), which describes the base-base stacking, noncanonical base pairing, base-backbone and 

backbone-backbone interactions, is modified as
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Epair(r) = ε σ
r

9
+ D0 e−2α(r − r0) − 2e−α(r − r0) + H1

2πσ1
e−

(r − r1)2

2σ1
2

+ H2
2πσ2

e−
(r − r2)2

2σ2
2 , r <

rcut

(3)

The first term with ε = 0.5 kcal/mol and σ = (σi, + σj)/2 (σi is the diameter of CG bead 

i) accounts for excluded volume interaction, which is similar with the energy term ELJ(r) 
in the previous IsRNA/IsRNA1 models27-28. The second Morse term describes the overall 

profile of the pairwise interaction and the following two Gaussian terms are used to fix the 

major local minimums. For different CG bead pairs, the cutoff distance rcut varies from 6.9 

to 13.5Å.

The iterative simulated reference state approach27 was used to parameterize the CG force 

field for IsRNA2. In our previous studies27, this iterative simulated approach has been 

demonstrated to account for the correlated interactions between different structural degrees 

of freedoms as well as the effects from inherent chain connectivity and excluded volume, 

which has resulted in a reasonably accurate CG force field. Here, a simulated dataset 

contained 70 structures with size 26~188 nts and considerable noncanonical base pairs was 

used. In each step of the iterative simulated reference state calculation, after relaxation 

of the native structures, a total of 35,000 snapshots were generated from MD simulation 

trajectories to deduce the energy parameters. We followed the identical procedure given 

in our previous work28 to sequentially parameterize energy functions in the new IsRNA2 

model. We noted that no explicit artificial bias toward the native structures was introduced in 

the determination of energy functions of IsRNA2 through iterative simulated reference state 

approach27. Thus, the potential bias problem in the following test tests can be neglected. See 

SI Table S1-S4 for all the energy parameters obtained for IsRNA2 model.

Simulation details.

The MD simulations with the new IsRNA2 model were implemented in the modified 

LAMMPS software46, and the Langevin dynamics (NVT ensemble) with integration 

timestep Δt = 1fs was performed. For RNA 3D structure prediction or refinement, replica-

exchange MD (REMD) simulations with ten replicas possessed temperatures from 200K to 

425K were run to enhance the sampling efficiency in the 3D conformational space. The 

simulation time for each replica is 50ns and three duplicated runs with different initial 

structures (if available) were performed. Thus, the total simulation time for a prediction/

refinement is 1.5μs (3 duplicated run*10 replica*50 ns). After sufficient relaxation, the 

structure snapshots were collected from the last 25ns simulations in the interval of 50ps. 

To obtain the predicted structures, the top 10% structures with lowest potential energies 

from the collected snapshots (5,000 snapshots in total) were clustered based on pairwise 

root-mean-square deviations (RMSDs). The detailed process and choice of the cutoff 

RMSD threshold for the clustering can be found in our previous study28. The centroid 

structures of the top clusters (ranked by their sizes) provide the top predicted 3D structures. 
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Similar to that in the IsRNA, IsRNA1 versions27-28, a built-in single-nucleotide fragment 

matching algorithm was developed to recover the all-atom model from the five-bead CG 

representation. Finally, an atomic energy minimization was employed to reduce the possible 

atomic distortion and clash in the predictions.

Results and Discussions

Representation of noncanonical base pairs.

Noncanonical base pairs mediate specific interactions to stabilize the 3D architecture of 

various RNA motifs40, including junction topology, kink turn, tetraloop-receptor motif, 

triple-stranded structure, quadruplex structure, and so on. Apart from the WC edge presented 

in the canonical interactions, noncanonical base pairs also involve one or two of the other 

two sides of the nucleobase: Hoogsteen and sugar edges37-38. Thus, to accurately predict 

noncanonical base pairing interactions using coarse-grained representations, a fundamental 

step is to preserve the essential properties of those three edges of nucleobase. However, 

this pivotal point was missed due to the two-bead representation of pyrimidines in previous 

