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Abstract

Heterogeneity is a dominant factor in the behaviour of many biological processes. Despite

this, it is common for mathematical and statistical analyses to ignore biological heterogene-

ity as a source of variability in experimental data. Therefore, methods for exploring the iden-

tifiability of models that explicitly incorporate heterogeneity through variability in model

parameters are relatively underdeveloped. We develop a new likelihood-based framework,

based on moment matching, for inference and identifiability analysis of differential equation

models that capture biological heterogeneity through parameters that vary according to

probability distributions. As our novel method is based on an approximate likelihood func-

tion, it is highly flexible; we demonstrate identifiability analysis using both a frequentist

approach based on profile likelihood, and a Bayesian approach based on Markov-chain

Monte Carlo. Through three case studies, we demonstrate our method by providing a didac-

tic guide to inference and identifiability analysis of hyperparameters that relate to the statisti-

cal moments of model parameters from independent observed data. Our approach has a

computational cost comparable to analysis of models that neglect heterogeneity, a signifi-

cant improvement over many existing alternatives. We demonstrate how analysis of random

parameter models can aid better understanding of the sources of heterogeneity from biologi-

cal data.

Author summary

Heterogeneity is a dominant factor in the behaviour of many biological and biophysical

processes, and is often a primary source of the variability evident in experimental data.

Despite this, it is relatively rare for mathematical models of biological systems to incorpo-

rate variability in model parameters as a source of noise. Therefore, methods for analysing

whether model parameters and sources of variability are identifiable from commonly

reported experimental data are relatively underdeveloped. As we demonstrate, such iden-

tifiability analysis is vital for model selection, experimental design, and gaining biological
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insights. In this work, we develop a fast, approximate framework for model calibration

and identifiability analysis of mathematical models that incorporate biological heteroge-

neity through random parameters. Our method is highly flexible, and can be employed in

both frequentist and Bayesian inference paradigms. Compared to alternative approaches,

our approach is computationally efficient, with a computational cost comparable to analy-

sis of standard models that neglect parameter variability.

This is a PLOS Computational Biology Methods paper.

Introduction

Heterogeneity is understood as a dominant factor in the behaviour of many biological and bio-

physical systems [1–3]. Mathematical analysis of these systems is often constrained to parame-

ter-fitting of differential equation based models. In many cases, heterogeneity is neglected,

with variability in the data assumed to be noise and incorporated through independent, proba-

bilistic observation processes [4–8].

Mathematical models have long been an essential tool for understanding the behaviour of

systems from quantitative and experimental data. Parameter estimation allows practitioners to

quantify observed behaviour in terms of parameters that carry physical interpretations. Estab-

lishing whether model parameters can be identified from the quantity and quality of experi-

mental data available is critical for tailoring model and data complexity to the scientific

questions of interest [7, 9–12]. Furthermore, predictions from non-identifiable models can be

unreliable [9]. Such identifiability analysis is well established for ordinary differential equation

models [9, 10, 13], stochastic models [12, 14–16], and, recently, partial differential equation

models [8, 17]. There is, however, comparatively little guidance for identifiability analysis for

models that explicitly incorporate heterogeneity in model parameters, limiting the ability of

practitioners to identify and predict sources of biological variability.

In biological systems, heterogeneity might arise due to inter-experiment variability, gene

expression [18], or patient-to-patient variability [19]. Even from tightly controlled experiments

is data variability evident, potentially due to differences in cell behaviour between experiments.

We demonstrate this in Fig 1A by showing results of an in vitro multicellular tumour spheroid

experiment, using melanoma tumour spheroids generated from a single cell line and imaged

using microscopy after seven days of growth [20]. Despite similarities in both size and mor-

phology, spheroids are not identical. In Fig 1B, we summarise the experimental images with

the most obvious measurement corresponding to the radius of a circle with the same cross-sec-

tional area, and repeat this for ten spheroids collected from eight observation days (yielding 80

independent measurements). We also show predictions from a calibrated logistic model [21,

22], with a prediction interval capturing variability in the data through additive normal noise,

a common assumption [9]. Key questions posed by the data in Fig 1 might relate to whether

variability observed in the data is due to heterogeneity in the initial condition (spheroids are

seeded with approximately 5000 cells), due to heterogeneity in the dynamic behaviour (differ-

ences in experimental conditions such as the concentration of nutrient might yield differences

in the growth rate between spheroids), or due to extrinsic factors, including measurement

noise.
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Differential equation models are widely used throughout biology, and have the potential to

capture heterogeneity by relaxing the requirement that model parameters be fixed between

measurements [23]. In the mathematical literature, such models are termed heterogeneous

ordinary differential equations (ODEs) [24], random ODEs [25], or populations of models

[26]. In the statistical literature, ODE-constrained hierarchical models, random-effects models,

or non-linear mixed-effects models describe heterogeneity through a parameter hierarchy

where model parameters have specified distributions that are themselves described by hyper-

parameters [23, 27–30]. The literature is further split by a distinction between inference proce-

dures that assume distributional forms [23, 28–33] or those that do not [24, 34], when

inferring the underlying parameter distributions from quantitative observations. For the non-

linear models common to biology, inference for random parameter variants is often computa-

tionally costly—with cost that can increase significantly with the data sample size—and

requires non-trivial selection of tuning parameters. Furthermore, there is very little guidance

in the literature for assessing the identifiability, and hence ability of practitioners to determine

the source of variability or even the benefit of considering parameter variability, using these

classes of random parameter models.

Motivated by these observations, we develop a novel, approximate, and computationally

efficient likelihood-based approach to inference and identifiability analysis of differential

equation based models with random parameters based on an approximate moment-matched

solution to the random parameter model [35]. To do this, we express the solution to the model

about the parameter mean using a second order Taylor series expansion, which can be manip-

ulated to obtain approximate expressions for the first three statistical moments of the model

output distributions in terms of the statistical moments of the input (i.e., parameter) distribu-

tions. Our method may therefore be classified as a moment-matching method similar to meth-

ods routinely employed for stochastic fixed-parameters models such as the linear-noise

approximation [36–39]. We highlight that, although we assume a distributional form for the

Fig 1. Heterogeneity in experimental measurements of spheroid growth. (A) Microscopy images of tumour spheroids grown from

melanoma cell line WM983b from which a subset of measurements in (B) were taken. Spheroids were grown from 5000 cells, harvested,

fixed, and imaged after nine days. Cells are transduced with fluorescent cell cycle indicators: colouring indicates cells in gap 1 (purple)

and cells in gap 2 (green). In all but one spheroid, a lack of definition in the spheroid centre indicates the presence of a necrotic core. (B)

Images are summarised by the radius of a circle with equivalent cross-sectional area as microscopy images. Shown are experimental

measurements (blue discs and box plots) and a calibrated logistic model with prediction interval based on additive normal noise. Data

from [20].

https://doi.org/10.1371/journal.pcbi.1010734.g001
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input parameter distributions, it is the statistical moments of the parameters that are inferred.

Given the challenges of formulating high-dimensional distributions with possibly highly non-

linear dependence structures, we focus our approach to low-dimensional data; for example,

univariate or bivariate measurements collected independently at observation times, common

in biology due to the challenges in collecting data and where samples are often destroyed for

data to be collected [40–42]. While not our focus, our method is applicable to data of any

dimension (including, for example, time-series data) provided that dependent measurements

are approximately multivariate normally distributed, or can be transformed to meet this

requirement. The restriction is less strict for univariate and bivariate data, where we are also

able to capture the skewness in the data. By leveraging techniques such as automatic differenti-

ation to construct the Taylor series expansion, our approach provides a deterministic approxi-

mation to the data likelihood with comparable computational cost to the corresponding fixed-

parameter model.

