
RESEARCH ARTICLE

TGFβ pathway is required for viable gestation

of Fanconi anemia embryos

Alfredo Rodrı́guezID
1,2,3, Michael Epperly4, Jessica Filiatrault1, Martha Velázquez1,

Chunyu Yang1,5, Kelsey McQueen1,5, Larissa A. Sambel1,5, Huy Nguyen1,5, Divya

Ramalingam IyerID
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Abstract

Overexpression of the TGFβ pathway impairs the proliferation of the hematopoietic stem

and progenitor cells (HSPCs) pool in Fanconi anemia (FA). TGFβ promotes the expression

of NHEJ genes, known to function in a low-fidelity DNA repair pathway, and pharmacologi-

cal inhibition of TGFβ signaling rescues FA HSPCs. Here, we demonstrate that genetic dis-

ruption of Smad3, a transducer of the canonical TGFβ pathway, modifies the phenotype of

FA mouse models deficient for Fancd2. We observed that the TGFβ and NHEJ pathway

genes are overexpressed during the embryogenesis of Fancd2-/- mice and that the

Fancd2-/-Smad3-/- double knockout (DKO) mice undergo high levels of embryonic lethality

due to loss of the TGFβ-NHEJ axis. Fancd2-deficient embryos acquire extensive genomic

instability during gestation which is not reversed by Smad3 inactivation. Strikingly, the few

DKO survivors have activated the non-canonical TGFβ-ERK pathway, ensuring expression

of NHEJ genes during embryogenesis and improved survival. Activation of the TGFβ-NHEJ

axis was critical for the survival of the few Fancd2-/-Smad3-/- DKO newborn mice but had

detrimental consequences for these surviving mice, such as enhanced genomic instability

and ineffective hematopoiesis.

Author summary

The TGFβ pathway inhibits the growth and proliferation of the hematopoietic stem and

progenitor cells in Fanconi anemia (FA). We have previously shown that inhibition of the

TGFβ pathway rescues the growth defects of FA hematopoietic stem and progenitor cells.

In this work we determined whether a cross between Fancd2 (an FA gene) and Smad3
(the canonical TGFβ pathway transducer) heterozygous mice would generate double
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knockout (Fancd2-/-Smad3-/-) progeny without the hematopoietic defect characteristic of

FA. Contrary to expected, we observed increased embryonic lethality for the double

knockout (DKO) mice and persistence of the FA phenotype in the surviving DKO mice.

We discovered that Fancd2-/- embryos acquire extensive genomic instability during gesta-

tion which is not reversed by Smad3 inactivation. In addition, the Fancd2-/- mouse

embryos exhibited high NHEJ activity which allowed them to survive during gestation.

The few DKO survivors retain the FA phenotype due to activation of the non-canonical

TGFβ -ERK pathway.

Introduction

Fanconi anemia (FA) is a chromosome instability syndrome with childhood onset bone mar-

row failure (BMF), congenital malformations, and cancer predisposition [1]. A defect in the

maintenance of the hematopoietic stem and progenitor cell (HSPC) pool in FA patients leads

to BMF and aplastic anemia (AA). FA is a recessive disease caused by pathogenic variants

inherited in any one of 22 FANC genes [2]. The protein products of the FANC genes partici-

pate in a biochemical pathway involved in the repair of DNA interstrand crosslinks (ICLs) [3].

A defect in the FA pathway results in hypersensitivity to ICL-inducing agents, such as acetalde-

hyde, formaldehyde, mitomycin C (MMC), or diepoxybutane (DEB). Acetaldehyde and form-

aldehyde are currently considered to be the source of endogenous DNA damage, causing

HSPC attrition in the BM of FA patients [4].

Accumulation of DNA damage in FA HSPCs leads to several cellular defects. On the one

hand, hyperactivation of p53 in FA cells blocks progression into the cell cycle and promotes

apoptosis [5]. On the other hand, overexpression of the oncogene MYC in FA HSPCs provides

a growth-promoting compensatory mechanism, counteracting p53 and supporting the sur-

vival of the limited HSPC pool in the FA bone marrow [6].

Proinflammatory cytokines are upregulated in the FA bone marrow microenvironment of

FA patients [7–10]. Increased TNFα expression activates MYC upregulation [6], and increased

TGFβ1 and TGFβ3 has growth suppressive activity [7]. The TGFβ proinflammatory cytokines

belong to a superfamiliy of multifunctional ligands with the capacity to signal into several

receptors [11]. The outcomes of TGFβ signaling have been shown to be context dependent.

TGFβ1 and TGFβ3 suppress the growth of HSPCs, whereas TGFβ2 has an opposite role and

promotes hematopoiesis [12]. In HSPCs, the TGFβ family ligands signal through the TGFβ
receptor 1 (TGFβ RI), which activates the canonical TGFβ signal transduction pathway, medi-

ated by SMAD3. SMAD3 in turn heterodimerizes with SMAD4 and functions as a transcrip-

tion factor with the capacity to activate multiple genes [13]. The TGFβ family ligands can also

exert their activity through multiple non-canonical pathways that transduce the extracellular

signaling into the intracellular milieu, which includes the ERK pathway [14].

The TGFβ pathway has a role in controlling the expression of DNA repair genes [15–18].

Specifically in FA, the increased levels of TGFβ signaling through the canonical SMAD3 path-

way promotes the transcriptional upregulation of NHEJ genes and downregulation of HR

genes. [10]. The NHEJ pathway is a high capacity but compromised fidelity DNA repair path-

way [19] which, when overactivated, can lead to gross chromosomal abnormalities [20].

Importantly, pharmacological inhibition of the TGFβ pathway improves the DNA repair

capacities of FA cells by inhibiting the expression of NHEJ genes and increasing the expression

of homologous recombination (HR) genes [10]. TGFβ pathway inhibitors thereby promote the

survival and growth of FA HSPCs from FA patients in vitro and in FA mouse models with
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physiologically-induced DNA damage [7, 10]. Although pharmacological inhibition of the

TGFβ pathway is beneficial for FA HPSCs, rescuing several of the FA HSPCs phenotypes, this

may not be the case when the TGFβ pathway is genetically abrogated at the organismal level

[13].

Here, we generated a double knockout (DKO) murine model for Fancd2 and the canonical

TGFβ pathway gene Smad3 (Fancd2-/-Smad3-/-), and thereby explored the role of the TGFβ
pathway during FA embryogenesis. We observed that, Fancd2-/- embryos overexpress many

components of the TGFβ and NHEJ pathways and complete pregnancy; however, Fancd2-/-S-
mad3-/- DKO presented high levels of embryonic lethality. Strikingly, the small fraction of sur-

viving DKO pups retain the characteristic FA phenotypes, including ICL sensitivity and bone

marrow failure. Surviving DKO pups exhibited activation of the non-canonical TGFβ-ERK

pathway and expression of NHEJ genes, such as DNA-PKcs, demonstrating that the TGFβ-

NHEJ axis is required for viable gestation of FA embryos. Strikingly two biochemically distinct

types of DKO embryos were identified during early gestation (day E12.5). The first type loses

activation of the TGFβ-SMAD3-DNA-PKcs axis, as originally predicted, and the second type

exhibits activation of the TGFβ-ERK-DNA-PKcs axis, as observed in the surviving DKO pups.

In summary, we build on the fact that the TGFβ network is very robust and highly con-

nected. We first show a synthetic lethal interaction between the FA pathway and the TGFβ-

NHEJ axis during embryogenesis, i.e. Fancd2-/- embryos need the TGFβ-SMAD3-NHEJ axis

for completing embryogenesis. Interestingly, and shown in this manuscript, activation of the

ERK pathway, can rescue Fancd2-/- embryos from the synthetic lethality by activating the non-

canonical TGFβ-ERK-NHEJ axis. Our findings demonstrate that the TGFβ pathway is essen-

tial for expression of NHEJ genes during FA embryogenesis. Although NHEJ genes are

required for viable gestation of FA embryos, NHEJ upregulation is detrimental for hematopoi-

esis of the embryos and the newborn mice.

Results

TGFβ pathway inhibitors rescue hematopoiesis in FA models

The canonical TGFβ pathway is upregulated in the bone marrow of patients with FA [7, 10].

Accordingly, TGFβ pathway inhibitors, targeting the TGFβ Receptor I (TGFβ RI), such as

Galunisertib and LSN3301240, were initially tested for their ability to rescue hematopoiesis in

FA models. As predicted, these inhibitors increased the in vitro colony forming unit (CFU)

clonogenic capacity of Lin- cells from Fancd2-/- mice (Fig 1A), correlating with a decrease in

the phosphorylation of SMAD2/3 in the presence of the TGFβ1 and TGFβ3 in WT and

Fancd2-/- cells (Fig 1B). The inhibitors also increased the CFU numbers in the cells from WT

mice, however, the increase in CFU was more significant in cells from Fancd2-/- mice. Consis-

tent with previous studies with other TGFβ pathway inhibitors [7, 10], Galunisertib and

LSN3301240 also improved the clonogenic capacity of FA-like HSPCs. These FA-like cells

were generated by infection of CD34+ cord blood cells with a lentivirus expressing a shRNA

against FANCD2 (S1A Fig). LSN3301240 also partially rescued Fancd2-/- stromal cell lines

from MMC-induced genotoxicity (Fig 1C), although this effect was not observed with Galuni-

sertib (S1B Fig). We next tested LSN3301240 for its ability to protect LT-HSC from DNA

damage caused by pI:pC, an agent known to induce physiologic stress [21]. We co-injected

WT or Fancd2-/- mice with pI:pC and LSN3301240, and the amount of DNA damage in sorted

LT-HSC (identified as Lin-LSK CD150+CD48- cells) was quantified using the comet assay (Fig

1D). Treatment of Fancd2-/- mice with LSN3301240 significantly reduced the amount of DNA

damage induced by pI:pC in LT-HSCs (Fig 1E). Taken together, inhibition of the TGFβ path-

way rescued several of the hematopoietic features of FA bone marrow cells.
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Double knockout of the canonical TGFβ pathway and Fancd2 results in

embryonic lethality

Hyperactive TGFβ pathway signaling causes overexpression of genes in the low-fidelity NHEJ

pathway of DNA repair, thereby contributing to the bone marrow dysfunction observed in FA

Fig 1. TGFβ pathway inhibitors rescue hematopoiesis in FA models. (A) TGFβ pathway inhibitors Galunisertib and LSN3301240 increase the clonogenic

capacity of Lin- cells from bone marrow of Fancd2-/- mice measured in a CFU assay. Lineage negative primary bone marrow cells from wild-type (WT) or