IsRNA and IsRNA1 models. And benchmark test for RNA 3D structure prediction by 

IsRNA1 indicated that some loop segments or even the full configuration, such as for 

the multi-way junctions, misfolded in the simulations28. Therefore, following the previous 

classification of RNA base pairs37, we here introduced a new three-bead CG representation 

for the base moieties of four types of nucleotides. As shown in Figure 1, in this three-

bead representation, the newly updated IsRNA2 model preserves the essential features of 

the base’s WC, Hoogsteen, and sugar edges, which enables appropriate descriptions of 

various noncanonical base pairing interactions. For the top 20 most occurred base pairs 

in the Representative Sets of RNA 3D Structures47 (release 3.115), which contain both 

the canonical and noncanonical base pairs and cover nearly all the types of interactive 

base edges and cis-/trans-conformations, IsRNA2 could provide a specific set of distances 

between particular bead pairs for each case (see Figure 2). If necessary, a set of particular 

angles and torsions can also be introduced to describe certain base pairing interactions. 

Overall, the new five-bead CG representation for each nucleotide in IsRNA2 model provides 

a good starting point to accurately predict noncanonical base pairing interactions in RNA 

motifs.

De novo prediction of noncanonical RNA structures.

To test the capability of modeling noncanonical base pairing interactions, IsRNA2 was 

used to predict 3D structure on a benchmark set of 23 RNA noncanonical motifs derived 

from a previous study41. Those noncanonical structures were observed in high-resolution 

crystallographic models of important RNA molecules and contain various common RNA 

motifs, such as tetraloop, kink-turn, hook-turn, 3-way junction, pseudoknot, and so on. As 

shown in Table 3, those RNA motifs involve one or more segments and their sizes vary 

from 6 to 50 nts. Here, we mainly focused on the conformations of noncanonical regions. 

Thus, to improve the efficiency and accuracy of conformation sampling, two canonical base 

pairs immediately adjacent to the motifs at each end are constrained as boundary conditions 

through Eq. 2. Similar to our previous study, the template-based algorithms Vfold3D12,48/
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VfoldLA18,49 were used to generate three initial 3D structures, if available, for REMD 

simulations in IsRNA2 and finally five candidate predictions were provided.

For 15 of the 23 noncanonical motifs, IsRNA2 provided at least one of five predictions 

with less than 3.0 Å all-heavy-atom RMSD to the experimentally determined structure 

(see Table 3). Among them, the best predicted 3D structures for 9 cases reached atomic 

accuracy (RMSD < 2.0 Å) and nearly all the native noncanonical base pairs were recovered, 

including not only the nucleotides but also the base edges in the noncanonical contact, 

when the fluctuations in base pairing interactions are neglected. Our current study cases 

incorporated those widely adopted RNA motifs, such as fragments with A-C, G-G, and 

G-A base pairs50, Escherichia coli SRP domain51, GAGA tetraloop from sarcin/ricin 

domain52, J4/5 from P4-P6 domain, Tetrahymena thermophila ribozyme53, and so on 

(see Fig. 3). However, IsRNA2 failed to predict the near-native 3D structures (RMSD < 

5.0 Å) for 4 motifs (see Table 3), including the three-way junctions in the active site56 

and pre-catalytic conformation of hammerhead ribozymes57, which may be caused by 

the insufficient sampling of conformational space under the current simulation conditions. 

Another possibility is that the current energy functions of IsRNA2 could not well capture 

the particularly sharp turns of the backbone, such as for the kink-turn motif58 and J5-5a 

hinge in the P4-P6 domain of Tetrahymena ribozyme53. To fix those problems in future, 

incorporation of experimental information, such as the NMR data26,39, into the simulation as 

constraints is promising.