Our approach differs from many as we construct a surrogate likelihood directly from the

approximate distributional solution to the random parameter model, alleviating the need to

either infer individual-level parameters or marginalise the posterior in non-linear mixed-

effects modelling [30] and Bayesian hierarchical modelling [29], respectively. The availability

of a surrogate likelihood allows us to perform inference and identifiability analysis of random

parameter models using the standard suite of tools, including profile likelihood [9], Fisher

information [43], and Markov-chain Monte-Carlo [7]. Aside from assessing the identifiability

of hyperparameters—parameters that relate to the distributional form of the random parame-

ters in the dynamical model—we demonstrate our method by answering a number of ques-

tions specific to identifiability analysis of random parameter models. Namely, whether

variation in model parameters can be distinguished from measurement noise; whether iden-

tifiability of a random-parameter model differs from that of a fixed-parameter model; and,

finally, how the order of the moment-matching approximation affects parameter identifiabil-

ity. To aid in the uptake of both random parameter models and their application to better

interpret the variability ubiquitous to biological data, we provide a Julia module implementing

our approach on Github.

Methods

We consider ODE state-space models of the form

dxðt; θÞ
dt

¼ gðt; xðt; θÞ; θÞ; xð0; θÞ ¼ x0ðθÞ; ð1Þ

subject to the observation process

yðt; θÞ ¼ hðxðt; θÞ; θÞ; ð2Þ

at times t 2 ft1; t2; . . . ; tng ¼ T . Here, xðt; θÞ : R� Rd
! Rp

is the state, gðt; x; θÞ :

R� Rp � Rd ! Rp is the time-derivative of the state and θ 2 Rd is a vector of parameters, tra-

ditionally assumed to be fixed between measurements [5, 21]. The observation process,

yðt; θÞ : R� Rd ! Rq, represents potentially incomplete observations of the underlying state,

characterised by hðx; θÞ : Rp � Rd ! Rq.

The focus of this work is random parameter dynamical models, that is, dynamical models

where model parameters vary between observations such that θ is a random variable. In dis-

tinction to other classes of random or stochastic differential equations, we emphasise that θ
does not depend on t. In this formulation, it is possible to incorporate a probabilistic observa-

tion process directly into Eq (2) (for example, normally distributed measurement error)
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through a sequence of random parameters εi contained in θ associated with each observation

time ti. For instance, to model additive normal noise, we would set the ith component of the

observation process to hiðxðti; θÞ; θÞ ¼ �hiðxðti; θÞ; θÞ þ εi where εi � N ð0; s2Þ captures noise

and �hð�Þ represents a noiseless observation from the model. We demonstrate both additive

and multiplicative normal noise in this work, and highlight the flexibility gained by incorpo-

rating measurement error directly into the observation process through an additional random

parameter.

Therefore, the model can be considered as a transformation of the random variable θ to

randomly distributed observations, y. We denote a vector of dependent measurements

f ðθÞ ¼ ½ f1ðθÞ; . . . ; fnðθÞ �
⊺
: ð3Þ

For time-series data, f may represent dependent observations taken from an entire dependent

trace; for example, in the case of univariate observations at times t1, . . ., tn, we have y(t, θ) =

y(t, θ) and f(θ) = [y(t1, θ), . . ., y(tn, θ)]⊺. For multivariate observations, we concatenate these

observations such that

f ðθÞ ¼ ½yð1Þðt1; θÞ; . . . ; yð1Þðtn; θÞ; . . . ; yðmÞðt1; θÞ; . . . ; yðmÞðtn; θÞ�
⊺
; ð4Þ

where y(k)(ti, θ) denotes a measurement from the kth component of y(ti, θ). For a tumour

spheroid experiment, this might represent time-series radius measurements (for univariate

observations) or radius and inner structure measurements (for multivariate observations)

from a single spheroid throughout the course of the experiment. Alternatively, for so-called

snapshot data, where observations are taken at each observation time independently, we con-

sider a series of transformations that can be handled independently, f (1)(θ), f (2)(θ), . . . where

f (i)(θ) = y(ti; θ). For a tumour spheroid experiment, f (i)(θ) might represent a radius measure-

ment collected by terminating a single tumour spheroid experiment at time ti. The key differ-

ence between time-series and snapshot data is that in the case of the former, data from all time

points are considered a single, dependent, multivariate measurement for which the covariance

structure must be considered; whereas for the latter, data from each time point can be consid-

ered entirely independently, significantly reducing the dimensionality of the problem.

Approximate solution of the random parameter model

Only in very limited cases (specifically, where the inverse f −1 is tractable) can the density of

f(θ) be calculated directly. Indeed, of primary interest in our work is the case where indepen-

dent observations at a series of observation times are collected where it is highly likely that

there are fewer observations than random model parameters, so it is likely that f −1 will not

exist. Therefore, we build an approximate surrogate likelihood based on a Taylor series

approximation to the moments of f(θ) given the moments of θ under the assumption that f is

sufficiently smooth.

First, consider a univariate transformation, f ðyÞ : R! R of the random variable y 2 R. To

formulate expressions describing the moments of f(θ) (and hence, an approximate expression

for the density of f(θ)), consider the Taylor expansion of f(θ) about y ¼ ŷ,

f ðyÞ ¼ f ðŷÞ þ
df ðŷÞ
dy
ðy � ŷÞ þ

1

2

d2f ðŷÞ
dy2

ðy � ŷÞ
2
þ � � � : ð5Þ

If we choose ŷ ¼ EðyÞ, then the expectation of Eq (5) yields an equation for Eðf ðyÞÞ to expres-

sions relating to Eðy � ŷÞ ¼ 0 and Eððy � ŷÞ2Þ ¼ VðyÞ (the variance of θ). Similarly, each
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side of Eq (5) can be squared or raised to higher powers to obtain expressions relating to the

variance and skewness of f(θ).

Eq (5) readily extends to transformations of multivariate random variables. For instance,

consider now that θ ¼ ½y1; y2; . . . ; yd�
⊺
2 Rd

and that f(θ) = [f1(θ), . . ., fn(θ)]⊺. An expression

for the ith component, fi(θ), can be expressed in the following form using a Taylor expansion

around θ ¼ θ̂,

fiðθÞ ¼ fiðθ̂Þ þ
Xd

a¼1

@fiðθ̂Þ
@ya

ðya � ŷaÞ þ
1

2

Xd

a¼1

Xd

b¼1

@
2fiðθ̂Þ
@ya@yb

ðya � ŷaÞðyb � ŷbÞ þ � � � : ð6Þ

While expectations of Eq (6) can still be taken, it is now more difficult to relate terms to the

central moments of θ, particularly when Eq (6) is raised to higher powers. However, this task

becomes clearer when Eq (6) is expressed in matrix or tensor notation: the terms relating to

the second derivatives in Eq (6), for example, are related to the Frobenius inner product (i.e.,

sum of the component-wise product of two matrices or tensors) of the Hessian matrix and a

matrix that becomes the covariance matrix when expectations are taken. This notation yields

fiðθÞ ¼ fiðθ̂Þ þ rfiðθ̂Þ � ðθ � θ̂Þ þ
1

2
Hfiðθ̂Þ �M2ðθ � θ̂Þ þ � � � : ð7Þ

Here, � denotes the Frobenius inner product, Hfi(θ) is the Hessian matrix of fi(θ), i.e., a matrix

with elements

½Hfiðθ̂Þ�ab ¼
@

2fiðθ̂Þ
@ya@yb

; ð8Þ

and M2 is an operator that returns the matrix formed by taking an outer product of a vector

with itself, with elements given by

½M2ðθ � θ̂Þ�ab ¼ ðya � ŷaÞðyb � ŷbÞ: ð9Þ

Similarly, higher order operators are defined by M3, which returns a three-dimensional tensor,

and M4 which returns a four-dimensional tensor. We form M2 using a generalisation of the