Fancd2-/- mice were cultured in methylcellulose medium containing increasing doses of Galunisertib or LSN3301240 for 7 days and hematopoietic colonies

(CFUs) were counted for evaluating clonogenic growth of progenitors. (B) Western blots of the lysates from Lin− cells from bone marrow of wild-type and

Fancd2-/- mice cultured for 2 hours in the presence of TGFβ1 (5 ng/mL) or TGFβ3 (5 ng/mL) with or without LSN3301240. Levels of phospho-Smad2

(measured by two different antibodies, one against phospho-Smad2 and the other against both phospho-Smad2 and Smad3) are shown. Quantification relative

to basal conditions and the loading control is shown below every lane. Pink indicates samples treated with LSN3301240. (C) Stromal cell lines generated from

WT and Fancd2-/- mice were cultured in the presence of LSN3301240 and Mitomycin C (MMC) and survival was determined. LSN3301240 partially rescued

the MMC sensitivity characteristic of FA cell lines. (D) Schematics showing treatment of WT and Fancd2-/- mice in vivo with pI:pC + LSN3301240. Wild-type

(WT) or Fancd2-/- mice (KO) were injected with pI:pC along with LSN3301240 and 48 hrs after the exposure, DNA damage was analyzed in bone marrow

LT-HSCs using a comet assay. (E) Comet assay on sorted LT-HSCs showing that pI:pC increases the DNA damage, measured by tail length, of LT-HSCs,

whereas co-treatment with LSN3301240 reduces DNA damage in LT-HSCs from Fancd2-/- mice. Data in (A) and (C) are represented as mean ± SEM. Data in

(E) are represented as boxplots. p values of 0.01 to 0.05 were considered significant (�), p values of 0.001 to 0.01 were considered very significant (��) and p

values of< 0.001 were considered extremely significant (���, ����). See also S1 Fig.

https://doi.org/10.1371/journal.pgen.1010459.g001
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mice and FA patients. Since pharmacological inhibition of the TGFβ pathway improves bone

marrow dysfunction, we hypothesized that a mouse model with disruption of Fancd2 and

Smad3, the canonical mediator of the TGFβ pathway, would overcome this FA hematopoietic

defect and perhaps increase the survival of DKO newborn mice. To test this hypothesis, we

generated four different double knockout (DKO) crosses of Smad3+/- and Fancd2+/- mouse

strains. Two different Smad3+/- and Fancd2+/- mice strains on two different genetic back-

grounds (129/Sv and C57BL/6) were bred to obtain 4 strains of Smad3-/- Fancd2-/- DKO mice,

named Smad3 Fancd2-129B6F2;

Smad3 Fancd2-129129F2; Smad3 Fancd2-B6B6F2 and Smad3 Fancd2-B6129F2 (Figs 2A

and S2A). Phenotype for these crosses can be seen in S1 Table.

Surprisingly, for every tested DKO breed we observed a decrease in the number of weaned

DKO pups (Fig 2B), demonstrating that embryonic lethality was characteristic of DKO

embryos, regardless of the mouse strain. These findings suggested that overexpression of the

TGFβ pathway is paradoxically required for the survival of embryos with a FA pathway defi-

ciency. Since the Smad3 Fancd2-129B6F2 cross yielded the highest number of surviving DKO

mice we analyzed the hematopoietic function of Smad3 Fancd2-129B6F2 adult mice.

Surviving DKO mice exhibit dysfunctional adult hematopoiesis

Smad3 Fancd2-129B6F2 adult mice were next evaluated for their hematopoietic function, com-

pared to WT, Fancd2-/-, and Smad3-/- adult mice. The Smad3 Fancd2-129B6F2 adult mice and the

Fancd2-/- mice exhibited a reduced number of hematopoietic stem cells, compared to the WT and

Smad3-/- mice (Fig 2C). Similarly, hematopoietic stem cells from adult Smad3 Fancd2-129B6F2

mice or Fancd2-/- mice were impaired in their production of hematopoietic progenitors, based on

LTBMC (Stroma-dependent long-term bone marrow culture) assays (Fig 2D), compared with

the WT and Smad3-/- mice. Similar results were observed in LTBMC assays for the Smad3

Fancd2-129129F2; Smad3 Fancd2-B6B6F2 and Smad3 Fancd2-B6129F2 crosses (S2B Fig). In
vivo repopulation assays also revealed a reduced repopulation capacity of Smad3 Fancd2-129B6F2

and Fancd2-/- hematopoietic stem cells (Fig 2E). A similar reduction in repopulation capacity was

observed for hematopoietic cells derived from Smad3 Fancd2-129129F2 mice (S2C Fig).

In vitro assessment of DNA repair capacity in stromal fibroblast lines demonstrated that

Smad3 Fancd2-129B6F2 cells are hypersensitive to MMC, similar to the phenotype of Fancd2
deficient cells (Fig 2F), with modest differences likely due to their genetic backgrounds, Smad3

Fancd2-129129F2; Smad3 Fancd2-B6B6F2 and Smad3 Fancd2-B6129F2 derived stroma were

also sensitive to MMC (S2D Fig). These results were also surprising since Fancd2-deficient cells

exposed to the TGFβ pathway inhibitors (Galunisertib or LSN3301240), had relative MMC

resistance (Fig 1C). Smad3 Fancd2-129B6F2 cells were also hypersensitive to irradiation (Fig

2G), implying that Smad3 Fancd2-129B6F2 cells have multiple DNA repair defects.

We hypothesized that the sensitivity to irradiation in the Smad3 Fancd2-129B6F2 cells is

due to deficiency in the expression of NHEJ proteins; however, after irradiating the cells we

observed that Smad3 Fancd2-129B6F2 cells express DNA-PKcs and 53BP1, the prototypical

proteins mediating NHEJ (Fig 2H). Smad3 Fancd2-129B6F2 cells not only had upregulation

of NHEJ proteins but also expressed high levels of RAD51, a protein known to mediate HR

(Fig 2H). Nonetheless, the DKO cells were unable to tolerate IR.

Upregulation of TGFβ pathway genes and error-prone DNA repair

pathway genes in FA mouse embryos

We hypothesized that the few surviving DKO pups were the exception to the generalized

lethality observed for the DKO crosses. We reasoned that the canonical TGFβ pathway might
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Fig 2. Smad3 loss is synthetic lethal with Fancd2 loss and surviving DKO mice do not have improved adult hematopoiesis. (A) Two different Smad3+/-

and Fancd2+/- mouse strains on two different genetic backgrounds (129/Sv and C57BL/6) were bred to obtain 4 strains of Smad3-/- Fancd2-/- double Knockout

(DKO) mice: Smad3 Fancd2-129B6F2; Smad3 Fancd2-129129F2; Smad3 Fancd2-B6B6F2 and Smad3 Fancd2-B6129F2 (See also S2A Fig). (B) Breeding

frequency of DKO mice was significantly reduced in all 4 background combinations compared to the expected 6.5% frequency of DKO births from breeding

double heterozygotes, suggesting embryonic lethality. For Smad3 Fancd2-129B6F2; Smad3 Fancd2-129129F2; Smad3 Fancd2-B6B6F2 and Smad3

Fancd2-B6129F2, we tested whether the frequency of births is significantly different from an expected frequency of 1 in 16, using the two-sided proportional

test. The p-values are adjusted for multiple tests with the Bonferroni method. The adjusted p-values for the four breeds are<0.0001, 0.0028,<0.0001 and

0.0044 respectively, so the birth frequencies are all significantly smaller than 1/16 (i.e. 0.0625). The exact 95% confidence interval for the four breeds are

respectively (0.0251, 0.0462), (0.0187, 0.0468), (0.0006, 0.0192) and (0.0011, 0.0325). (C) Reduced frequency of bone marrow hematopoietic stem cell (HSC)

numbers in Smad3 Fancd2-129B6F2 mice compared to parental strains. (D) In vitro LTBMC assay showing that bone marrow from adult Smad3 Fancd2-

129B6F2 (Fancd2-/-Smad3-/-) mice have a reduced production of hematopoietic progenitors, similar to a Fancd2-/- (Fancd2-/- Smad3+/+) mouse bone marrow

genotype. Results are presented as cumulative day 14 CFU-GEMM forming cells. (E) Competitive repopulation capacity of the bone marrow in transplant

assays showing that hematopoietic cells derived from adult Smad3 Fancd2-129B6F2 (Fancd2-/-Smad3-/-) mice have a defective hematopoiesis, similar to

Fancd2-/- (Fancd2-/- Smad3+/+) mice. (F) Survival of stromal cell lines derived from the bone marrow of adult mice showing that cells from Smad3 Fancd2-

129B6F2 (Fancd2-/-Smad3-/-) mice are hypersensitive to MMC. (G) Survival of stromal cell lines derived from bone marrow of adult mice showing that cells

from Smad3 Fancd2-129B6F2 (Fancd2-/-Smad3-/-) mice are hypersensitive to irradiation. (H) Western blots of the lysates from stromal cell lines derived from

bone marrow of adult mice showing that cells from Smad3 Fancd2-129B6F2 (Fancd2-/-Smad3-/-) mice overexpress the NHEJ proteins DNA-PKcs and 53BP1,

and RAD51 a mediator for homologous recombination. A representative blot from three independent experiments is shown. Quantification relative to wild

type in basal conditions and the loading control is shown below every lane. Pink indicates irradiated samples (10 Gy). Cell lysis for western blot was performed

4 h after IR. Data in (B) and (C) are represented as bar plots. Data in (D), (E), (F) and (G) are represented as mean ± SEM. p values of 0.01 to 0.05 were

considered significant (�), p values of 0.001 to 0.01 were considered very significant (��) and p values of< 0.001 were considered extremely significant (���,
����). See also S2 Fig.

https://doi.org/10.1371/journal.pgen.1010459.g002
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have a critical role in allowing Fancd2-/- embryos to survive during mid-gestation. To test this

hypothesis, pregnant females were sacrificed at day E12.5, uterine horns were dissected, and

the recovered embryos were genotyped (Fig 3A). The frequencies of the different genotypes in

the Smad3 Fancd2-129B6F2 breeding at day E12.5 recapitulated the predicted normal Mende-

lian frequency (Figs 3B and S3A). The expected Mendelian ratio for the Smad3-/-Fancd2-/-

DKO mice was preserved at this early embryonic stage of development, especially for the

Smad3 Fancd2-129B6F2 breeding (Figs 3C and S3B). However, no DKO embryos were

observed at day E14.5 (S3C Fig), further demonstrating that Smad3 and the canonical TGFβ