Additionally, we compared the performance of IsRNA2 on 3D structure prediction with 

two other models and the results were summarized in Table 3. Compared with the previous 

IsRNA1 model28, because of the clear definition of three base interacting edges in the 

updated CG representation, IsRNA2 provided better predictions (smaller RMSDs) for 18 

of 23 noncanonical structures. Moreover, the average RMSD over all the tested structures 

decreased from 4.29 Å (IsRNA1) to 3.17 Å (IsRNA2) and the average interaction network 

fidelity59 (INF) increased from 0.68 (IsRNA1) to 0.75 (IsRNA2). Ideally, an INF of 1.0 

means that the predicted structure perfectly reproduces the interaction networks in the 

native structure. These results demonstrated the importance of definition of base interacting 

edges (WC, Hoogsteen, and sugar edges) in CG representation for accurate modeling of 

noncanonical base pairs. When compared to the atomic FARFAR model41, which uses 

fragment assembly drawn from a crystallographic model and a full-atom energy function, 

the CG IsRNA2 model could still obtain better predictions (smaller RMSDs) for 13 

noncanonical structures and slightly lower the average RMSD from 3.54 Å (FARFAR) 

to 3.17 Å (IsRNA2); See Table 3. Additionally, for the benchmark set of 23 noncanonical 

RNA structures, the numbers of best predictions (lowest RMSD) provided by IsRNA2, 

FARFAR, and IsRNA1 are 11, 8, and 5 (a case shares the identical RMSD with FARFAR), 

respectively. Overall, the updated IsRNA2 CG model demonstrated comparable or better 

performance than the previous atomic model in de novo modeling of noncanonical RNA 

motifs.
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Refinement of RNA 3D structure predictions in RNA-Puzzles.

As a CASP-like blind assessment of RNA 3D structure prediction, the RNA-Puzzles (http://

www.rnapuzzles.org/) provides a platform for the evaluation of cutting-edge RNA structure 

prediction algorithms and the results of four rounds of challenges have been published32-35. 

To further verify the improvement of IsRNA2 on 3D structure prediction for large RNA 

molecules, we used IsRNA2 model to refine the predictions submitted by our group (Chen 

group) in the previous RNA-Puzzles challenges. With the top 3 models (if available) with 

lowest RMSDs submitted by Chen group as the initial structures and the secondary structure 

(canonical base pairs) extracted from the native structure as constraints (Eq. 2), 50 ns 

(each replica) REMD simulations were run to refine the 3D predictions. However, same 

as the previous work28, only a short 1.5 ns REMD simulation was run for the multi-way 

junctions to avoid large conformation changes. Finally, top five predictions from the centroid 

structures of clusters were obtained.

Here, the predictions for 13 challenges in RNA-Puzzles have been refined by IsRNA2 

model. Those 13 challenges include ribozyme, riboswitch, virus-associated RNA, and RNA 

aptamer, with their sizes varying from 37 to 112 nts. Moreover, the structural topologies of 

those challenges cover stem-loop, multi-way junction, pseudoknot, and structure contained 

tertiary interaction. As shown in Fig. 4, out of the 13 selected challenges, the lowest RMSDs 

of five predictions for 11 cases decreased after refinement using IsRNA2, indicating that 

the IsRNA2 model could indeed further refine the initial submissions from Chen group. For 

instance, for the glycine riboswitch60 (PDB id: 3owz, puzzle #3), Mango-III fluorogenic 

aptamer61 (PDB id: 6e8u, puzzle #23), and an adenovirus virus-associated RNA62 (PDB id: 

6ol3, puzzle #24), the lowest RMSDs of the best predictions decreased from 7.24, 10.59, and 

11.03 Å (initial predictions by Chen group) to 5.34, 7.85, and 7.30 Å (refined by IsRNA2), 

respectively. Only one of the remaining two challenges had a larger RMSD than the previous 

prediction (PDB id: 5k7c, puzzle #17), while the other case remained nearly unchanged 

(PDB id: 5nz6, puzzle #21). The average RMSD over the total 13 challenges decreased 

from 8.40 Å (Chen group) to 7.10 Å (IsRNA2). Furthermore, for 6 of 13 challenges, 

refinement by IsRNA2 model can obtain even better predictions than the best models 

from the submissions of all groups (see Fig. 4), such as for the regulatory motif from the 

thymidylate synthase mRNA63 (PDB id: 3mei, puzzle #1), the glycine riboswitch60 (PDB id: 

3owz, puzzle #3), and the twister sister ribozyme64 (PDB id: 5t5a, puzzle #19). Therefore, 

IsRNA2 model might be a powerful tool to refine the 3D structures predicted by other 

programs, for instance, the template-based Vfold3D12/VfoldLA18 model.