Kronecker product, M2ðθ � θ̂Þ ¼ ðθ � θ̂Þ � ðθ � θ̂Þ and

Mkðθ � θ̂Þ ¼ ðθ � θ̂Þ �Mk� 1ðθ � θ̂Þ, where� is defined such that, for two vectors a and b,

a� b ¼

a1b
⊺

a2b
⊺

..

.

anb
⊺

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð10Þ

The operation is similarly defined for arguments in higher-dimensions, returning a tensor of

dimensionality equal to the sum of the dimensions of both arguments. For brevity, we define a

Kronecker power operator such that a�n refers to the operation performed on a by itself n
times.

Defining h�i ¼ Eð�Þ and noting that, in our notation, VðθÞ ¼ hM2ðθ � θ̂Þi (and similar for

higher order moments relating to the skewness tensor, S and kurtosis tensor,K), we can show
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that

hfiðθÞi � fiðθ̂Þ þ VðθÞ �
1

2
Hfiðθ̂Þ; ð11Þ

hf 2
i ðθÞi� f 2

i ðθ̂Þ þ VðθÞ �
�

rfiðθ̂Þ
�2
þ fiðθ̂ÞHfiðθ̂Þ

�

þSðθÞ � ðHfiðθ̂Þ � rfiðθ̂ÞÞ

þKðθÞ �
1

4
Hfiðθ̂Þ

�2
;

ð12Þ

hf 3
i ðθÞi � f 3

i ðθ̂Þ þ VðθÞ �
3

2
fiðθ̂Þ 2rfiðθ̂Þ

�2
þ fiðθ̂ÞHfiðθ̂Þ

� �

þ SðθÞ �
�

rfiðθ̂Þ
�3
þ 3fiðθ̂ÞHfiðθ̂Þ � rfiðθ̂Þ

�

þKðθÞ � 3
1

4
fiðθ̂ÞHfiðθ̂Þ

�2
þ

1

2
rfiðθ̂Þ

�2
� Hfiðθ̂Þ

� �

: ð13Þ

and

hfiðθÞfjðθÞi � fiðθ̂Þfjðθ̂Þ

þ V θð Þ �
1

2
fiðθ̂ÞHfjðθ̂Þ þ fjðθ̂ÞHfiðθ̂Þ þ 2rfiðθ̂Þ � fjðθ̂Þ
� �

þ SðθÞ � rfiðθ̂Þ � Hfjðθ̂Þ þ rfjðθ̂Þ �Hfiðθ̂Þ
� �

þK θð Þ �
1

4
Hfi θ̂
� �
�Hfj θ̂

� �
:

ð14Þ

Note that we have applied the closure hMk(θ)i = 0 for k� 5. Formal derivations of Eq (7) and

Eqs (11) to (14) are provided as supporting material (S1 File).

Eqs (11) to (14) provide approximate expressions for the mean vector with entries μi =

hfi(θ)i, covariance matrix with entries Sij = hfi(θ)fj(θ)i − hfi(θ)ihfj(θ)i and univariate skew-

nesses vector with entries ωi ¼ hðfiðθÞ � μiÞ
3
i=S3=2

ij , of f(θ). From this, we construct an approx-

imate density function for f(θ) using two approaches: one based on a multivariate normal

distribution that matches the first two moments, and another based on a gamma distribution

that matches the first three.

The normal or two moment approach approximates

f ðθÞ � MvNormalðμ;SÞ: ð15Þ

The primary advantage of this approach is that we can form approximations without regard to

the dimensionality of f(θ). Furthermore, it is overwhelmingly the case in the mathematical

biology literature, for instance, that normality is assumed when calibrating dynamical models

to experimental data [5, 8].

The gamma or three moment approach approximates marginal distributions with a shifted

gamma distribution parameterised in terms of its mean, variance and skewness [32],

fiðθÞ � ShiftedGammaðμi;Sii;ωiÞ: ð16Þ

This approach is advantageous as it recaptures the normal approach in the limit ωi! 0, but

allows more flexibility in terms of the shape of the distribution. The primary difficulty of the

gamma approach is to construct an approximation to multivariate f(θ). We do this in the case
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that f(θ) is two-dimensional by correlating f1(θ) and f2(θ) using a Gaussian copula, a statistical

object that correlates two random variables with arbitrary univariate distributions [44]. The

correlation parameter in the copula, ~r, is chosen to match the approximate correlation calcu-

lated from the approximate moments. Denoting the skewnesses of the marginal distributions

as ω1 and ω2, we compute the map ðo1;o2; rÞ ! ~r ahead of time using the rectangle rule for a

wide range of skewness parameters |ωi| 2 [0, 2]. The upper limit of 2 is chosen as the gamma

distribution changes shape from non-monotonic (normal-like) to monotonic (exponential-

like) at ω = 2.

We demonstrate these approximations in Fig 2 using the logistic model (Eq (24)). Addi-

tional comparisons, including a multivariate comparison, are provided in the supporting

material (Figs A to C in S1 File). In all cases, the gamma approximation is clearly superior to

the normal approximation, and provides a fast, accurate approximate approximation to the

solution to the random parameter model.

Surrogate likelihood

We make the assumption that the parameters in the dynamical model, θ, are random variables

with a distribution parameterised by ξ,

θ � DðξÞ: ð17Þ

For example, D(ξ) may represent a multivariate normal distribution with means, variances

and covariances determined by ξ [45]. The only constraint on D(ξ) that we require is that ana-

lytical expressions for the moments of θ be available. For example, we can capture skewness in

parameter inputs by describing θ as having independent components with translated gamma

marginals, but cannot, in general, describe the dependence in θ using a copula. We can capture

systems with distinct subpopulations by specifying D(ξ) as a finite mixture, in which case the

transformation defined by the mathematical model is applied to each component of the mix-

ture before the mixture is reapplied (in this case, ξ may include parameters relating to both the

parameterisation of the mixture components and the mixture weights). Finally, parameters

Fig 2. Accuracy of approximate transformation. We compare the accuracy of two approximate solutions to the non-linear transformation f(θ) (here,

f(θ) is given by the solution to the logistic model and θ ¼ ½l;K; r0�
⊺
, see Eq (24)). In (A) θ has a multivariate normal distribution with independent

components; in (B) θ has a multivariate normal distribution with correlation between λ and K; and, in (C) θ has independent, translated-gamma

components such that the marginals have relatively strong skewnesses of ðol;oK ;or0
Þ ¼ ð1; � 1; 0:2Þ. In all cases, we show a kernel density estimate

produced from 105 samples, the normal approximation (blue dashed), and the translated gamma approximation (red dashed). In the supporting

material (Table A in S1 File) we provide a statistical comparison between the simulated and approximate distributions using the Kolmogorov-Smirnov

test.

https://doi.org/10.1371/journal.pcbi.1010734.g002
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assumed to be constant can be modelled by assuming they follow a degenerate (i.e., point

mass) distribution.