Fig 3. Fancd2-/- embryos overexpress the TGFβ pathway and error-prone DNA repair genes. (A) Fancd2/Smad3 heterozygous littermates were crossed to

breed. Pregnant females were sacrificed at day E12.5 of gestation, uterine horns were dissected, and embryos genotyped. RNA from embryos was analyzed for

expression of genes in the TGFβ pathway and DNA repair pathways. (B) Smad3 Fancd2-129B6F2 breeding has a Mendelian distribution at day E12.5, showing

that Smad3 Fancd2-129B6F2 embryos can survive until day E12.5 of embryonic development (n = 141 embryos). (C) The frequency of Smad3 Fancd2-129B6F2

embryos at day E12.5 yields the expected Mendelian ratio, however the frequency of weaned Smad3 Fancd2-129B6F2 pups is halved, suggesting later lethality

during embryonic development. (D) Gene expression analysis of E12.5 embryos. Left. Compared to WT embryos, Fancd2-/- embryos overexpress TGFβ
pathway-related genes and overexpress the ligands for activation of the TGFβ pathway, Tgfb1 and Tgfb3, as well as their receptors Tgfbr2 and Tgfbr3. The

oncogene Myc was also found to be overexpressed in Fancd2-/- embryos. Right. Compared to WT embryos, Fancd2-/- embryos overexpress genes related to

alternative DNA repair pathways, including Prkdc, Mad2l2 and Parp1, as well as negative regulators of cell cycle progression, including Trp53 (p53) and

Cdkn1a (p21). Red dots indicate differentially upregulated genes with respect to wild type embryos. Blue dots indicate differentially downregulated genes with

respect to wild type embryos. Data in (B) and (C) are represented as bar plots. Data in (D) are represented as volcano plots. p values of 0.01 to 0.05 were

considered significant (�), p values of 0.001 to 0.01 were considered very significant (��) and p values of< 0.001 were considered extremely significant (���,
����). See also S3 Fig.

https://doi.org/10.1371/journal.pgen.1010459.g003
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pathway are essential for the survival of FA embryos from day E12.5 onwards to birth. Of note,

at day E14.5 of gestation, Fancd2-/- embryos already displayed defective hematopoiesis, as

determined by reduced hematopoietic colony numbers in vitro, based on a CFU assay of cells

derived from mouse fetal liver (S3D Fig).

In order to explore the relevance of the canonical TGFβ-Smad3 pathway during FA onto-

genesis, we used targeted RNA sequencing and transcriptional profiling of the TGFβ pathway

in Fancd2-/- embryos (Fig 3D, left). Whole embryos were collected at day E12.5, and the iso-

lated total body RNA was evaluated. As predicted, the mRNAs encoding several components

of the TGFβ superfamily were upregulated in Fancd2-/- embryos, compared to WT embryo

controls. These upregulated mRNA transcripts included the Tgfβ1 and Tgfβ3 mRNAs, encod-

ing ligands at the apex of the TGFβ pathway. The mRNAs encoding the receptors for these

ligands, Tgfbr2 and Tgfbr3, were also upregulated in the Fancd2-deficient embryos. This pat-

tern of transcriptional upregulation further suggests a requirement of TGFβ pathway signaling

during the embryogenesis of the Fancd2-/- mice. Of note, mRNAs with opposing functions

were also upregulated (Fig 3D), including Smad7, known as an Inhibitory-Smads, and Myc, a

proto-oncogene that stimulates cell proliferation and overcomes TGFβ growth suppression

[6]. Taken together, these data suggest that compensatory negative feedback mechanisms,

counteracting the hyperactive TGFβ pathway, are also present at the organismal level during

development of embryos with an FA pathway deficiency.

Overexpression of NHEJ genes, has also been observed in FA cells, and several reports have

demonstrated that the canonical TGFβ pathway upregulates these pathways [7, 10, 22]. Since

FA is a DNA repair deficiency syndrome, we used targeted RNA sequencing to evaluate the

expression of DNA repair genes at day E12.5 of embryonic development (Fig 3D, right). Inter-

estingly, Trp53 and Cdkn1a, which encodes p21, are overexpressed in the whole embryo, con-

firming that DNA stress responses leading to cell cycle arrest and apoptosis are highly active

during development of an FA embryo. Previous studies had indicated that expression of these

genes is upregulated in the hematopoietic compartment of human FA embryos [5]. Among

the upregulated error-prone DNA repair genes in FA embryos were Prkdc, Mad2l2, Trp53bp1,

Parp1 and Lig3 (Fig 3D). Importantly, overexpression of low-fidelity NHEJ and alternative

error-prone genes has detrimental consequences for the FA adult hematopoiesis. However, the

access to high-capacity but low-fidelity DNA repair pathways during rapid cell proliferation

stages, such as embryogenesis, appears to be critical for ensuring the survival of an embryo

with a deficiency in the FA pathway. We speculate that, although toxic for adult hematopoiesis,

the activation of these alternative DNA repair pathways must be essential for viable gestation

of FA embryos. The expression of TGFβ genes and DNA repair genes was also assessed in

Smad3-/- and Smad3 Fancd2-129B6F2 embryos at day E12.5 (S3E Fig). In comparison to wild

type, the Smad3-/- embryos exhibited increased expression of the TGFβ pathway genes Tgfb1,

Myc, and Bmp3 and increased expression of the DNA repair genes Mad2l2 and Trip13. In

comparison to wild type the Smad3 Fancd2-129B6F2 embryos continue overexpressing mem-

ber of the TGFβ pathway, including the Tgfb1 ligand. Finally, in comparison to the Fancd2-/-,
Smad3 Fancd2-129B6F2 embryos display downregulation of multiple DNA repair genes.

Activation of the non-canonical ERK pathway in a subset of Smad3

Fancd2-129B6F2 embryos

Extensive literature has shown that cells that lose the canonical TGFβ signaling pathway can

retain responsiveness to TGFβ ligands and in some cases become dependent of non-canonical

TGFβ pathways (Finnson et al., 2020). We found in our gene expression analysis, that Smad3

Fancd2-129B6F2 embryos overexpress the Tgfb1 ligand (S3E Fig middle panel), and found
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also that Smad3 Fancd2-129B6F2 adults have increased levels of Tgfb ligands in peripheral

blood plasma (S4A Fig). These results suggest that the TGFβ ligands are not lost in our DKO

mice and could signal intracellularly through non-canonical TGFβ pathways, and contribute to

retention of the FA phenotype. We therefore hypothesized that the Smad3 Fancd2-129B6F2

embryos surviving to the adult stage might activate intracellular mediators of the non-canonical

TGFβ pathway, such as the ERK1 pathway. This non-canonical pathway might in turn stimulate

the expression of essential genes in the NHEJ pathway in cells deficient in Smad3. This survival

pathway would maintain a hyperactive TGFβ-NHEJ axis in the surviving Smad3 Fancd2-

129B6F2 mice and could account for their subsequent defect in hematopoietic improvement.

Irradiation is known to activate the TGFβ pathway [16]. We therefore irradiated stromal

cells from the different DKO backgrounds and measured phosphorylation of Smad3 (p-

Smad3). WT and Fancd2-/- cell lines upregulated p-Smad3, while the Smad3-/- and Smad3

Fancd2-129B6F2 cell lines did not. However, phosphorylation of ERK (p-ERK), an alternative

signaling mediator of the TGFβ pathway, was observed in Smad3-/- and Smad3 Fancd2-

129B6F2 mice, suggesting that activation of the non-canonical TGFβ-ERK pathway occurs in

the surviving Smad3 Fancd2-129B6F2 mice and might contribute to their persistent bone mar-

row dysfunction (Figs 4A and S4B). Inactivation of the SMAD3 pathway was further con-

firmed by testing SNAIL, a SMAD3 target, that as expected, was reduced in the Smad3-/-

mutant cell line [23]. Interestingly, in the DKO cell line, SNAIL is present, we speculate this

might be due to regulation of SNAIL by other transcription factor in the surviving DKO con-

text (S4C Fig). A similar response to irradiation was observed in the Smad3 Fancd2-129129F2

stroma (S4D Fig), the Smad3 Fancd2-B6B6F2 stroma (S4E Fig) and the Smad3

Fancd2-B6129F2 stroma (S4F Fig).

Western blot analysis using protein lysates from E12.5 fetal livers confirmed that a subset of

Smad3 Fancd2-129B6F2 embryos have high levels of phospho-ERK1/2 (Fig 4B). As a surro-

gate for hematopoietic activity in the fetal liver, we used the CD45 and CD41 markers and

found that fetal livers with high phospho-ERK1/2 levels have reduced fetal hematopoiesis and

have increased levels of DNA-PKcs and 53BP1, classic NHEJ proteins (Fig 4B).

DNA damage has been shown to leave a scar in the genome of DNA repair deficient cell

lines [24], we therefore hypothesized that Fancd2-/- embryos would have an enhanced genomic

instability and tested the same condition in the Smad3 Fancd2-129B6F2 embryos. DNA was

extracted from E12.5 embryos and subjected to whole exome sequencing followed by detection

of variants. Germline variants were identified, and scatter plots of variant allele fractions

(VAFs) (Fig 4C), as well as plots of copy number variants (CNVs) (S4G Fig) were constructed.

The wild type and Smad3-/- embryos show a balanced heterozygosity with VAFs of heterozy-

gous sites clustering around 0.5, whereas the Fancd2-/- and Smad3 Fancd2-129B6F2 embryos

show pronounced genomic instability with VAFs of heterozygous sites deviating markedly

from 0.5 (S4C). The CNV analysis showed DNA segments with normal copy ratios close to 1

in wild type embryos, whereas the other genotypes display DNA segments with copy ratios

markedly different from 1, especially Smad3 Fancd2-129B6F2, indicating high degree of aneu-

ploidy (S4G Fig). This data shows that the deficiency of FA pathway incites genomic instabil-

ity, which starts early in utero in FA embryos and depletion of Smad3 failed to correct this

imbalance.