Furthermore, we compared the performance of IsRNA2 on model refinement with two 

recent methods, namely FARFAR265 and RNA-BRiQ44 Based on the previous Rosetta’s 

FARFAR algorithm, FARFAR2 integrated RNA-Puzzle-inspired innovations with updated 

fragment libraries and helix modeling and could recover native-like structures more accurate 

than models submitted during the RNA-Puzzles trials65. RNA-BRiQ combined a high-

resolution knowledge-based potential (BRiQ) with a nucleobase-centric sampling algorithm 

to provide a robust improvement in refining near-native RNA models44. As shown in Table 

4, for 11 announced RNA-Puzzles challenges, IsRNA2, FARFAR2, and RNA-BRiQ provide 

best predictions (over those three methods) for 5, 1, and 6 (one case is identical to IsRNA2) 
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cases, respectively. We noted that the sizes of the candidate pool to select the optimal 

prediction model for IsRNA2, FARFAR2, and RNA-BRiQ are 5, 10, and 20, respectively. 

Overall, despite the recent advancements by FARFAR2 and RNA-BRiQ algorithms, IsRNA2 

is a competitive method in RNA model refinement.

GPU acceleration for large RNA molecules.

For large RNA molecules with size > 100 nts, the sufficient sampling in conformational 

space is challenging even at CG representation due to their huge number of available 

conformations. On the other hand, GPUs have become popular as accelerators in high-

performance computing due to their impressive floating-point capabilities, high memory 

bandwidth, and low electrical power requirement. For instance, numerous MD codes have 

been developed to utilize GPUs to gain impressive speedups66-71. Thus, based on the “GPU” 

package72 in the LAMMPS MD software46, we have embedded and compiled the related 

source codes for the modified pairwise energy function in Eq. 3 to enable GPU acceleration 

in the IsRNA2 model. In this way, we expected the sampling speed for large RNAs to be 

largely improved.

The performance of GPU acceleration was tested on 10 RNAs with sizes from 50 to 490 

nts. With the native 3D structure as initial state and the secondary structure extracted from 

the native structure as constraints, a 1 ns MD simulation (106 steps with integration timestep 

Δt = 1fs) was run on the Intel(R) Core(TM) i9-9900K 3.6GHz CPU and the GeForce RTX 

2080 Ti GPU. The wall-clock time was collected and recorded. For comparison, the clock 

time of one single CPU thread run and two CPU threads parallel run were both reported. 

As shown in Fig. 5, for a bacterial ribonuclease P RNA73 (PDB id: 2a64, 298 nts) and 

the human Ribonuclease P Holoenzyme74 (PDB id: 6ahu, 413 nts), the clock time on a 

single CPU thread are 21.4 and 28.3 minutes, respectively, and they decrease to 6.5 and 

8.8 minutes when the GPU accelerator (one CPU thread plus a GPU card) was employed, 

which indicates an about 3.2-fold speedup for GPU acceleration. When compared to the 

parallel run on two CPU threads, the GPU acceleration could also gain an about 2.0-fold 

speedup for the those two RNAs. Moreover, we noted a perfect linear relationship between 

the clock time and the size of RNA molecule for the GPU acceleration. Overall, these results 

demonstrated that the CG IsRNA2 model plus GPU accelerators can be a powerful platform 

to study large RNA molecules.

Conclusion

Noncanonical base pairs play a pivotal role in stabilizing RNA 3D structures40, especially 

for large RNAs, and pose one of the most challenging bottlenecks for current RNA 3D 

structure prediction34-35. On the other hand, CG models are promising and sometimes 

more suitable approaches, compared to atomistic models, in studying the dynamics of 

large RNAs due to reduced degrees of freedom and smoother free energy landscape and 

hence more efficient conformational sampling75. Here, based on our previous efforts in 

RNA CG modeling27-28, we developed an updated IsRNA2 (version 2) model to study 

the noncanonical base pairing interactions in large RNA molecules. By introducing a 

five-bead CG representation for both purine and pyrimidine nucleotides, the updated 
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IsRNA2 model preserves the definition of three interacting edges of bases, namely WC, 

Hoogsteen and sugar edges, and captures the fundamental elements to accurately describe 

various base pairing interactions, including both canonical and noncanonical base pairs. 