We can form an approximate expression for the likelihood of the data, fyðtiÞn g
N
n¼1

using the

approximate solution to the random parameter problem given in Eqs (15) and (16). For a

given distribution θ* D(ξ), the moments of θ will depend on ξ; i.e., θ̂ ¼ θ̂ðξÞ, VðθÞ ¼ m2ðξÞ,
etc, where mi(ξ) are tensor-valued functions of ξ defined by the specification of D(ξ). There-

fore, the moments of f(θ) can also be expressed as functions of the hyperparameters, ξ, such

that μ = μ(ξ), S = S(ξ), and ω = ω(ξ). We denote by pf ðiÞ ðyðtiÞn ; ξÞ the probability density func-

tion for yðtiÞn � f ðiÞðθÞ given θ* D(ξ). For the normal approach, we have that

pf ðiÞ ðyðtiÞn ; ξÞ ¼ �ðyðtiÞn ; μðξÞ;SðξÞÞ; ð18Þ

where ϕ(y; μ, S) is the density function for the multivariate normal distribution with mean μ
and covariance matrix S. Therefore, the log-likelihood function for snapshot data is given by

‘ðξÞ ¼
X

ti2T

XN

n¼1

log pf ðiÞ ðy
ðtiÞ
n ; ξÞ: ð19Þ

While not a focus of the present work, the log-likelihood function for time-series data would,

therefore, be given by

‘ðξÞ ¼
XN

n¼1

log pf ðyn; ξÞ;

where yn includes a set of dependent measurements from all time-points simultaneously, as

per Eq (4).

Inference

As our method provides an approximate likelihood function, we permit application of the full

gamut of likelihood-based inference and identifiability techniques. We demonstrate our

method using both a frequentist method based on profile likelihood [9], and a Bayesian

method based on Markov-chain Monte Carlo (MCMC) [7, 11, 46].

Profile likelihood. We explore identifiability of model hyperparameters using the profile

likelihood method [9]. First, we establish the maximum likelihood estimate (MLE) as the

hyperparameter vector that maximises the log-likelihood function,

ξ̂ ¼ argmax
ξ

‘ðξÞ: ð20Þ

Secondly, the hyperparameter space is partitioned, ξ ¼ ½�; λ�⊺, where ϕ is the variable to be

profiled and λ contains the remaining parameters. Profile log-likelihoods, ‘̂p are then com-

puted for each value of ϕ by determining the supremum of the log-likelihood over λ relative to

the MLE

‘̂pð�Þ ¼ sup
λ
‘ð�; λÞ � ‘ðξ̂Þ: ð21Þ

We take the supremum of the log-likelihood function using the Nelder-Mead algorithm over a

sufficiently large region to cover the true parameters over several orders of magnitude [47].

One interpretation of ‘̂pð�0Þ is that of the test statistic in a likelihood-ratio test for ϕ = ϕ0

[48]. Therefore, approximate 95% confidence intervals for each variable ϕ can be constructed
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by considering the region where the likelihood-ratio test yields p-values greater than α = 0.05,

corresponding to the region where

‘̂pð�Þ >
� D1;0:95

2
� � 1:92; ð22Þ

where Δν,1−α is the 1 − α quantile of the χ2(ν) distribution. Given this interpretation, we can

quantify statistical evidence for the presence of variability in a model parameter by examining

the profile likelihood in the limit that the variance goes to zero.

Markov-chain Monte Carlo. To obtain samples from the posterior distribution of model

hyperparameters and hence a distribution that quantifies uncertainty in model predictions, we

also perform analysis using a Bayesian MCMC approach [7, 46].

Before consideration of data, X , information about model hyperparameters is encoded in a

prior distribution, p(ξ). We then update our knowledge of the parameters using the likelihood

to obtain the posterior distribution,

pðξjXÞ / exp ð‘ðξ; XÞÞpðξÞ: ð23Þ

To keep our results consistent with those obtained using the profile likelihood approach, we

take the prior distribution to be uniform over the region that covers the true parameters by

several orders of magnitude. Therefore, the posterior distribution, Eq (23), is directly propor-

tional to the likelihood function and the MLE corresponds precisely to the maximum a posteri-
ori estimate (MAP); we find the MAP by maximising likelihood function using the Nelder-

Mead algorithm [47].

We implement an adaptive MCMC algorithm based on the adaptive Metropolis algorithm

from the AdaptiveMCMC package in Julia [49]. To obtain a posterior predictive distribution

of model outputs (in our case, including the probability density function of random parameter

distributions) by repeated simulation of the model at posterior samples obtained using

MCMC.

Results

Using the surrogate likelihood based on the moment-matching approximation, we provide a

didactic guide to assessing the identifiability of dynamical models with random parameters

using three case studies. As our focus is on identifiability, and not model selection, we work

using purely synthetically generated data and apply our statistical methodology to recover the

true parameter values.

Logistic model

We first assess identifiability of the canonical logistic model [21]. The logistic model is ubiqui-

tous in biology, ecology, and population dynamics. Our motivation is to describe the time-evo-

lution of the radius of multicellular tumour spheroids (Fig 1) and determine if variability in

the initial spheroid size, growth rate, and carrying capacity are identifiable and distinguishable

from measurement noise.

Denoting the spheroid radius r(t), the logistic model is

drðtÞ
dt
¼
l

3
rðtÞ 1 �

rðtÞ
R

� �

subject to rð0Þ ¼ r0; ð24Þ
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with exact solution

rðt; θÞ ¼
R

1þ
R
r0

� 1

� �

exp �
l

3
t

� �
: ð25Þ

Here, λ is the per-volume growth rate of the spheroid for r(t)/R� 1 (the term λ/3 represents

the corresponding per-radius growth rate), R is the carrying capacity radius, and r0 is the initial

radius.

We consider data comprising independent measurements (for example, originating from

experiments that must be destroyed to collect measurements) subject to additive normal noise

such that

f ðiÞðθÞ ¼ rðti; θÞ þ ε: ð26Þ

Here, N = 10 measurements are taken at each ti = 2(i − 1), i = 1, 2, . . ., 8 (Fig 3A and 3B) and

ε � N ð0; s2
εÞ represents homoscedastic additive normal measurement noise. The logistic

model is parameterised by the random parameter vector θ = [r0, λ, R, ε]⊺. We assess the iden-

tifiability for several different parametric forms of the distribution of θ.

Independent normal random parameters. First, we explore identifiability of a model

where θ* D(ξ) is multivariate normal with independent components, such that

r0 � N mr0
; s2

r0

� �
; l � N ml; s

2
l

� �
;

R � N mR; s
2
R

� �
; ε � N 0;s2

ε

� �
:

ð27Þ

Therefore, ξ ¼ ½mr0
; ml; mR; ln sr0

; ln sl; ln sR; ln sε�
⊺
, where we infer the natural logarithm of

the standard deviations to ensure positivity. We show synthetic data generated from this para-

meterisation of the random parameter logistic model in Fig 3A and 3B, with identifiability

results shown in Fig 3C–3E for μλ = 1, μR = 300, mr0
¼ 50, σλ = 0.05, σR = 20, sr0

¼ 3, σε = 4.