Previous studies have shown that the TGFβ pathway positively regulates the expression of

NHEJ genes [10, 16]. We therefore hypothesized that loss of NHEJ activity would occur in

embryos with Smad3 knockout. Interestingly, when we explored in depth the gene expression

profile of Smad3 Fancd2-129B6F2 embryos at day E12.5, we identified two types of Smad3

Fancd2-129B6F2 embryos with opposing gene expression patterns (Fig 4D). Approximately

half of the embryos overexpressed the pro-apoptotic Bax gene (BaxHigh Smad3 Fancd2-
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Fig 4. Smad3 Fancd2-129B6F2 embryos with ERK pathway activity express NHEJ components. (A) Western blot of the lysates from adult

bone marrow stroma cells of mice showing that irradiation activates the canonical phosphorylation of Smad3 in bone marrow stroma of WT

and Fancd2-/- mice and activates the non-canonical ERK1/2 phosphorylation in Smad3-/- and DKO mice stroma. Quantifications relative to

wild type in basal conditions and the loading control are shown below every lane. Pink indicates the irradiated cultures per cell line. (B)

Western blot of the lysates from E12.5 fetal liver showing that a subset of Smad3 Fancd2-129B6F2 embryos have higher levels of the phospho-
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129B6F2), indicating a survival disadvantage. The other half of embryos downregulated Bax
(BaxLow Smad3 Fancd2-129B6F2) and had a presumed survival improvement, based on the

number of surviving Smad3 Fancd2-129B6F2 newborns (See Figs 2B and 3B). Of note, the

BaxHigh Smad3 Fancd2-129B6F2 embryos downregulated the low-fidelity DNA repair pathway

genes, such as Prkdc that codes for DNA-PKcs, which were otherwise upregulated in Fancd2-/-

embryos (Fig 3D). This result was expected and was consistent with previous studies showing

downregulation of NHEJ pathway genes following TGFβ pathway inhibition in FA cells [10].

The BaxLow Smad3 Fancd2-129B6F2 embryos had the opposite gene expression profile. Inter-

estingly, these BaxLow Smad3 Fancd2-129B6F2 embryos expressed high levels of NHEJ mRNAs,

such as Prkdc, despite the absence of the canonical Smad3-driven TGFβ pathway (Fig 4D).

As we showed that the non-canonical ERK pathway is activated in a subset of Smad3

Fancd2-129B6F2 embryos and in the surviving Smad3 Fancd2-129B6F2 mice, we explored the

presence of TGFβ ligands in the supernatant from our LTBMC long-term cultures using an

ELISA assay. In this assay we discovered that Smad3 Fancd2-129B6F2 cultures secrete higher

levels of TGFβ ligand than the other genotypes (S4D Fig), suggesting that TGFβ ligand pro-

duction is not lost in the surviving Smad3 Fancd2-129B6F2 mice and is being transduced

through the ERK non-canonical pathway.

Taken together, these findings suggest that knockdown of Smad3 in a FA background

reduces NHEJ activity and promotes hematopoietic activity; however, the NHEJ pathway is

still critical for the survival of FA embryos. Accordingly, the DKO embryos survive by activat-

ing an alternative non-canonical TGFβ signaling pathway, through the ERK kinase, in order to

upregulate NHEJ.

Inhibition of the non-canonical TGFβ pathway rescues Smad3 Fancd2-

129B6F2 cells from genotoxicity

We next reasoned that inhibition of the non-canonical ERK pathway in the Smad3 Fancd2-

129B6F2 stromal cells derived from adult Smad3 Fancd2-129B6F2 mice would block NHEJ

activity. Indeed, inhibition of the non-canonical ERK pathway with the MEK inhibitor

(MEKi) PD0325901 resulted in a reduction of DNA-PKcs and 53BP1 protein levels. Interest-

ingly, DNA-PKcs reduction was exclusively observed in the Smad3 Fancd2-129B6F2 cells but

not in the Fancd2-/- cells, suggesting that DNA-PKcs in Fancd2-/- cells is not under the control

of ERK and the non-canonical pathway (Fig 5A).

ERK protein, suggesting activation of the non-canonical TGFβ pathway. High phospho-ERK embryos have a reduced expression of CD45 and

CD41 (CD45 and CD41 were used as surrogates for indication of active hematopoiesis in the fetal liver). High phospho-ERK embryos have

higher expression of NHEJ related proteins, DNA-PK and 53BP1. Two western blots are depicted showing a total of two wild type fetal livers,

two Fancd2-/- fetal livers, two Smad3-/- fetal livers, and six Smad3 Fancd2-129B6F2 fetal livers. Quantifications relative to wild type in basal

conditions and the loading control per gel are shown below every lane. Red indicates Fancd2-/- fetal livers, pink indicates Smad3 Fancd2-

129B6F2 fetal livers with high phospho-ERK levels. (C) Left. Representative scatter plots of variant allele fractions (VAFs) of the 129/Sv

germline variants across the genomes of the analyzed embryos (n = 2 wild type, n = 3 Fancd2-/-, n = 2 Smad3-/-, n = 6 Smad3 Fancd2-129B6F2).

Long chromosomal segments with known strain origins are clearly observed. Homozygous reference (C57BL/6) segments are those with VAFs

around zero (red); homozygous 129/Sv segments are those with VAFs around one (blue); and heterozygous segments of both strains are those

with VAFs between zero and one (green). Wild type and Smad3-/- embryos show a balanced heterozygosity with VAFs of heterozygous sites

clustering around 0.5. Fancd2-/- and Smad3 Fancd2-129B6F2 embryos show pronounced genomic instability with VAFs of heterozygous sites

deviating markedly from 0.5. Right. Green inset summarizes the density of VAFs in the heterozygous 129/Sv germline. (D) Heatmap for gene

expression showing that two types of E12.5 Smad3 Fancd2-129B6F2 embryos exist. Half of the studied E12.5 Smad3 Fancd2-129B6F2 embryos

have a BaxHigh gene expression profile (suggesting lethality) and the other half have a BaxLow gene expression profile (suggesting survivorship).

When profiled for DNA repair related genes, these two groups of E12.5 Smad3 Fancd2-129B6F2 embryos seem to have mutually exclusive

gene expression profiles, with down-regulation of alternative error-prone and low fidelity DNA repair genes in the BaxHigh embryos, an effect

similar to what has been previously ascribed to pharmaceutical inhibition of the TGFβ pathway. Black arrowhead indicates Prkdc, the gene

codifying for DNA-PKcs. Data in (C) are represented as variant allele frequency (VAF). Data in (D) are represented as heatmap. See also

S4 Fig.

https://doi.org/10.1371/journal.pgen.1010459.g004
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Fig 5. Inhibition of ERK in surviving Smad3 Fancd2-129B6F2 mice stroma reduces NHEJ proteins and improves DNA repair. (A) Western blots of the

lysates from bone marrow stromal cells showing that inhibition of ERK phosphorylation with the MEK inhibitor PD0325901 reduces the levels of DNA-PKcs

in DKO cells but not in Fancd2-/- cells. A representative blot from three independent experiments is shown. Quantification relative to wild type in basal

conditions and the loading control is shown below every lane. Pink indicates samples treated with MEKi PD0325901. (B) Quantitation of γH2AX foci by

immunofluorescence showing that the MEK inhibitor PD0325901 reduces the number of γH2AX foci in Fancd2-/- cells and DKO cells. (C) Quantitation of

DNA-PKcs foci by immunofluorescence showing that the MEK inhibitor PD0325901 significantly reduces the number of DNA-PKcs foci in DKO cells. (D)

Representative images of γH2AX foci and DNA-PKcs foci in Fancd2-/- and DKO stromal cells after exposure with MEK inhibitor PD0325901. (E) Quantitation

of 53BP1 foci by immunofluorescence showing that the MEK inhibitor PD0325901 significantly reduces the number of 53BP1 foci in DKO cells. (F) Survival

curves of bone marrow stromal cells showing that the MEK inhibitor PD0325901 rescues Fancd2-/- and Smad3 Fancd2-129B6F2 stromal cells from MMC

toxicity. Response of the WT and Smad3-/- cell lines is shown in S5D Fig. (G) Working model. Upper panel. FA mouse embryos depend on the canonical

TGFβ-SMAD3 pathway for activating the expression of DNA-PKcs and perform NHEJ thus allowing Fancd2-/- embryo survival in absence of a functional FA

pathway. Lower panel. Absence of the FA pathway and the canonical SMAD3 pathway is embryonic lethal, however a small fraction of Smad3 Fancd2-129B6F2

embryos activate the non-canonical ERK pathway thus circumventing embryonic death. In both cases surviving mice present with defective hematopoietic

stem cells in the bone marrow. (H) Schematics showing that the TGFβ ligands and TGFβ receptors can engage the canonical (SMAD3) or the non-canonical

(ERK1/2) pathways and activate expression of NHEJ genes. Upon inhibition of the canonical TGFβ pathway, activation of the non-canonical ERK pathway

occurs. This possess the potential emergence of resistance to TGFβ pathway inhibitors or refractory to treatment patients, therefore combining TGFβ pathway

inhibitors, to avoid the emergence of resistance, has to be considered for designment of future clinical trials. Data in (B), (C) and (E) are represented as

boxplots. Data in (F) are represented as mean ± SEM. p values of 0.01 to 0.05 were considered significant (�), p values of 0.001 to 0.01 were considered very

significant (��) and p values of< 0.001 were considered extremely significant (���, ����). See also S5 Fig.

https://doi.org/10.1371/journal.pgen.1010459.g005
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Additional validation of these findings with immunofluorescence microscopy revealed a

marked reduction of γH2AX foci in Fancd2-/- and Smad3 Fancd2-129B6F2 cells exposed to the

MEKi (Fig 5B) and a reduced number of DNA-PKcs foci (Fig 5C) and Fig 5D) and 53BP1

foci (Fig 5E), especially in Smad3 Fancd2-129B6F2 cells.

The MEKi rescued the Fancd2-/- and Smad3 Fancd2-129B6F2 cells from the toxicity

induced by MMC (Fig 5F). Finally, treatment with LSN3301240, an upstream inhibitor of the

TGFβ pathway which blocks TGFβ RI, resulted in a reduction of DNA-PKcs levels in both

Fancd2-/- and Smad3 Fancd2-129B6F2 cell lines, confirming that the TGFβ pathway is active

in both cell lines (S4D and S5B Figs).

We conclude that during embryogenesis, Fancd2-/- embryos activate the canonical TGFβ-

SMAD3 signaling pathway and thereby upregulate the expression of NHEJ genes, allowing

survival in the absence of a functional FA pathway. This NHEJ upregulation is detrimental to

adult hematopoiesis later in life (Fig 5G, upper panel). On the other hand, if FA embryos lose

the canonical TGFβ pathway, due to Smad3 inactivation, the viable Smad3 Fancd2-129B6F2

embryos will activate alternative components of the TGFβ superfamily for survival. These rare

surviving embryos are the exceptions to the synthetic embryonic lethality that prevails upon

simultaneous loss of Fancd2 and Smad3 (Fig 5G, lower panel).

Discussion

Hyperactivation of the TGFβ pathway is one of multiple abnormalities observed in the bone

marrow of patients with FA. This activity impairs the growth of the FA HSPC pool [10].