After re-parameterizing the energy functions through the iterative simulated reference state 

approach, the IsRNA2 was used to de novo model noncanonical RNA motifs and refine 

3D structure predictions in RNA-Puzzles challenges. For 15 out of 23 tested noncanonical 

RNA structures, IsRNA2 achieved a near atomic-resolution (RMSD < 3.0 Å) prediction and 

recovered most of the native noncanonical base pairs. With significantly improved accuracy, 

benchmarks also indicated that IsRNA2 is able to achieve a comparable performance to 

the atomic model in de novo modeling of noncanonical RNA structures. To further confirm 

the ability of IsRNA2 in modeling noncanonical base pairs, an additional benchmark test 

on more noncanonical motifs, such as those from Rosetta-SWM method43, is needed in 

future. Furthermore, out of 13 selected challenges in RNA-Puzzles, 3D structure predictions 

for 11 cases were obviously refined by simulations in IsRNA2. For some challenges, 

IsRNA2 can provide even better models than the previous best submissions. Finally, the 

GPU acceleration was introduced in IsRNA2 model to boost the sampling speed, with a ~ 

3.2-fold speedup for very large RNA molecules. In all, the reported IsRNA2 is a promising 

coarse-grained model to study the noncanonical base pairs in large RNA molecules.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Atomistic and coarse-grained representation of the four nucleotides in RNA molecule. The 

atomistic models are displayed as sticks with heavy atoms phosphorus, oxygen, carbon, 

and nitrogen colored by orange, red, gray, and blue, respectively. The coarse-grained 

representations in IsRNA2 are indicated by magenta bead-spring model, wherein the 

phosphate group and sugar ring are represented by bead P and S, respectively, and each base 

is coarse-graining into three different beads. The related base moiety for each coarse-grained 

bead is divided by the green dashed line. Base’s Watson-Crick, sugar, and Hoogsteen 

edges37 for purine and pyrimidine are identified in the left plane.
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Figure 2. 
Representations of 20 most occurred base pairing interactions in the IsRNA2 model. 

Both the canonical (the first three types) and noncanonical (the remaining) base pairs are 

annotated in the LW form37. : GC cis Watson-Crick, : AU cis Watson-Crick,  : 

GU wobble,  : trans Hoogsteen/Sugar edge,  : trans Watson-Crick/Hoogsteen,  : 

cis Watson-Crick/Watson-Crick,  : trans Watson-Crick/Sugar edge,  : trans Sugar 

edge/Sugar edge,  : cis Watson-Crick/Hoogsteen, : trans Hoogsteen/Hoogsteen, : 

cis Hoogsteen/Sugar edge, : cis Watson-Crick/Sugar edge, : cis Sugar edge/Sugar 

edge.
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Figure 3. 
3D structure modeling for several noncanonical RNA motifs with IsRNA2 model. (A) 

Fragment with A-C pairs, SRP helix VI50 (PDB id: 1d4r, row 2 in Table 3), (B) fragment 

with G-G and G-A base pairs, SRP helix VI50 (PDB id: 1d4r, row 3 in Table 3), (C) 

Escherichia coli SRP domain IV51 (PDB id: 1lnt, row 7 in Table 3), (D) GAGA tetraloop 

from sarcin/ricin domain52 (PDB id: 1q9a, row 9 in Table 3), (E) J4/5 from P4-P6 domain, 

Tetrahymena thermophila ribozyme53 (PDB id: 2r8s, row 17 in Table 3), and (F) J4a-4b 

region, metal-sensing riboswitch54 (PDB id: 2qbz, row 15 in Table 3). Adenine, guanine, 

cytosine, and uracil are colored by red, orange, green, and blue, respectively. The 2D 

structure (left column) is extracted from the native structure (middle column) by the program 

DSSR55. The predicted 3D structure (right column) is from the top five clusters with lowest 