We present profile likelihoods for each parameter in Fig 3C using both the normal and

gamma approximations. To aid interpretation, we show the normalised profile likelihood

along with the threshold for an approximate 95% confidence interval. Model predictions

(mean and 95% prediction interval) produced using the MLE are shown in Fig 3B. As expected

from existing analysis of the fixed-parameter logistic model [22], all three location parameters

(i.e., the means of λ, R and r0) are identifiable; this can be seen by profile likelihoods with com-

pact support above the threshold for a 95% confidence interval.

As with the location parameters, we find that the standard deviation of carrying capacity,

σR, is also identifiable. We expect this since, for sufficiently large observation times, the solu-

tion to the logistic model is simply r(t) = R, meaning that experimental observations at these

later times are simply observations from the distribution R � N ðmR; s
2
R þ s

2
εÞ. The most inter-

esting result is that for σλ, which is only just identified (within 95% confidence) to a relatively

compact region; repeating the exercise with a second set of synthetic data yields a profile likeli-

hood for σλ similar to that for σε, suggesting one-sided identifiability, meaning that σλ is indis-

tinguishable from zero (i.e., variability in λ cannot be detected). Results for sr0
also suggest at

one-sided identifiability. Therefore, only variability in R is distinguishable from measurement

noise, although given that results for σλ were borderline identifiable, we expect variability in λ
to be detectable should it be either larger, or as more data become available.

In Fig 3B we also show results where the fixed-parameter model (i.e., parameters λ, R and r0

are assumed constant) is calibrated to the data from the random parameter model. This repre-

sents the standard approach to parameter inference, where variability in the data is typically
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assumed to comprise entirely of measurement error. Given that the variance of r0 and λ were

indistinguishable from zero, this may also seem like a reasonable simplification. First, we see

that this has relatively little impact on the point estimates for the location parameters, however

does give less precise estimates (i.e., wider confidence intervals). As expected, the estimate for

σε is larger than the true value, with the true value not contained with the 95% confidence

interval; this is expected, since the ε must now capture both measurement error and parameter

variability. Examining predictions from the fixed-parameter model in Fig 3A show that

accounting for the variation in (at least) carrying capacity produces a much better representa-

tion of the variability in the data.

Fig 3. Profile likelihood analysis for logistic model with random parameters. We perform inference on a synthetic data set comprising N = 10

measurements at t = 0, 2, 4, . . ., 14 of the random parameter logistic model (i.e., 80 independent measurements). In (C) we treat the standard deviation of the

measurement noise, σε as unknown, in (D) we assume σε is known (for example, pre-estimated), and in (E) we work with a misspecified model where we

assume σε = 0, corresponding to a scenario where we assume all variability in the data is due to variability in mechanistic parameters. In (C–E) we compare

profiles produced using a normal surrogate model (blue dashed) and gamma surrogate model (red dotted). In (C) we also take a standard inference approach,

assuming that observations are normally distributed about model predictions and where parameter variability is neglected (the fixed parameter model). In (A,

B) we show the data (blue), model mean (black) and 95% prediction interval at the MLE using (A) the fixed parameter model, and (B) the random parameter

approach with a gamma surrogate. Also shown are the true parameter values (black vertical dotted) and a 95% confidence interval threshold (black horizontal

dashed).

https://doi.org/10.1371/journal.pcbi.1010734.g003
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We explore two further scenarios in Fig 3D, where we assumed that measurement error is

pre-estimated or known prior to inference, and Fig 3E, where measurement error is neglected

(i.e., variability in the data only comes from variability in the parameters). Both cases yield

similar results (in terms of point estimates and precision) for the location parameters. Intrigu-

ingly, perhaps because σε is relatively small, pre-estimating the measurement error has very lit-

tle impact on the results for the variance parameters. Finally, neglecting measurement error

produces a bias in the estimates for sr0
(which we expect, since rð0Þ � N ðmr0

; s2
r0
þ s2

εÞ).

In all cases examined for the logistic model with independent multivariate normal parame-

ters, only very minor differences are observed between results that use the normal and gamma

approximations, which we interpret to suggest that the third moment (captured by the gamma

approximation, but not the normal approximation) contains very little information about

parameter variability.

In the supporting material (Fig F in S1 File), we explore the ability of our method to infer

parameter distributions that are not from the exponential family; namely, where the input dis-

tributions of the logistic model are independent and uniformly distributed. Despite a discrep-

ancy in higher order moments between the approximate solutions and simulations, we are still

able to accurately recover the moments of the input distributions.

Correlated and skewed random parameters. Next, we consider two scenarios relating to

the complexity of D(ξ), the first where λ and R are correlated such that

ðl;RÞ � MvNormal
ml

mR

" #

;
s2
l

rlRslsR

rlRslsR s2
R

" #!

;

 

ð28Þ

and where r0 and ε are as described by Eq (27). In the second scenario, the growth rate λ is

skewed such that

l � ShiftedGammaðml; s2
l
;olÞ; ð29Þ

where r0, R, and ε are described by Eq (27) and we set ρλR = 0.6 and ωλ = −1.5.

To assess identifiability of the additional parameter in each of the correlated and skewed

models, we show profile likelihoods in Fig 4 for both the normal and gamma approximations,

for various sample sizes (observations are taken at the same observation times as in Fig 3). We

suppose that prior knowledge has constrained |ρλR|< 0.9 and −2 < ωλ < 1.

Given the lack of identifiability of many parameters in Fig 3, it is anticipated that both addi-

tional parameters will be unidentifiable for small sample sizes, as is the case for N = 10 observa-

tions per time point. Even for a relatively large sample size of N = 100 (corresponding to a total

of 800 independent samples across all time points), it is only the sign of the skewness parame-

ter that can be identified in the skewed model, whereas the direction of the correlation between

λ and R cannot be identified to within a 95% confidence interval until a sample of size

N = 1000 is reached.

Results for the correlated model are similar between the normal and gamma approxima-

tions, which we interpret to suggest that higher-order moments in the data do not provide sig-

nificant additional information about the correlation parameter in the model. In contrast, the

results between the normal and gamma approximations are striking; in Fig 4B the normal

approximation gives misleading results that suggest that the skewness parameter is non-identi-

fiable even for very large sample sizes.

Inference for a misspecified random parameter distribution. Finally, we explore how

misspecification of a parameter distribution affects identifiability and model predictions. We

consider two cases for the true parameter distribution, the first where λ has a strong negative
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skew given by Eq (29), and secondly where λ has a bimodal distribution, given by a normal

mixture λ* wλ1 + (1 − w)λ2 where

l1 � N m
ð1Þ

l ; s
ð1Þ

l

� �
;

l2 � N m
ð2Þ

l ; s
ð2Þ

l

� �
:

ð30Þ

A similar problem was previously explored by Banks et al. [50]. We set m
ð1Þ

l ¼ 0:9, m
ð1Þ

l ¼ 1:1,

s
ð1Þ

l ¼ s
ð2Þ

l ¼ 0:05 and w = 0.4 (Fig 5E). The bimodal growth rate might represent a situation

where, i.e., multiple subpopulations or cell lines are present in the experimental data.

Given that the results in Fig 4 suggest that large sample sizes are required to infer higher-

order parameters, such as the skewness of the growth rate, we consider synthetic data gener-

ated with N = 1000 observations per observation time. We show violin plots of the synthetic

data in Fig 5C and 5G for the skewed and bimodal scenarios, respectively. To explore uncer-

tainty in the inferred parameter distributions (in contrast to hyperparameter uncertainty), we

take a Bayesian approach to inference, and perform inference using MCMC. We perform the

analysis using both the true distribution for λ (with additional hyperparameters as appropri-

ate), and a misspecified model where λ is assumed to be normally distributed.

