Skip to main content
. 2022 Dec 1;11:e79713. doi: 10.7554/eLife.79713

Table 1. Results and performance comparison of in silico predictors with the optimal threshold based on MCC.

#PV: number of predicted variants; Ac: accuracy; Se: sensitivity; Sp: specificity; MCC: Matthews correlation coefficient; LR+: positive likelihood ratio; LR-: negative likelihood ratio; 95% CI: 95% confidence interval.

Tool Decision threshold #PV TP FN FP TN Ac Se Sp MCC LR+ LR +95% CI LR- LR- 95% CI
BayesDel_addAF ≥0.39 531 250 164 22 95 0.65 0.6 0.81 0.34 3.21 [2.19, 4.72] 0.49 [0.42, 0.57]
CADD >10.44 886 655 39 101 91 0.84 0.94 0.47 0.49 1.79 [1.57, 2.05] 0.12 [0.08, 0.17]
ClinPred >0.95 481 265 99 43 74 0.7 0.73 0.63 0.32 1.98 [1.55, 2.53] 0.43 [0.35, 0.53]
Condel >0.3 481 331 33 76 41 0.77 0.91 0.35 0.31 1.4 [1.22, 1.61] 0.26 [0.17, 0.39]
DANN >0.96 531 372 42 71 46 0.79 0.9 0.39 0.33 1.48 [1.28, 1.72] 0.26 [0.18, 0.37]
Eigen-PC >1.87 531 329 85 35 82 0.77 0.79 0.7 0.44 2.66 [2, 3.52] 0.29 [0.23, 0.37]
FATHMM ≤–3.39 481 150 214 23 94 0.51 0.41 0.8 0.19 2.1 [1.42, 3.08] 0.73 [0.65, 0.83]
fathmm-MKL >0.7 531 328 86 39 78 0.76 0.79 0.67 0.41 2.38 [1.83, 3.09] 0.31 [0.25, 0.39]
GERP++ >3.49 531 248 166 26 91 0.64 0.6 0.78 0.31 2.7 [1.9, 3.82] 0.52 [0.44, 0.6]
integrated_fitCons >0.05 531 414 1 117 1 0.78 1 0.01 0.04 1.01 [0.99, 1.02] 0.28 [0.02, 4.51]
LIST-S2 ≥0.75 344 246 28 39 31 0.81 0.9 0.44 0.36 1.61 [1.3, 1.99] 0.23 [0.15, 0.36]
LRT <0.3 270 169 7 84 10 0.66 0.96 0.11 0.13 1.07 [1, 1.16] 0.37 [0.15, 0.95]
MetaLR_score >0.8 481 251 113 42 75 0.68 0.69 0.64 0.29 1.92 [1.49, 2.47] 0.48 [0.39, 0.59]
MetaSVM_score >0.6 481 260 104 39 78 0.7 0.71 0.67 0.34 2.14 [1.65, 2.79] 0.43 [0.35, 0.53]
MutationAssessor >2.53 359 249 36 41 33 0.79 0.87 0.45 0.33 1.58 [1.28, 1.94] 0.28 [0.19, 0.42]
MutationTaster >0.95 531 386 28 102 15 0.76 0.93 0.13 0.09 1.07 [0.99, 1.15] 0.53 [0.29, 0.95]
MutPred >0.5 467 343 12 96 16 0.77 0.97 0.14 0.2 1.13 [1.04, 1.22] 0.24 [0.12, 0.49]
phastCons17way >0.17 531 357 57 57 60 0.79 0.86 0.51 0.38 1.77 [1.46, 2.14] 0.27 [0.2, 0.36]
phastCons30way >0.28 531 329 85 51 66 0.74 0.79 0.56 0.33 1.82 [1.48, 2.25] 0.36 [0.28, 0.47]
phyloP100way >0.42 531 349 65 56 61 0.77 0.84 0.52 0.35 1.76 [1.45, 2.14] 0.3 [0.23, 0.4]
phyloP30way >0.51 531 307 107 63 54 0.68 0.74 0.46 0.18 1.38 [1.15, 1.64] 0.56 [0.43, 0.72]
PolyPhen-2 >0.65 481 243 121 37 80 0.67 0.67 0.68 0.31 2.11 [1.6, 2.78] 0.49 [0.4, 0.59]
PROVEAN ≤–1.03 481 358 6 106 11 0.77 0.98 0.09 0.18 1.09 [1.02, 1.15] 0.18 [0.07, 0.46]
REVEL >0.65 481 294 70 46 71 0.76 0.81 0.61 0.39 2.05 [1.63, 2.59] 0.32 [0.25, 0.41]
SIFT <0.1 481 325 39 74 43 0.77 0.89 0.37 0.3 1.41 [1.22, 1.63] 0.29 [0.2, 0.43]
SiPhy_29way >10.62 531 233 181 33 84 0.6 0.56 0.72 0.23 2 [1.48, 2.7] 0.61 [0.52, 0.71]
VEST4 >0.7 531 273 141 33 84 0.67 0.66 0.72 0.32 2.34 [1.74, 3.15] 0.47 [0.4, 0.57]
Splicing prediction
ada >0.5 56 47 3 1 5 0.93 0.94 0.83 0.68 5.64 [0.94, 33.8] 0.07 [0.02, 0.23]
MaxEntScan Diff >2 and Per >5 54 50 2 1 2 0.95 0.96 0.67 0.55 2.88 [0.58, 14.31] 0.06 [0.01, 0.28]
rf >0.6 56 47 3 1 5 0.93 0.94 0.83 0.68 5.64 [0.94, 33.8] 0.07 [0.02, 0.23]
SpliceAI >0.65 663 35 23 1 604 0.96 0.6 1 0.75 365.09 [50.94, 2616.41] 0.4 [0.29, 0.55]