RMSD. The all heavy-atom RMSDs for those predictions are also given.
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Figure 4. 
Refinement of 3D structures predicted by Chen group in the RNA-Puzzles challenges 

through IsRNA2 model. Lowest RMSDs for the models from the predictions after 

refinement by IsRNA2 (“IsRNA2”) are shown. For comparison, the best prediction from 

initial submissions by Chen group (“Chen group”) and that from all group (“All group”, 

including Chen group) are also given for each case.
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Figure 5. 
Benchmark test for accelerating simulations in IsRNA2 through parallel central processing 

unit (CPU) threads and graphics processing unit (GPU) computing. For RNA molecules 

with different sizes (PDB ids are labeled), performances were tested on single CPU thread 

(1xCPU), two CPU threads (2xCPU), and GPU accelerator (CPU+GPU). The tested CPU is 

Intel(R) Core(TM) i9-9900K 3.6GHz and GPU is GeForce RTX 2080 Ti.
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Table 1

Properties of eleven types of coarse-grained beads in the updated IsRNA2 model.

CG
bead

Mass
(amu)

Diameter
(Å) Grouped heavy atoms

P 94.97 3.7 P, OP1, OP2, O5’, O3’

S 92.05 3.1 C5’, C4’, O4’, C3’, C2’, O2’, C1’

R1 78.05 3.2 N9, C8, N7, C5, C4, N3

A1 26.02 2.5 C6, N6

A2 26.02 2.7 C2, N1

G1 42.02 2.7 C6, O6, N1

G2 26.02 2.7 C2, N2

Y1 38.03 3.1 N1, C5, C6

Y2 28.01 2.9 C2, O2

C1 40.03 2.5 N3, C4, N4

U1 42.02 2.7 N3, C4, O4
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Table 2

Structural parameters for secondary structure constrains used in Eq. 2.

Base
pair

r 1 r 2 θ φ 1 φ 2 φ 3 φ 4 φ 5

GC G1-C1 G2-Y2 G2-Y2-C1 R1-G1-G2-Y2 G1-G2-Y2-C1 G2-Y2-C1-Y1 R1-G1-C1-Y1 R1-G2-Y2-Y1

AU A1-U1 A2-Y2 A2-Y2-U1 R1-A1-A2-Y2 A1-A2-Y2-U1 A2-Y2-U1-Y1 R1-A1-U1-Y1 R1-A2-Y2-Y1

GU G1-U1 G1-Y2 R1-G1-U1 R1-G2-G1-Y2 G2-G1-Y2-U1 G1-Y2-U1-Y1 R1-G1-U1-Y1 ---
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Table 3

Comparison of de novo modeling of noncanonical RNA motifs with IsRNA2, IsRNA1, and FARFAR model. 

The best performance over three models with lowest all heavy-atom RMSD is boldfaced for each case.