In Fig 5A and 5E we compare the true distribution with the MAP point estimate and credi-

ble intervals for the probability density function for λ using posterior samples obtained using

MCMC for each model. Given the large sample size, we find that the distribution is identifiable

in both cases, confirming our hypothesis from Fig 3 where we found the variance of λ to be

only one-sided identifiable from a small sample size. In Fig 5B and 5F we show similar results

for a misspecified model where λ is incorrectly assumed to be normally distributed. These

results show that misspecification can sometimes yield over-confidence in the identifiability of

parameter density functions: results in Fig 5B and 5F show a narrow 95% credible interval for

Fig 4. Profile likelihoods for an unknown correlation coefficient and growth rate distribution skewness. (A) We infer hyperparameters from synthetic data

where the model parameters (λ, R, r0, ε) are multivariate normal as in Fig 3, but with single unknown correlation Cor(λ, R) = ρλR = 0.6. (B) We infer

hyperparameters from synthetic data where the model parameters are independent as in Fig 3, but where λ has a skewed distribution with unknown skewness

ωλ = −1.5. Only (A) ρλR and (B) ωλ are profiled. In both cases, we produce results using synthetic data sets of size N = 10 (solid), N = 100 (dashed), and

N = 1000 (dotted), where normal (blue) and gamma (red) surrogates are used (black horizontal dashed).

https://doi.org/10.1371/journal.pcbi.1010734.g004
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the probability density function for λ that do not contain the true distribution. However, it is

still possible to accurately infer the statistical moments of the parameter distributions despite

misspecification. For example, the true bimodal distribution and inferred MAP normal distri-

bution (Fig 5F) have similar means (1.020 and 1.016, respectively) and variances (1.22 × 10−2

and 1.21 × 10−2, respectively).

Results in Fig 5C and 5G, showing a 95% prediction interval for the data at the MAP for

both the true and misspecified models, demonstrate that coarse-scale predictions from the

misspecified model can be useful. We note, however, that this is not always the case; Banks

et al. [50] show that misleading predictions can result when λ has a bimodal distribution

where λ1 and λ2 are sufficiently different (in our case, they are relatively similar). In Fig 5D

and 5H we show a finer-scale comparison of the predictions from each model by considering a

comparison between the predicted probability density function for the tumour spheroid radius

at t = 4 days, r(4) (MAP with credible intervals). For the skewed model, Fig 5D, predictions are

similar between the data (kernel density estimate), true model and misspecified model. How-

ever, the misspecified model cannot capture the multimodality of the data at t = 4 days, which

is captured by the true model (Fig 5). Both the true and misspecified models have similar non-

negligible support and (from results in Fig 5G) comparable 2.5% and 97.5% quantiles. In the

supporting material (Fig D in S1 File), we demonstrate how the quality of fit obtained from the

misspecified model is poor in the case where subpopulations are more distinct

(m
ð1Þ

l ¼ 0:7; m
ð2Þ

l ¼ 1:3).

Fig 5. Inference and prediction where parameter distribution is misspecified. We explore a case where the underlying growth rate distribution has (A–C) a skewed

distribution with (μλ, σλ, ωλ) = (1, 0.05, −1.5), and (e–g) a bimodal distribution, modelled as the mixture wλ1 + (1 − w)λ2 with l1 ¼ N ð0:9; 0:052Þ, l2 ¼ N ð1:1; 0:052Þ

and w = 0.4. To ensure identifiability, we use a large sample size of N = 1000 per time point. In (A,E) the true form of the growth rate distribution is used, whereas in

(B,F) the growth rate distribution is misspecified and assumed to be normal. Shaded regions in (A,B,E,F) indicate 95% credible intervals for the density. In (C,G),

predictions at the MAP estimates (equivalent to MLE) are compared to the data. A 95% prediction interval is shown for the true model (shaded) and the misspecified

model (blue dashed), solid curves to the mean, and violin plots show the data. In (D,H), we compare predictions for the density from the true and misspecified models

at t = 4.

https://doi.org/10.1371/journal.pcbi.1010734.g005
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Linear two-pool model

The transfer of chemical species between and from two-pools is used widely as a model of cho-

lesterol transfer or urea decay [51, 52]. We consider that material transfers from species one,

denoted X1, to species two, denoted X2, at rate k21 and decays from each pool at rates k1 and k2,

respectively. That is, we consider the chemical model

X1!
k21 X2!

k2
;;

X1!
k1
;; ð31Þ

which we describe using a coupled system of differential equations describing the time-rate of

change of the concentration of material in each pool, x1(t) and x2(t), respectively, so that

dx1ðtÞ
dt
¼ � k21 þ k1ð Þx1 tð Þ;

dx2ðtÞ
dt
¼ k21x1 tð Þ � k2x2 tð Þ:

ð32Þ

We model a closed system subject to a known input at t = 0 such that x1(0) = x0 and x2(0) = 0.

We consider an inference problem where observations are taken from only the second pool

and that the measurement error scales with the concentration. Therefore, we assume multipli-

cative normal noise, such that

f ðtiÞðθÞ ¼ x2ðtiÞε: ð33Þ

We further assume that the decay from each pool is due to a strictly chemical process such that

k1 and k2 are constant, and that k21 is a normally distributed random variable. Variation in k21

between data might arise clinically from variability between patients. We incorporate this

parameterisation into our framework by assuming that θ ¼ ½k1; k21; k2; ε�
⊺

is a random param-

eter vector with independent components, where

k1 � dðm1Þ; k2 � dðm2Þ;

k21 � N m21; s
2
21

� �
; ε � N 1;s2ð Þ:

ð34Þ

Here, δ(x) denotes a Dirac or degenerate distribution (we take δ(x) to be normally distributed

with σ! 0 such that all central moments above the third are zero). For the linear two-pool

model, we have that θ* D(ξ) with hyperparameters ξ ¼ ½m1; m21; m2; ln s21; ln s�
⊺
. We set μ1

= 0.7, μ21 = 0.6, μ2 = 0.4, σ21 = 0.1 and σ = 0.01, and generate synthetic data using N = 20 inde-

pendent observations at t 2 {0.5, 1.5, 2.5, 3.5, 5, 7} (Fig 6G). The solution to Eq (31) at the MLE

is shown in Fig 6G, and the approximate solution based on both a normal and gamma approx-

imation is given as supporting material (Fig B in S1 File) in addition to a statistical comparison

(Table B in S1 File). Given that the distribution of material in the second pool is skewed at

later times, we work only with the gamma approximation for analysis of the two-pool model.

Profile likelihood results in Fig 6A–6E show that all physical parameters are identifiable,

including the variance in the transfer rate k21. This result is particularly interesting as we are

able to identify the source of variance due to heterogeneity despite the variance of the measure-

ment noise being only one-sided identifiable; we cannot distinguish a model with measure-

ment noise from a model without measurement noise, but this has no impact on the

identifiability of other model parameters. Results in Fig 6G show model predictions (mean

and 95% prediction interval) computed using the MLE. Evident in Fig 6G is a key advantage of

the random parameter approach—in contrast to the standard approach where variability is
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often assumed to originate from independent measurement noise—where our model produces

not only average behaviour consistent with the data, but excellent predictions relating to the

data variance.