Accordingly, inhibition of the TGFβ pathway with multiple pharmacological compounds has a

positive impact on the proliferation of FA HSPCs [7]. Currently, TGFβ pathway inhibitors are

a potential therapeutic option for FA patients who are developing bone marrow failure.

The TGFβ superfamily of ligands is composed of a large number of molecules that modu-

late multiple processes in a context-dependent manner [11, 25]. The role of the TGFβ pathway

as a master regulator during embryogenesis has long been recognized. Some ligands of the

TGFβ superfamily are active during early embryogenesis, including Nodal and GDF3, whereas

other ligands are critical for later development, organogenesis, and tissue homeostasis, such as

TGFβ, activin, myostatin, and other GDFs [13, 26–28].

In recent years, a role for the TGFβ pathway as a modulator of DNA repair has emerged.

The TGFβ ligands and extracellular pathway signalers, can respond to DNA damage and mod-

ulate the DNA repair pathway choice when DNA double strand breaks are encountered [17,

18]. The SMAD proteins are critical intracellular transducers of TGFβ and have been shown to

coordinate the expression of genes involved in DNA repair [10]. Specifically, SMAD proteins

upregulate NHEJ gene expression and downregulate HR gene expression. In this work we dis-

covered that both processes modulated by TGFβ converge in FA and further support the con-

textual versatility of the TGFβ–SMAD signaling pathway.

We previously reported in the context of FA that the overactivity of NHEJ genes is con-

trolled by the TGFβ pathway and that NHEJ, a low-fidelity DNA repair pathway, becomes acti-

vated when the FA pathway is disrupted [10]. Importantly, during the S/G2 phase a functional

FA pathway inhibits NHEJ activity, thus avoiding the accumulation of gross chromosomal

aberrations.

Importantly, we have proven in this and in previous work [7], that pharmacological inhibi-

tion of the TGFβ pathway in vitro and in vivo with AVID200, Galunisertib, and LSN3301240

inhibits the activation of the NHEJ pathway genes (for example, Lig4 and Prkdc), activates the

expression of HR genes (for example, Brca2 and Xrcc1), and reduces the DNA damage burden

in FA HSPCs [7, 10]. Genetic abrogation of Smad3 in FA cell lines also leads to an inhibition
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of the NHEJ pathway and improves their repair capacity and survival. Although, we cannot

rule out that HR is upregulated when HSCs enter the cell cycle, thereby resulting in repair of

double strand breaks, as previously shown [29, 30], to confirm that TGFβ pathway inhibition

creates an HR-competent state, our group has previously used pharmacological inhibitors that

interfere with both HR (RAD51 foci formation by B02 inhibitor) and the TGFβ pathway

(1D11) in FA cells. Treatment with B02 resulted in reduction of RAD51 foci formation and

inhibition of DR-GFP plasmid recombination in a reporter assay. Importantly, 1D11 treat-

ment did not protect FA HSPCs from acetaldehyde-induced genotoxicity when HR was inhib-

ited by B02 [10]. These data showed that TGFβ pathway inhibition upregulates HR and

downregulates NHEJ in HSPCs of Fancd2-/- mice and functionally promote their survival, not

only on a cell cycle-dependent manner.

With the exception of Smad3-/- mutant mice, most mouse models with genetic abrogation

of the main components of the TGFβ pathway result in embryonic lethality or death shortly

after birth [13]. Thus, the generation of Fancd2-/- Smad3-/- double knockout mutants provided

an interesting opportunity for testing whether constitutive depletion of Smad3 would rescue

FA mice from the negative effects of excessive NHEJ activity.

We confirmed with our genetic models that, in absence of a functional FA pathway, the

TGFβ signaling upregulates the expression of NHEJ genes, such as DNAPK and 53BP1. How-

ever, genetically removing Smad3 along with Fancd2 resulted in high levels of embryonic

lethality during the second half of gestation (day 13.5 onwards), implying that the activity of

the NHEJ pathway is critical for FA embryo survival. Therefore, the TGFβ pathway, during FA

embryogenesis, provides a compensatory mechanism for survival, promoting repair through

NHEJ during the periods in development when rapid cell proliferation occurs, however this

comes at the cost of genomic instability appearing early during embryonic development of a

FA mice (Figs 4C and S4G). Of note, genetic abrogation itself caused a reduction in the num-

ber of weaned DKO pups, but also the genetic background of every cross is significant since

specific combinations between the 129/Sv and C57BL/6 strains resulted in higher levels of

lethality (Figs 2B and 3), underlying the relevance that inbred mouse strains can have in

embryonic lethality.

Gene expression profiling of embryos at day E12.5 confirmed the high demand for the

TGFβ pathway in FA embryos in comparison to wild type embryos, since numerous TGFβ fac-

tors exhibit increased expression. We are aware that mRNA levels do not strictly reflect protein

production, stability, and a final repair outcome. however extensive evidence exists that activa-

tion of NHEJ genes occurs in FA pathway deficient cells. Therefore, activation of alternative

and low fidelity DNA repair pathways in FA embryos might be their bet for survival, and we

are the first to report that overexpression of NHEJ components occurs early in the life of a FA

mice embryo (Fig 3D) and is probably also occurring in human FA embryos.

Despite the increased embryonic loss of the Fancd2-/-Smad3-/- genotype, a small fraction of

these DKO embryos do survive through full gestation. Contrary to our original expectation,

these DKO newborns display a phenotype resembling FA, including NHEJ overexpression,

sensitivity to MMC, bone marrow failure, and reduced bone marrow reconstitution capacity

(with slight differences in their response due likely to their genetic background). In short, the

loss of Smad3 appeared to have little effect on the FA phenotype. This paradox prompted us to

hypothesize that the surviving DKO mice are rescued by activation of a non-canonical TGFβ
pathway, resulting in an exception to the synthetic embryonic lethality imposed by simulta-

neous deficiency of Fancd2 and Smad3. Analysis of the DKO embryos confirmed that a frac-

tion activated the non-canonical ERK pathway, leading to increased levels of NHEJ proteins

and survival. Consistent with this interpretation, the DKO embryos without ERK pathway

activation did not display increased NHEJ proteins expression.
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After confirming in the adult derived DKO cell lines the overexpression of NHEJ proteins,

we inhibited the non-canonical ERK pathway using a MEK inhibitor that prevents phosphory-

lation of ERK. We observed that this inhibitor rescued DKO cells from MMC sensitivity and

reduced the levels of γH2AX, DNA-PK and 53BP1 only in DKO mice but not in Fancd2-/-

mice, confirming that expression of the NHEJ proteins is under control of the non-canonical

ERK pathway only in the surviving DKO mice. Finally, we showed that DKO long-term cul-

tures secrete high levels of TGFβ ligands and treatment with LSN3301240, which inhibits

TGFβ RI, reduced NHEJ protein levels in both Fancd2-/- and DKO mice, confirming that the

extracellular TGFβ ligands control the canonical Smad3 pathway in Fancd2-/- mice and control

the non-canonical ERK pathway in the surviving DKO mice.

Our results represent an example of how similar genomic mechanisms for survival can be

detected in both a multilineage mesenchymal stem cell line derived from a surviving adult

DKO mouse and during mid-gestational DKO embryos. The adult DKO mouse marrow stro-

mal cell lines allowed us to conclusively show a genetic adaptation or “rewiring” to by-pass the

absence of both the FA pathway and the canonical TGFβ signaling. The upregulated non-

canonical ERK pathway for TGFβ signaling was linked with upregulation of NHEJ which was

required in surviving embryos. Further studies are needed to discover the mechanisms by

which a non-canonical TGFβ pathway is activated in DKO embryos, candidate mechanisms

fall in the arena of epigenetics, including changes in DNA methylation, changes in chromatin

accessibility or emerging enhancer-gene interactions, which however were beyond the scope

of the present report.

Taken together, our data demonstrate that hyperactivation of the TGFβ pathway is a costly

trade-off during embryogenesis of FA pathway deficient mice, and probably during human FA

embryogenesis. On the one hand, activation of the TGFβ-NHEJ axis is required for survival of

the FA embryos. On the other hand, this axis is detrimental for adult hematopoiesis but has

the potential to be modulated by pharmacological intervention with inhibitors of TGFβ after

birth. Strikingly, we discovered that the TGFβ-NHEJ axis is critical for FA embryo survival;

accordingly, in absence of the canonical transducer SMAD3, some DKO embryos have the

capacity to rewire their intracellular signaling, engage the non-canonical ERK pathway, and

transduce the apical signals coming from the extracellular TGFβ ligands. Our results are an

example at the organismal level of how extracellular signaling is coordinated with DNA repair

pathway choice and embryonic fate.

Finally, our group has shown that inhibiting the TGFβ pathway at multiple levels using

inhibitors of the TGFβ ligands, the TGFβ receptors, and TGFβ transducers (such as SMAD3)

improves hematopoiesis in FA preclinical models. Importantly, in this work we show that

upon inhibition of the canonical TGFβ transducer, activation of non-canonical TGFβ trans-

ducers can occur and possess the potential emergence of resistance to TGFβ inhibitors or

refractory to treatment patients. Therefore, this work is a timely precedent that usage of com-

binations of the TGFβ inhibitors, so as to avoid the emergence of resistance, has to be consid-

ered for designment of future clinical trials.

Limitations of study

Our study has limitations. Having studied more than one FA KO mice, such as Fanca-/- mice,

would have been useful to show that our results apply to more than one FA genotype, however

the Fancd2-/- mouse model recapitulates all the hematopoietic phenotypes exhibited by other

FA mice [31, 32].

Exploring additional gestational days would give more information on how embryonic

development advances in these DNA repair deficient mice, however DKO embryos are no
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longer observable on day E14.5 and having objective comparisons on the four genotypes of

interest (WT, Smad3-/-, Fancd2-/- and DKO) was not possible for the present report. However,

Fancd2-/- embryos are viable and studying their full gestation will be of interest.

We did not discover a mechanistic connection between the levels of Bax and TGFβ pathway

activity, however we observed that Smad3 Fancd2-129B6F2 embryos, despite having the same

genotype, have distinct gene expression profiles. Interestingly the levels of Bax expression cor-

related with the expression of NHEJ genes, i.e. lower levels of NHEJ correlated with high levels

of Bax. This correlation made us hypothesize that those embryos with low NHEJ expression

will not survive since Bax is a p53 target gene that promotes apoptosis [33]. We also believe

that those Smad3 Fancd2-129B6F2 embryos that managed to survive were able to rewire their

gene expression network and gain NHEJ expression through the non-canonical ERK, as

observed in all the Smad3 Fancd2-129B6F2 weaned pups.