No. Motif name (PDB id) Size
a

IsRNA2 IsRNA1 FARFAR
e

Rank
b

RMSD
c

INF
d rank RMSD INF rank RMSD

1 Rev response element high-affinity site (1csl) 6+7 1 2.72 0.77 2 2.88 0.67 2 3.95

2 Fragment with A-C pairs, SRP helix VI 
(1d4r) 6+6 3 0.65 0.90 1 1.00 0.97 1 1.83

3 Fragment with G-G and G-A base pairs, SRP 
helix VI (1d4r) 8+8 1 1.87 0.78 1 2.41 0.76 3 3.27

4 UUCG tetraloop (1f7y) 8 1 2.60 0.71 1 2.77 0.67 1 1.12

5 Kink-turn motif (1jj2) 7+10 2 9.05 0.52 4 8.55 0.62 2 8.85

6 Helix with A-C base pairs (1kd5) 8+8 2 2.73 0.79 2 2.45 0.73 2 2.45

7 SRP domain IV (1lnt) 8+8 4 1.56 0.76 2 2.89 0.75 4 1.54

8 Hook-turn motif (1mhk) 5+6 3 3.58 0.64 4 4.99 0.46 5 2.56

9 GAGA tetraloop from sarcin-ricin loop 
(1q9a) 6 2 0.74 0.91 3 1.15 0.61 1 0.82

10 Loop 8, A-type RNase P (1u9s) 9 2 3.08 0.80 1 4.45 0.67 5 1.38

11 Pentaloop from conserved region of SARS 
(1xjr) 9 5 2.57 0.59 2 3.70 0.56 3 1.10

12 L3, thiamine pyrophosphate riboswitch 
(2gdi) 9 5 2.09 0.74 1 3.05 0.56 4 2.00

13 Active site, hammerhead ribozyme (2oeu) 11+7+5 4 7.67 0.65 2 6.88 0.60 4 8.64

14 Stem C internal loop, L1 ligase (2oiu) 8+8 2 1.87 0.78 5 5.68 0.43 1 2.24

15 J4a-4b region, metal-sensing riboswitch 
(2qbz) 9+9 5 1.46 0.82 2 3.29 0.77 3 3.71

16 P1-L3, SAM-II riboswitch (2qwy) 50 2 3.94 0.62 2 9.82 0.51 5 7.40

17 J4/5 from P4-P6 domain, Tetrahymena 
thermophila ribozyme (2r8s) 7+6 3 1.54 0.90 4 2.98 0.72 1 1.76

18 J5-5a hinge, P4-P6 domain, Tetrahymena 
ribozyme (2r8s) 10+9 5 9.35 0.55 2 9.95 0.65 3 9.99

19 Pseudoknot, domain III, CPV internal 
ribosome entry site (3b31) 12+8 1 3.77 0.85 5 3.15 0.91 4 3.55

20 G-A base pair (157d) 5+5 4 0.86 0.92 3 0.88 0.96 1 1.19

21 Helix with U-C base pairs (255d) 6+6 1 1.38 0.87 1 1.30 0.85 2 2.10

22 Loop E motif, 5S RNA (354d) 11+11 1 2.57 0.62 5 7.25 0.58 2 1.64

23 Pre-catalytic conformation, hammerhead 
ribozyme (359d) 11+8+6 2 5.34 0.66 2 7.14 0.71 5 8.44

average 2.65 3.17 0.75 2.48 4.29 0.68 2.78 3.54

a
For RNA motif contained multiple chains, the size (number of nucleotides) for each chain is separated by “+”.

b
The rank of the best prediction from the top five clusters.

c
Lowest all-heavy-atom root-mean-square deviation (in Å) for the best prediction from the top five clusters.

d
INF is the interaction network fidelity59 for all the canonical and noncanonical base-pairing and base-stacking interactions.
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e
Since the original predictions of FARFAR are unavailable, the INFs for FARFAR are absent here.
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Table 4

Comparison of model refinement for RNA-Puzzles challenges with IsRNA2, FARFAR2, and RNA-BRiQ. The 

best prediction over those three models with lowest all heavy-atom RMSD is boldfaced for each challenge.

Puzzle
(PDB)

Length
(nt) RNA

RMSD (Å)

IsRNA2
a

FARFAR2
b

RNA-BRiQ
c

1 (3mei) 46 thymidylate synthase motif 2.94 2.50 1.97

2 (3p59) 100 nanosquare 2.06 2.71 2.06

3 (3owz) 84 glycine riboswitch 5.34 12.41 6.53

14b(5ddp) 61 Gln riboswitch (bound) 6.35 6.88 6.14

15 (5di2) 68 hammerhead ribozyme 7.40 5.98 6.78

17 (5k7c) 58 pistol ribozyme 11.13 6.69 5.68

18 (5tpy) 71 Zika xrRNA 3.02 5.02 3.47

19 (5t5a) 62 twister sister ribozyme 5.01 5.16 6.97

20 (5y85) 68 twister sister ribozyme 12.55 4.03 3.54

21 (5nz6) 41 guanidinium-In riboswitch 3.82 6.04 3.83

24 (6ol3) 112 adenovirus virus-associated RNA 7.30 7.68 5.53

a
Lowest RMSD of top 5 predictions.

b
Best of 10 low-energy clusters, data collected from Ref 65.

c
Lowest energy model within 20 refinement models, data collected from Ref 44.
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