To better visualise how well the unknown distribution of k21 is identified from the available

data we repeat the identifiability analysis taking a Bayesian approach to obtain posterior sam-

ples using MCMC. In Fig 6F we show a predictive distribution of the density function for k21

(mean and 95% credible interval of the density function), showing that the distribution is iden-

tifiable and that relatively precise estimates are recovered.

Non-linear two-pool model

Finally, we consider a non-linear extension of the two-pool model where the transfer rate is

not constant, but described by a non-linear Michaelis-Menten form, k(x1) = k21x1/(V21 + x1).

That is, we consider the chemical model

X1!
kðx1Þ X2!

k2
;;

X1!
k1
;; ð35Þ

described by the system of differential equations

dx1ðtÞ
dt
¼ �

k21

V21 þ x1ðtÞ
þ k1

� �

x1 tð Þ;

dx2ðtÞ
dt
¼

k21x1ðtÞ
V21 þ x1ðtÞ

� k2x2 tð Þ:
ð36Þ

Fig 6. Identifiability analysis for two-pool model with random parameters. (A–E) Profile likelihoods for each hyperparameter. Also shown are the

true values (vertical dotted) and the threshold for a 95% confidence interval (horizontal dashed). (F) Inferred distribution of k21 showing the

distribution at the MAP (black) and a 95% credible interval for the density function. (G) Synthetic data (red discs) and model prediction based on the

MLE showing the mean (black) and 95% prediction interval (grey).

https://doi.org/10.1371/journal.pcbi.1010734.g006
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In contrast to the previous two case studies, an exact solution is not available for the non-linear

two-pool model. Therefore, this case study provides an example of the flexibility of our

approach: we can solve the non-linear two-pool model using an explicit numerical scheme

[53] and use automatic differentiation [54] to calculate the necessary derivatives with minimal

additional computational overhead.

We consider identifiability under two scenarios. In both cases, we collect bivariate (i.e.,

dependent) outputs from both pools, with measurements of pool one subject to multiplicative

normal noise, and that of pool two subject to additive normal noise, such that

f ðtiÞðθÞ ¼
x1ðtiÞε1

x2ðtiÞ þ ε2

" #

: ð37Þ

In the first scenario, we take N = 20 bivariate observations at several observation times; ti = 2i
for i = 1, 2, . . ., 5 (observations at different observation times are independent). Synthetic data

for the first scenario are shown in Fig 7A (bivariate data with the gamma approximation are

shown in supporting material (Fig C in S1 File)). In the second, clinically and experimentally

motivated scenario [55, 56], we consider that N = 100 observations are available from the sin-

gle observation time t = 10. This second scenario represents a situation where, for example, the

data collection method is invasive or possibly where patients must return to a clinic for data

collection. Synthetic data for the second scenario are shown in Fig 7B. Given that univariate

observations are skewed, we consider only the bivariate gamma approximation for analysis of

the non-linear two-pool model. Results in Fig 7B show excellent agreement between the syn-

thetic data and gamma approximation.

Fig 7. Synthetic data from the non-linear two-pool model. (A) Data comprise N = 20 noisy observations of the concentration in each pool from five

observation times. Also shown is the mean and a 95% prediction interval based on the approximate solution to the random parameter non-linear two-

pool model. Bivariate data and solution to the random parameter problem are provided as supporting material (Fig C in S1 File) in addition to a

statistical comparison for each marginal distribution (Table C in S1 File). (B) Data comprise N = 100 noisy observations from the single observation

time t = 10 (blue discs). Also shown is the approximate solution to the random parameter problem using correlated gamma marginals (red solid), and

the exact density based on 105 randomly sampled parameter values (grey filled).

https://doi.org/10.1371/journal.pcbi.1010734.g007
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The random parameter vector θ ¼ ½k1; k21;V21; k2; ε1; ε2�
⊺

has independent components,

where

k1 � dðm1Þ; k2 � dðm2Þ; K21 � N m21; s
2
21

� �
;

V21 � N mV21
; s2

V21

� �
; ε1 � N 1; s2

1

� �
; ε2 � N 0; s2

2

� �
:

ð38Þ

We set μ21 = 0.6, mV21
¼ 5, μ1 = 0.1, μ2 = 0.4, σ21 = 0.1, sV21

¼ 1, σ1 = σ2 = 0.01.

Profile likelihood results in Fig 8H show that all parameters are identifiable from data with

multiple observation times, with the exception of the standard deviation of the additive normal

noise process for pool 2; σ2 is one-sided identifiable (indistinguishable from zero). Despite the

sample sizes being equivalent, parameter estimates are more precise from data with multiple

observation times than from a single observation time.

Results from data with a single observation time are more interesting. At first, it appears

that all hyperparameters relating to the physical parameters are identifiable (the variance of

V21 is border-line identifiable, and the variances of the measurement noise variables are one-

sided identifiable). However, the profile likelihood is relatively flat around the MLE. Given

that we have taken a moment-matching approach to inference, we explore this further by

exploring the sensitivity matrix, or Fisher information matrix (FIM) of the function

MðξÞ : R8
! R7

, which maps the hyperparameters to the moments of the output. The FIM is

given by

SðξÞ ¼ JMðξÞ
⊺JMðξÞ ð39Þ

Fig 8. Identifiability analysis for the non-linear two-pool model. Profile likelihoods for each parameter where the data comprise N = 20

observations each from five observation times (blue) and N = 100 observations at a single observation time.

https://doi.org/10.1371/journal.pcbi.1010734.g008
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where JM(ξ) is the Jacobian of M(ξ). The FIM relates directly to the Hessian (i.e., curvature) of

the log-likelihood under the assumption that observations of the moments are normally dis-

tributed. Furthermore, the rank of the FIM at the MLE gives insight into the local-identifiabil-

ity of the model: for identifiability, we require that FIM be of full-rank (or equivalently, non-

singular) [43]. Using automatic differentiation to find JMðξ̂Þ we find that Sðξ̂Þ has one zero

eigenvalue so that rankðSðξ̂ÞÞ ¼ 7 < 8. Therefore, parameters are locally non-identifiable; we

also see this from profile likelihood analysis in Fig 8. We have not in this work explored the

connection between the identifiability of the fixed parameter model and that of the random

parameter model. This question is particularly relevant for the single observation time example

as we would not, in general, expect that the four biophysical parameters ½k1; k21;V21; k2�
⊺

be

identifiable from a single two-dimensional output. The provision of deterministic expressions

connecting the input and output moments (Eqs (11) to (14)) may allow more rigorous explora-

tion of this question in future work.

From profile likelihood results in Fig 8 we also notice non-monotonic behaviour in the like-

lihood, particularly in Fig 8B and 8E. To explore this further, we take a Bayesian approach to

identifiability analysis [7, 11] and explore the convergence of 12 independent MCMC chains

of length 100,000, 11 initiated at randomly sampled regions of the prior, and one chain initi-

ated at the true values. In Fig 9A we see that several chains converge to a region of the parame-

ter space with relatively low likelihood, whereas several converge to a region with comparable

log posterior density to the MAP. In Fig 9C–9J we explore the marginal density of chains that

converge to a region where the mean log-posterior density from the final 60,000 iterations is

within a 95% confidence level of the MAP. First, it is clear that results from the single chain ini-

tiated at the true value are different from the other chains: the likelihood is clearly multimodal,

where regions of the parameter space where the mean or the variance of V21 is zero. We dem-

onstrate this in Fig 9B by finding a second MAP for a model where sV21
¼ 0, showing that

both models are indistinguishable.