Material and methods

Ethics statement

All mice at Dana Farber Cancer Institute were housed according to the Institutional IACUC

protocols and maintained four per cage, fed standard laboratory chow, and maintained on

deionized sterilized water. All experimental procedures were approved by the Animal Care and

Use Committee of the Dana Farber Cancer Institute. Mice were euthanized by CO2 asphyxia-

tion or by isoflurane overdose followed by cervical dislocation at the experimental time point or

when loss of body weight, diarrhea, progressive dermatitis and any condition interfering with

eating or drinking appeared. All mice at the University of Pittsburgh were housed at the

Hlllman Cancer Center in a AAAA approved animal facility under the supervision of the Divi-

sion of Laboratory Animal Research. All animal protocols were approved by the University of

Pittsburgh Institute of Animal Control and Use Committee. All mice were euthanized by CO2

inhalation followed by cervical dislocation at timepoints defined by the IACUC approved proto-

col or when showing signs of pain or distress such as loss of appetite, lacking of drinking, loss of

20% of their body weight, hunching of back, ruffling of fur or lethargy.

Mice

Fancd2-/- (C57BL/6) [32] and Fancd2-/- (129/Sv) (23) mice were bred in an established colony

[34–36]. Smad3-/- (C57BL/6) [37] and Smad3-/- (129/Sv) [38] mice were bred from heterozy-

gote breeding pairs obtained from Dr. Katherine Flanders, NIH, and Jackson Laboratories

(Bar Harbor, Maine) respectively. The mice were genotyped by isolating DNA from tail clip-

pings and performing PCR using primers described in the following paragraphs. Control

mouse strains of C57BL/6, 129/Sv and 129/Sv X C57BL/6 F1 mice were maintained in cages at

37˚C with water and food offered ad libitum.

Fancd2-/- mice and Smad3-/- mice on both C57BL/6 and 129/Sv backgrounds are infertile.

To obtain DKO mice, heterozygous Fancd2+/- and Smad3+/- mice were bred. Smad3 Fancd2-

129B6F2 (Smad3-/- (129/Sv) Fancd2-/- (B6)) mice were obtained by breeding Smad3+/- (129/

Sv) mice with Fancd2+/- (C57BL/6) mice. Smad3 Fancd2-129129F2 mice were obtained by

breeding Smad3+/- (129/Sv) with Fancd2+/- (129/Sv) mice. Smad3 Fancd2-B6B6F2 mice were

obtained by breeding Smad3+/- (C57BL/6) mice with Fancd2+/- (C57BL/6) mice. Smad3

Fancd2-B6129F2 mice were obtained by breeding Smad3+/- (C57BL/6) mice with Fancd2+/-

(129/Sv) mice (See also S2A Fig). The genotypes of newborns were identified by isolating

DNA from the tip of the tail of weaned pups and performing PCR using primers specific for

the Smad3 transgene, mutated Smad3 transgene, and Fancd2 transgene or mutated Fancd2
transgene.
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Pregnant mice from the Smad3 Fancd2-129B6F2 breeding were sacrificed at day E12.5 and

E14.5, the uterine horns removed, and the liver and placenta were dissected from the embryos.

Embryos were genotyped by isolating DNA from the tip of the tail. Total RNA was extracted

from the whole embryo, the fetal liver was used for protein extraction and western blot, a mix-

ture of embryo and placenta was used for whole exome sequencing.

The primers for genotyping were 129/Sv Smad3 primers: wild type forward: 5’-TGA GTT

TGC CTT CAA CAT GA; common reverse: 5’-CAC TCT GCC CAG TCC AAA G; mutant

forward oIMR1100: 5’-GCT ATC AGG ACA TAG CGT TGG; 129/Sv Fancd2 primers: for-

ward MG968: 5’-TCA GCC TCA CAT GGA GTT TAA CG; Common reverse MG1007: 5’-

AAT TCG CCA ATG ACA AGA CGC; mutant forward MG1008: 5’-CAG GGA TGA AAG

GGT CTT ACG C; C57BL/6 Smad3 primers: forward Smad3-1: 50-CCA CTT CAT TGC CAT

ATG CCC TG; reverse Smad3-2: 50-CCC GAA CAG TTG GAT TCA CAC A; mutant forward

pLoxpneo 50-CCA GAC TGC CTT GGG AAA AGC; C57BL/6 Fancd2 Primers: forward

OST2c: 5’-CAT GCA TAT AGG AAC CCG AAG G; reverse OST2a: 5’-CAG GAC CTT TGG

AGA AGC AG; mutant forward LTR2b: 5’-GGC GTT ACT TAA GCT AGC TTG).

Cell lines

Bone marrow stromal cell lines were established by trypsin ionization of the adherent layer of

long-term bone marrow cultures at week 4 [35, 36]. Stromal cells (mesenchymal stem cells)

were grown in McCoy’s medium supplemented with 10% fetal calf serum and antibiotics and

passaged weekly. Clonal lines were established by making the stromal cells into single cell sus-

pension and using flow cytometry to sort single cells into individual wells of a 96 well plate.

Once the cells have grown to confluence in the 96 well plates, they are expanded and made

into a clonal cell line.

Isolation of Lin- and LT-HSC from mouse

Mice were sacrificed and the bone marrow from tibia and femurs was harvested by gentle

flushing with HBSS++ buffer [Hanks balanced salt solution (10-547F, Lonza) + HEPES

(BP299-100, Fisher Scientific) + Fetal bovine serum (F2442, Sigma) + penicillin-streptomycin

(15140–122, GIBCO)]. A 70 μM filter was used for filtering the samples and obtaining a single

cell suspension. Lin- enrichment was performed with lineage negative selection using the line-

age cell depletion kit (130-090-858, Miltenyi).

For isolation of LT-HSCs, identified as Lin-Sca-1+c-kit+ CD150+CD48-, Lin- cells were incu-

bated with a mixture of biotin-labeled lineage antibody cocktail against CD3, CD11b, CD19,

B220, Gr-1 and Ter119 (51-09082J, BD Pharmingen), and fluorochrome conjugate antibodies

PE-Cy7-Sca (Clone D7, 558162, BD Biosciences), APC-c-kit (Clone ACK2, 135108, BD Biosci-

ences), Pacific Blue-CD150 (Clone TC15-12F12.2, 115924, Biolegend) and APC-Cy7-CD48

(Clone HM48-1, 47-0481-82, e-Bioscience), followed by incubation with streptavidin-PE sec-

ondary antibody (554061, BD). LT-HSCs were sorted with a BD FACSAria cell sorter.

Alkaline comet assay

The alkaline comet assay was performed with the sorted LT-HSCs using the CometAssay kit

(4250-050-K, Trevigen). LT-HSCs were mixed with low-melting-temperature agarose, coated

on slides, and incubated in lysis solution overnight at 4˚C. Next day cells were incubated dur-

ing 1 h in unwinding NaOH solution and subjected to a current voltage of 12 V during 30 in a

NaOH electrophoresis solution. Slides were dehydrated in ethanol solutions, washed, and

stained with SYBRGreen (S7567, Invitrogen). Some cells were exposed to 10 Gy of irradiation

using a 137Cs radiation source (model RS2000, Rad source) with a dose rate of 1 Gy/min and
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used as a positive control for DNA damage. Pictures were taken using a Zeiss Imager Z1 fluo-

rescence microscope. Tail-length analysis was performed using the OpenComet plugin in the

Image J software.

Colony forming unit assay

Clonogenic potential of mouse HSPCs was assessed in CFU assays by plating 20,000 Lin- cells

per triplicate in Methocult GF M3434 methylcellulose (03444, Stem Cell Technologies) and

cultured for 7 days along with the TGFβ inhibitors Galunisertib or LSN3301240 at 200 nM,

500 nM and 5 μM final concentrations. The mouse hematopoietic colonies were scored after 7

days of culture at 37˚C and 5% CO2. Clonogenic potential of human HSPC was assessed in

CFU assays by plating 3000 CD34+ cells per triplicate in human methylcellulose MethoCult

H4434 Classic (04434, StemCell Technologies). Human colonies were quantified and classified

after 14 days of culture at 37˚C and 5% CO2. Pictures were taken with the STEMvision System

(StemCell Technologies).

Isolation of human CD34+ cells and viral transduction

Fresh healthy bone marrow samples were purchased from Lonza (1M-105, Lonza). Whole

bone marrow was incubated with ammonium chloride (07800, StemCell Technologies) for 10

min on ice for lysis of red blood cells followed by a wash with PBS until obtaining a pellet of

white cells. CD34+ cells were enriched using the Miltenyi kit (19056, Miltenyi Biotech) and fol-

lowing the manufacturer’s instructions.

Isolated human CD34+ cells were cultured in non-tissue culture treated plates for 36 hours

in StemSpan SFEMII medium (09655, Stem Cell Technologies) with 100ng/ml of the following

recombinant human cytokines: SCF (300–07, Peprotech), TPO (300–18, Peprotech), Flt3 (300–

19, Peprotech) and IL-6 (200–06, Peprotech). Cells were then transferred to non-TC 96-well

plates in a viral prep consisting of fresh media supplemented with polybrene (TR-1003-G,

Sigma) and a lentivirus producing a shRNA against human FANCD2; a MOI of 50 was used for

the scrambled shRNA and a MOI of 100 was used for the FANCD2 shRNAs. Plates were spun

down at 2300 rpm for 30 minutes at RT and incubated for 12–16 hours. Selection media with

1 μg/ml puromycin (MIR 5940, MirusBio) was added to cultures 12–24 hours after viral infec-

tion. FA-like cells were selected in this puromycin-containing media for 72 hours.

Continuous bone marrow cultures and quantification of TGFβ in

supernatant

The contents of a femur and tibia of 6-8-week-old mice of each genotype were flushed into 40

cm square plastic flasks in Fisher’s medium supplemented with 25% fetal calf serum and 10−6

M Hydrocortisone hemi-succinate [35, 36, 39]. Adherent layers were established by 4 weeks,

and cultures fed by demi-depopulation of non-adherent cells and replaced with an equal vol-

ume of fresh medium. Cultures were maintained in a CO2 incubator and assayed weekly for 35

weeks for number of cobblestone islands, production of nonadherent cells, percent confluency,

and day 7 and 14 colony formation [39].

On weeks 9 and 10, cell culture media was obtained from the different cultures, and a

TGF-B ELISA (Abcam, Cat. Ab119557) was performed.

Competitive repopulation assay

Competitive repopulation studies were performed for Smad3 Fancd2-129B6F2 mice (129/Sv

Smad3-/- C57BL/6 Fancd2-/-) and Smad3 Fancd2-129129F2 mice (Smad3-/- Fancd2-/- all on
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129/Sv background) [40]. Bone marrow from Smad3 Fancd2-129B6F2, 129/Sv Smad3-/-, or

C57BL/6 Fancd2-/- mice were compared to C57BL/6 bone marrow by isolating bone marrow

from male and female mice and mixing with bone marrow from C57BL/6 female and male

mice, respectively, at ratios ranging from all male bone marrow to all female bone marrow.

For Smad3 Fancd2-129129F2 experiments, bone marrow from male and female 129/Sv

Fancd2-/-, 129/Sv Smad3-/-, and Smad3 Fancd2-129129F2 mice was mixed with bone marrow

from female and male 129/Sv bone marrow, respectively.

The mixtures were injected intravenously (IV) into C57BL/6 (A) or 129/Sv (B) mice, which

had received 10 Gy total body irradiation [41]. Bone marrow from 4–6-week-old mice of each

genotype, and of each gender, was prepared as single cell suspensions and injected IV at 106

cells per 10 Gy total body irradiated (TBI) mice, (JL Sheperd Model 68 Cesium irradiator, JL

Sheperd and Associates) 300 cGy/min, recipient mice opposite gender in ratios of 1:0, 1:10,

2.5:7.5, 1:1, 7.5:2.5, 10:1 or 0:1 [40]. Groups of recipient wild type mice received IV injection of

fresh bone marrow 24 hrs after TBI. Transplanted recipient mice were maintained for 120

days, and then bone marrow harvested and assayed for the relative contribution of donor bone

marrow from each source by quantitation of Y-chromosome specific DNA [40]. At 120 days

after bone marrow injections, the mice were sacrificed, bone marrow isolated, DNA extracted,

and PCR performed with primers specific for the Y chromosome. The percent of mice negative

for the Y chromosome (Percent Negative for Reconstitution) was plotted against the number

of male cells injected.

Marrow stem cell numbers by flow analysis

Triplicate marrow samples from each mouse were analyzed by single cell, 7-color flow analysis

of 1 x 107 cells [40]. Bone marrow was made into single suspensions and incubated with the

following antibodies to PE-eFluor 610-CD45, FITC-CD3e, FITC-CD5, FITC-CD8a,

FITC-B220, FITC-GR-1, FITC-TER119, FITC-CD41, APC-eFluor 780-CD48, PE-Sca-1,

PE-Ch7, and APC-CD150 for one hour. The cells were washed three times with PBS and ana-

lyzed by flow cytometry for bone marrow stem cells.

Protein extraction and western blotting

Whole cell lysates were prepared using RIPA cell lysis buffer (9803, Cell Signaling) and 1 mM

PMSF (8553s, Cell Signaling). Lin- cells, cells were cultured for 24 h in StemSpan SFEM medium

(09600, StemCell Technologies) containing 2% L-glutamine (25030-081GIBCO), 1% penicillin/

streptomycin (15140–122, GIBCO), 100 ng/ml SCF (250-03-10UG, Peprotech) and 100 ng/ml

TPO (315-14-10UG, Peprotech). Lin- cells were exposed to TGFβ1 (5 ng/ml) or TGFβ3 (5 ng/ml)

along with LSN3301240 (5 μM) during 2 h. Western blots were performed using the following

antibodies SMAD2/3 (86855, Cell Signalling), phospho-SMAD2 (ab3849, Millipore), phospho-

SMAD2/3 (8828s, Cell Signaling) and Vinculin (sc-25336, Santa Cruz) antibodies.

Bone marrow stromal cell lines were exposed to irradiation (5 or 10 Gy), MEK inhibitor

PD0325901 (10 μM) or TGFβ inhibitor LSN3301240 (5 μM). Western blots were performed

with the following antibodies DNA-PKcs, 53BP1, RAD51, phospho-SMAD3 (9502s, Cell Sig-

naling Technology, Danvers, MA, USA), p-ERK and actin (Santa Cruz Biotechnology Inc.,

Dallas, TX, USA). Antibodies for analysis of fetal liver were DNA-PKcs, 53BP1, pERK1/2, total

ERK1/2, CD45 CD41 and Vinculin.

DNA damage sensitivity assay

For Mitomycin C sensitivity assay, mitomycin C was added daily to Smad3 Fancd2-129B6F2,

Smad3 Fancd2-129129F2, Smad3 Fancd2-B6B6F2 and Smad3 Fancd2-B6129F2 bone marrow
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stromal cell lines for 3 consecutive days at concentrations of 0, 5, 10, 15 or 20 ng/ml per day.

The cells were then trypsinized and prepared as single cell suspensions, plated in each of 4 well

plates at 500 cells per well and then incubated at 37˚C in a CO2 incubator for 7 days. The plates

were stained with crystal violet and colonies of greater than 50 cells counted [35, 36]. For IR

sensitivity assay, the Smad3 Fancd2-129B6F2 stromal cell line was exposed to 2.5, 5 and 10 Gy

of IR, let to recover during 5 days and viability assessed with the CellTiter Glo viability assay.

RNA extraction and targeted RNA sequencing

RNA was extracted from embryos using the Midi RNA extraction kit (74034, QIAGEN). RNA

quality was assessed using an Agilent Bioanalyzer and RNA Nano Chip in the Biopolymers

Facility of Harvard Medical School. For gene expression analysis a QIAseq Targeted RNA

panel targeted was designed (CRHS-10510Z-219-12, 333022, QIAGEN). Index assignment

was done using the QIAseq Targeted RNA 96-index I kit (333117, QIAGEN). Libraries were

sequenced in an Illumina NextSeq 500 Mid Output flow cell and run in an Illumina NextSeq

500 sequencer in the Biopolymers Facility of Harvard Medical School.

Gene expression analysis

Targeted RNAseq was performed using a panel of 203 mouse genes belonging to the DNA

repair and TGF-β pathways. The panel with 9 reference genes were designed using the QIAseq

Targeted RNA Panel with molecular barcode technology. Libraries were prepared according

to manufacturer’s instructions. Next-generation sequencing was performed on the Illumina

NextSeq 500 sequencer according to manufacturer’s instructions in the Biopolymers Facility at

Harvard Medical School (https://www.genome.med.harvard.edu/).

Targeted RNAseq data were preprocessed as follows. First, QIAGEN’s GeneGlobe online

portal was used to quantify gene expression counts from the number of unique molecular bar-

codes in the raw sequencing reads. Next, suitable reference genes were selected using geNorm

[42] to be used for normalization. Finally, the gene expression counts were normalized using

the selected reference genes and transformed into log2-counts per million (log2-CPM) values.

The relationship between the samples was examined using the Principal Component Analy-

sis (PCA) plots, and the multi-dimensional scaling (MDS) plots which were generated by the

plotMDS function of the limma R package [43]. PCA and MDS plots indicated the library

preparation day could be a potential confounding factor.

Differential gene expression analyses were performed using the edgeR package [44], and

the DESeq2 package [45], with the raw expression counts and the selected reference genes as

inputs, and with library preparation day as a covariate. Both algorithms were used to have

more confidence in the results. The estimated log-fold-changes of the two algorithms were

confirmed to be highly similar. Multiple testing correction to control the false discovery rate

(FDR) was performed using the Benjamini-Hochberg procedure on the p-values. The volcano

plots of the edgeR results were generated using the ggplot2 package in R.

DNA extraction and whole exome sequencing

DNA from day E12.5 embryos and placentas were extracted using the DNA extraction kit

from QIAGEN. DNA samples were submitted to GENEWIZ (South Plainfield, NJ) for library

preparation and sequencing. Sequencing libraries were prepared with the HiseqX V2.5

sequencing kit and sequenced in a Illumina platform with a sequencing configuration of

HiSeq, 2x150bp sequencing, single index. A total data output of ~350M raw paired-end reads

were obtained per lane. FASTQ files were obtained for mutational signature extraction.
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Whole exome sequence analysis

The paired-end whole exome sequence data were preprocessed following GATK Best Prac-

tices. Briefly, for each sample, the raw paired-end sequencing reads were mapped to the refer-

ence mouse genome C57BL/6J (GRCm38; mm10) using the Burrows-Wheeler aligner [46]

(BWA-MEM; version 0.7.17). Duplicate reads were marked using Picard (version 2.19). The

indels were realigned using GATK3 [47] (version 3.8). Finally, base quality scores were recali-

brated using GATK4 (version 4.1).

Variant calling was performed using GATK3 UnifiedGenotyper (version 3.8) in the tar-

geted coding regions. All 13 embryos were called together without down sampling. BCFtools

[48] was then used to filter out some potentially low-quality variants with these parameters:

“-g3 -G10 -e’QD<2.0 || FS>60.0 || SOR>5.0 || MQ<30’”. Only biallelic SNVs were selected

for signature analysis. We discovered a total of over 128k SNVs from all 13 embryos.

We next identified the germline and somatic variants. One large source of known germline

variants came from the 129S1 strain. We identified over 57k known 129S1 germline variants

within the targeted regions, that were discovered from the whole genome sequencing efforts at

The Wellcome Trust Sanger Institute [49]. Over 90% of the known 129S1 germline variants

were rediscovered in the exomes of the embryos.

The scatter plots of the VAFs of the 129S1 germline variants were plotted using ggplot2 R

package.

To identify other germline variants and other false variants, and somatic variants, we devel-

oped a simple procedure: if a variant was present in more than one embryo, it’s likely to be

germline or other false variants; and if it was seen in only one embryo it is likely to be somatic.

The exact procedure was as follows: if the highest variant allele fraction (VAF) was above 0.05,

and the second highest VAF was more than 40% of the highest VAF, then it’s germline or false

variant, else it’s a somatic variant. Variants with the highest VAF smaller than 0.05 were

excluded. These thresholds were optimally picked so that most of the known 129S1 germline

variants were identified. Upon manual visual inspection of VAF plots, we identified and

removed several more clusters of variants that were likely germline, they appeared in clusters

in only one embryo. Copy number analysis was performed following the GATK (version 4.1)

workflow for detection of copy ratio alterations and allelic segments. The analysis-ready BAMs

were used as inputs. The two wild type embryos were used to create the panel of normals

(PoN) reference.

Immunofluorescence

Cells were grown on coverslips and fixed for 15 min in 4% paraformaldehyde (30525-89-4,

Electron Microscopy Sciences) in PBS, then permeabilized with ice-cold methanol during 2

min at room temperature, washed immediately with PBS and incubated for 1 h in blocking

buffer (10% Triton X-100 diluted in PBS with 10% normal goat serum.