Discussion

Deterministic differential equation models are routinely applied to analyse data in terms of

parameters that carry physically meaningful interpretations. Traditionally, these models have

fixed parameters that describe only the mean of experimental observations: variability in data

is neglected, often assumed to originate from a noise process unrelated to the underlying

dynamics (i.e., measurement error) [7, 9, 13]. Allowing model parameters to vary randomly

according to probability distributions provides flexibility to account for the heterogeneity that

plays an essential role in the emergent behaviour of many biological and biophysical systems.

Methods for performing inference of these models, and consequentially assessing parameter

identifiability, are traditionally limited by a computational cost that far exceeds that of the cor-

responding fixed-parameter model. In this work, we present a novel framework for identifia-

bility analysis of differential equation models with random parameters with a computational

cost comparable to that of the fixed parameter problem. Our approach is applicable to many

existing workflows, since we use a standard class of deterministic, differential equation models,

and provide an approximate expression for the likelihood function providing flexibility in

terms of the statistical methods used for inference and identifiability analysis.

We approach the random parameter inference problem by specifying a distribution for

model parameters, and infer hyperparameters that relate to each model parameter distribution.

Notably, this approach increases the number of unknown parameters that have to be estimated

from data, however also allows interpretation of additional information that may be available

in higher-order statistical moments of the data. Identifiability analysis of the logistic model, for
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example, shows that the additional unknown parameters in the random parameter model (i.e.,

hyperparameters relating to the variance of each model parameter) do not yield greater uncer-

tainty in the mean of the parameters as is often assumed when the number of unknown

parameters in a model increases. In fact, we see in Fig 3C that applying the random parameter

model yields more precise estimates of the average proliferation rate and initial spheroid

radius. We attribute this, in part, to a more accurate specification of the observation variance:

for the fixed parameter model, we assume that variability arises due to homoscedastic normal

measurement error, which leads to both under- and over- dispersion at early and late times,

respectively (Fig 3C). This can be avoided by allowing the variance to vary with time (for

Fig 9. MCMC results for non-linear two-pool model. (A) MCMC was run for 105 iterations at twelve initial locations: eleven sampled from the prior and one at the

true value. Coloured curves show convergence in the log posterior density. Also shown is the posterior density at the MAP (dashed), posterior density at the true value

(dotted), a 95% threshold based on an asymptotic chi-squared distribution and the MAP (solid). The first 6 × 104 iterations were discarded as burn-in. Each colour

corresponds to an independent MCMC chain. (B) Synthetic data (discs), approximate model solution at the MAP (orange solid), approximate model solution at a

model where V21 has zero variance (red dotted), and approximate model solution at the true values (grey). (C–F) Marginal posterior densities for each parameter.

Each colour corresponds to an independent MCMC chain.

https://doi.org/10.1371/journal.pcbi.1010734.g009
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example, by specifying a functional form for the variance), or accounted for naturally using

the random parameter model. We find that our model yields accurate predictions of the data

variance despite non-identifiability of several hyperparameters which relate to the model

parameter variances.

The computational cost and ease of implementation of our approach is comparable to the

fixed parameter model, in contrast to approximate Bayesian computational methods [32, 33],

which are computationally costly, and Bayesian hierarchical approaches [27, 28], which suffer

from a parameter dimensionality that scales with sample size. We benchmark our approach

using the non-linear two-pool model with a single observation time, finding that likelihood

evaluations for the random parameter problem (850 μs) are comparable to timings for the

fixed parameter problem (67 μs) once inefficiencies in our implementation are considered (for

example, forming the four-dimensional kurtosis tensorKðθÞ without exploiting significant

sparsity accounts for 65% (550 μs) of the computation time). Computations were performed

on an Apple M1 Pro chip. Overall, the second order Taylor series provides an adequate

approximation to the models we consider, requiring evaluation of only the model mean, gradi-

ent, and Hessian: all of which can be obtained efficiently and with relative ease using automatic

differentiation. While the two-moment normal approximation can yield similar results in

cases where the data are not significantly skewed, the three-moment approximation provides

better results for a wider range of models with only minor additional computational cost. The

use of automatic differentiation [54] means that the code we provide for analysis is applicable

to a broad class of potentially black-box deterministic models, with any measurement noise

model, provided that model outputs are vector valued.

The primary limitation of our approach is that data must be adequately approximated with

a normal or gamma distribution, or be expressible as a mixture of normal or gamma distribu-

tions. While this may seem restrictive, we note that it is often the case in the mathematical biol-

ogy literature that data are assumed normally distributed about model predictions, which

describe the data mean (or equivalently, models are calibrated using least-squares estimation)

[5, 7, 22, 57]. This assumption can be assessed by examining the fit of the approximate distri-

bution to the data at the MLE. In the supporting material (Fig E in S1 File), we demonstrate a

pathological example where our model performs poorly, by approximating the solution to the

logistic model with a strong Allee effect [58]. The distribution of the initial condition is chosen

so that approximately 16% of model realisations lead to population extinction, whereas 84%

lead to logistic growth to carrying capacity. The resultant distribution is bimodal and con-

strained to a finite interval, whereas the approximation is unimodal, has infinite support, and

clearly cannot capture the data. As our approximations are constructed from a finite set of

moments, our approach may also fail for high-dimensional data where the dependence struc-

ture may be highly non-linear and not adequately captured by a multivariate normal distribu-

tion; this is potentially the case with time-series data.

Two sources of variability that we do not consider include intrinsic variability arising, for

example, from the chemical master equation, and uncertainty in the independent variable. The

former can be captured in a differential equation framework through stochastic differential

equations [2, 59], potentially allowing for our approximate approach to inference and iden-

tifiability analysis through a nested moment-matching approach [12, 60] that captures both

intrinsic variability and variability in model parameters. The latter source of variability is clini-

cally relevant; immunological data arising from study of COVID-19 and other infectious dis-

eases [56], relates to highly heterogeneous biological processes, and the exact time of infection

is typically unknown. By making a distributional assumption for the infection time, t, we can

already apply our framework to calculate the conditional distribution of measurements p(x|t,
θ). This time-dependent distribution can be constructed efficiently by assuming continuity
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and constructing an interpolation of the moments x over a range of measurement times, t. The

joint distribution of measurements and observation time can then be analytically expressed

pðx; tjθÞ ¼ pðxjt; θÞpðtjθÞ; ð40Þ

and a likelihood constructed that accounts for uncertain observation times, that are possibly

dependent on θ.

Heterogeneity is ubiquitous to biology, playing an essential role in the behaviour of biologi-

cal systems, and contributing to the variability present in biological data. In this work, we pres-

ent a novel, computationally efficient, framework for inference and identifiability analysis for

differential equation based models that incorporate heterogeneity through random parame-

ters. We demonstrate how our framework can be applied to identify sources of biological vari-

ability from data, and produce both more precise parameter estimates and more accurate

predictions with minimal additional computational cost compared to a fixed-parameter

approach. Our framework is easy to implement and applicable to a wide range of models com-

monly employed throughout biology. A better understanding of heterogeneity in biology,

aided by quantitative methods to extract heterogeneity from data, has potential to yield a better

understanding of disease, more accurate predictions and an overall more holistic insight into

biological behaviour.
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