Cells were incubated with primary antibodies anti- phospho-histone H2A.X (Ser 139) anti-

body (2577s, Cell signaling) anti-DNA-PKcs and anti-53BP1 diluted in IF buffer (1% BSA

diluted in PBS and 10% Triton X-100 diluted in PBS) in a humidified chamber overnight at

4˚C. The next day, cells were washed with PBSs threetimes and incubated for 1 h with second-

ary antibodies anti rabbit Alexa Fluor-488 (20E3, Cell Signaling) and Alexa Fluor- diluted

1:200 in IF buffer.

Slides were washed three times in PBS, counterstained and mounted with ProLong Gold

antifade reagent with DAPI (P36931, Life Technologies). Images were taken with a Zeiss

Imager fluorescent microscope.
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Statistical analysis

Densitometry in western blots was analyzed with ImageJ software. Relative expression was cal-

culated based on the intensity of each band over the intensity of its loading control. Data were

normalized using WT levels or basal conditions as reference.

For analysis of frequency of births, we tested whether the frequency of births was signifi-

cantly different from an expected frequency of 1 in 16, using a two-sided proportional test

with p-values adjusted for multiple tests using the Bonferroni method. For competitive repop-

ulation assay analysis, a single-hit model was fitted for each cell type, and comparison between

the two cell types was done with the likelihood ratio test using the asymptotic chi-square

approximation followed by the Bonferroni test.

For in vitro assays, we used the D’Agostino-Pearson, Shapiro-Wilk and Kolmogorov

Smirnoff tests when required for assessing normality. We identified outliers with the ROUT

method. 2-way ANOVA and Dunn’s multiple comparisons test were used for comparing

experimental groups. Two-tailed p values for statistical analysis were obtained using Student’s

t test.

p values of 0.01 to 0.05 were considered significant (�), p values of 0.001 to 0.01 were con-

sidered very significant (��) and p values of< 0.001 were considered extremely significant

(���, ����). Graphpad Prism 8 and the Elda function in statmod package of R were used for sta-

tistical analysis.

Supporting information

S1 Fig. (A) Galunisertib and LSN3301240 improve the clonogenic capacity of FA-like HSPCs

measured in a CFU assay. FA-like human primary bone marrow HSPCs were generated by

transducing primary bone marrow CD34+ cells with Lentivirus encoding two different

shRNAs against FA gene FANCD2. These FA-like cells were then cultured in methylcellulose

medium containing Galunisertib or LSN3301240 for 10 days and hematopoietic colonies

(CFUs) were counted for assessing clonogenic growth of progenitors. (B) Stromal cell lines

generated from WT and Fancd2-/- mice were cultured in the presence of Galunisertib and

MMC and survival was determined. Galunisertib did not show an efficient rescue of FA cells

from MMC. Data in (A) and (B) are represented as mean ± SEM. p values of 0.01 to 0.05 were

considered significant (�), p values of 0.001 to 0.01 were considered very significant (��) and p

values of< 0.001 were considered extremely significant (���, ����).

(TIFF)

S2 Fig. (A) Breeding scheme for Smad3 and Fancd2 double knockout (DKO) mice. Smad3+/-

mice were bred with Fancd2+/- mice to obtain F1 mice which are heterozygous for both Smad3
and Fancd2. To get the DKO mice, the F1 mice which are heterozygous for both genes were

bred together to get the mice which are homozygous for Smad3-/- Fancd2-/- (DKO). The paren-

tal mouse strains for Smad3 Fancd2-129B6F2 mice were 129/Sv Smad3+/- mice and C57BL/6

Fancd2+/- mice. The Smad3 Fancd2-129129F2 mice were bred from 129/Sv Smad3+/- mice and

129/Sv Fancd2+/- mice. For the Smad3 Fancd2-B6B6F2 mice the parental mice were Smad3+/-

and Fancd2-/- on a C57BL/6 background. The Smad3 Fancd2-B6129F2 parental strains were

129/Sv Smad3+/- mice and C57BL/6 Fancd2+/- mice. (B) In vitro LTBMC assay showing that

adult Smad3 Fancd2-129129F2, Smad3 Fancd2-B6B6F2 and Smad3 Fancd2-B6129F2 mice

have a reduced production of bone marrow hematopoietic progenitors, similar to a Fancd2-/-

mouse bone marrow genotype. Results are presented as cumulative day 14 CFU-GEMM form-

ing cells. (C) Competitive repopulation capacity of the bone marrow in transplant assays show-

ing that hematopoietic cells derived from adult Smad3 Fancd2-129129F2 mice have a reduced
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competitive repopulation capacity. Competitive repopulation assays were not possible with the

Smad3 Fancd2-B6B6F2 and Smad3 Fancd2-B6129F2 crosses due to reduced weaned pups

numbers. (D) Survival of bone marrow -derived stromal cell lines in presence of MMC show-

ing that cells from Smad3 Fancd2-129129F2, Smad3 Fancd2-B6B6F2 and Smad3

Fancd2-B6129F2 are hypersensitive to MMC. Data in (A), (B) and (C) are represented as

mean ± SEM. p values of 0.01 to 0.05 were considered significant (�), p values of 0.001 to 0.01

were considered very significant (��) and p values of< 0.001 were considered extremely signif-

icant (���, ����).

(TIFF)

S3 Fig. (A) Reduced frequencies of Smad3 Fancd2-129129F2 embryos at day E12.5. (B) The

frequency of Smad3 Fancd2-129129F2 embryos at day E12.5 is even more compromised than

in the Smad3 Fancd2-129B6F2 breeding, thus limiting embryo analysis. (C) The expected

Mendelian frequency for Smad3 Fancd2-129B6F2 is not observed at day E14.5, suggesting

embryo loss. (D) Assessment of fetal hematopoiesis capacity at day E14.5 in a CFU assay with

embryo livers. Fancd2-/- embryos have reduced CFU capacity at day E14.5, indicating a

hematopoietic defect in utero. No Smad3 Fancd2-129B6F2 embryos were available for analysis

at day E14.5. (E) Differential gene expression analysis during day E12.5 in the different mouse

genotypes using a targeted RNAs sequencing panel of TGFβ and DNA repair genes. Upper

panel. Genes differentially expressed in the Smad3-/- embryos in comparison to wild type

embryos. Middle panel. Genes differentially expressed in the Smad3 Fancd2-129B6F2

embryos in comparison to wild type embryos. Lower panel. Genes differentially expressed in

the Smad3 Fancd2-129B6F2 embryos in comparison to Fancd2-/- embryos. Data in (A), (B)

and (C) are represented as bar plots. Data in (D) are represented as mean ± SEM. Data in (E)

are represented as volcano plots. p values of 0.01 to 0.05 were considered significant (�), p val-

ues of 0.001 to 0.01 were considered very significant (��) and p values of< 0.001 were consid-

ered extremely significant (���, ����).

(TIFF)

S4 Fig. (A) Quantification of TGFβ levels in the cell culture media obtained from the LTBMC

assay. LTBMCs were established from the bone marrow of WT, Smad3-/-Fancd2+/+, Smad3+/
+Fancd2-/- and Smad3 Fancd2-129B6F2 mice. The cell culture media was obtained after weeks

9 and 10 following establishment of the cultures and TGFβ levels were measured using a TGFβ
ELISA kit. Plot shows the average of weeks 9 and 10. Smad3 Fancd2-129B6F2 cultures produce

more TGFβ ligand than the cultures derived from other genotypes. Data are represented as

mean ± SEM. p values of 0.01 to 0.05 were considered significant (�), (B) Western blots of the

lysates from adult bone marrow stromal cells of Smad3 Fancd2-129B6F2 mice showing total

Smad3 levels and total ERK levels after irradiation. Quantifications relative to wild type in

basal conditions and the loading control are shown below every lane. Pink indicates the irradi-

ated cultures per cell line. (C) Western blots of the lysates from adult bone marrow stromal

cells of Smad3 Fancd2-129B6F2 mice showing SNAIL levels after irradiation. Quantifications

relative to wild type in basal conditions and the loading control are shown below every lane.

Pink indicates the irradiated cultures per cell line. (D) Western blots of the lysates from stro-

mal cell lines showing the response of the canonical SMAD3 pathway and the non-canonical

ERK pathway in cell lines derived from Smad3 Fancd2-129129F2 mice after irradiation. (E)

Western blots of the lysates from stromal cell lines showing the response of the canonical

SMAD3 pathway and the non-canonical ERK pathway in cell lines derived from Smad3

Fancd2-B6B6F2 mice after irradiation. (F) Western blots of the lysates from stroma cell lines

showing the response of the canonical SMAD3 pathway and the non-canonical ERK pathway

in cell lines derived from Smad3 Fancd2-B6129F2 mice after irradiation. (G) Representative
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plots of copy number variants (CNVs) across the genomes of representative embryos, contain-

ing denoised copy ratios with segmentation. Wild type shows segments with normal copy

ratios of 1. In contrast, Fancd2-/- and Smad3 Fancd2-129B6F2 embryos show segments with

copy ratios markedly different from 1, especially Smad3 Fancd2-129B6F2, indicating high

degree of aneuploidy. These CNV data represent total copy numbers across the genome,

whereas the variant allele fraction (VAF) data in Fig 4C represent relative copy numbers of the

two homologous chromosomes. Both provide complementary signals of genomic instability

(n = 2 wild type, n = 3 Fancd2-/-, n = 2 Smad3-/-, n = 6 Smad3 Fancd2-129B6F2).

(TIFF)

S5 Fig. A) Survival curves of WT and Smad3-/- stromal cell lines in presence of MMC and the

MEK inhibitor PD0325901. B) Western blots of the lysates from stromal cell lines showing

that inhibition of TGFβ RI with LSN3301240 reduces the levels of DNA-PKcs in cells from

both Fancd2-/- and Smad3 Fancd2-129B6F2 mice. A representative blot from two independent

experiments is shown. Quantification relative to wild type in basal conditions and the loading

control is shown below every lane. Pink indicates samples treated with LSN3301240. Data in

(A) are represented as mean ± SEM. p values of 0.01 to 0.05 were considered significant (�), p

values of 0.001 to 0.01 were considered very significant (��) and p values of< 0.001 were con-

sidered extremely significant (���, ����).

(TIFF)

S1 Data. All the numerical data used for generating the graphs shown in this manuscript

are presented in the dataset.

(XLSX)

S1 Table. Findings on the DKO (Fancd2-/- Smad3-/-) breeding. This Table summarizes the

phenotype observed in our DKO crosses. It can be observed variability in the number of pups

and etention of the FA phenotype.

(TIFF)
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