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Integrative Serum Metabolic Fingerprints Based
Multi-Modal Platforms for Lung Adenocarcinoma Early
Detection and Pulmonary Nodule Classification

Lin Wang, Mengji Zhang, Xufeng Pan, Mingna Zhao, Lin Huang, Xiaomeng Hu,
Xueqing Wang, Lihua Qiao, Qiaomei Guo, Wanxing Xu, Wenli Qian, Tingjia Xue,
Xiaodan Ye, Ming Li, Haixiang Su, Yinglan Kuang, Xing Lu, Xin Ye, Kun Qian,*
and Jiatao Lou*

Identification of novel non-invasive biomarkers is critical for the early
diagnosis of lung adenocarcinoma (LUAD), especially for the accurate
classification of pulmonary nodule. Here, a multiplexed assay is developed on
an optimized nanoparticle-based laser desorption/ionization mass
spectrometry platform for the sensitive and selective detection of serum
metabolic fingerprints (SMFs). Integrative SMFs based multi-modal platforms
are constructed for the early detection of LUAD and the classification of
pulmonary nodule. The dual modal model, metabolic fingerprints with protein
tumor marker neural network (MP-NN), integrating SMFs with protein tumor
marker carcinoembryonic antigen (CEA) via deep learning, shows superior
performance compared with the single modal model Met-NN (p < 0.001).
Based on MP-NN, the tri modal model MPI-RF integrating SMFs, tumor
marker CEA, and image features via random forest demonstrates significantly
higher performance than the clinical models (Mayo Clinic and Veterans
Affairs) and the image artificial intelligence in pulmonary nodule classification
(p < 0.001). The developed platforms would be promising tools for LUAD
screening and pulmonary nodule management, paving the conceptual and
practical foundation for the clinical application of omics tools.
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1. Introduction

Lung cancer, with 2.22 million new cases
and 1.79 million deaths globally in 2020,[1]

is a complex heterogeneous malignant
tumor.[2] Lung adenocarcinoma (LUAD) is
the most popular histological subtype of
non-small cell lung cancer, which consti-
tutes about 50% of lung malignancies.[3]

Although annual radiologic screening of
LUAD by low-dose computed tomography
(LDCT) is suggested for populations of high
risk, the management of LDCT-detected
pulmonary nodule, the main manifestation
of early stage LUAD, is challenging with a
false positive rate of 96%.[4] Clinical nod-
ule assessment tools (e.g., Mayo Clinic and
Veterans Affairs (VA) models[5]) as well as
computer-aided diagnosis methods[5b] have
been widely used, whereas the performance
is limited due to lack of tumor-specific bi-
ological information. Therefore, there is an
unmet need for complementary biomarkers

M. Zhang, K. Qian
State Key Laboratory for Oncogenes and Related Genes
School of Biomedical Engineering
Institute of Medical Robotics and Med-X Research Institute
Shanghai Jiao Tong University
Shanghai 200030, P. R. China
E-mail: k.qian@sjtu.edu.cn
M. Zhang, K. Qian
State Key Laboratory for Oncogenes and Related Genes
Division of Cardiology
Renji Hospital
Shanghai Jiao Tong University School of Medicine
Shanghai 200127, P. R. China
X. Pan
Department of Thoracic Surgery
Shanghai Chest Hospital
Shanghai Jiao Tong University School of Medicine
Shanghai 200030, P. R. China

Adv. Sci. 2022, 9, 2203786 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203786 (1 of 14)



www.advancedsciencenews.com www.advancedscience.com

for early diagnosis of LUAD and accurate classification of pul-
monary nodule.

Emerging biomarkers for cancer early diagnosis vary from
cellular to molecular level. At the cellular level, circulating tu-
mor cells (CTCs), as a metastatic relapse and prognostic marker,
may help monitor the progression of lung cancer. Still, CTCs
show limited sensitivity of 70% and require hours for antibody
recognition and enrichment, making it infeasible for large-scale
cancer screening.[6] At the molecular level, omics tools, includ-
ing genomics,[7] proteomics,[8] and metabolomics,[9] inform clin-
ical decision-making for cancer diagnosis and guide precision
medicine. Notably, metabolic analysis, which is closer to disease
phenotypes, measures the end products of biological activities
and represents a promising tool for the detection of early-stage
cancer.

As the state-of-art analytical tools for metabolomics, mass
spectrometry (MS) and nuclear magnetic resonance (NMR)
dominate metabolic analysis. NMR measures atomic species
by the electromagnetic interaction between atom spins and
magnetic fields,[10] which requires a long detection time owing
to the relaxation.[10a] In contrast, MS directly records molecular
species by fragmentation spectrum and mass-to-charge ratio
(m/z), affording advanced molecular identification ability.[11]
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Current MS based metabolic analysis is usually performed
in a targeted and expensive manner, which detects a limited
amount of metabolites and requires tedious pretreatment (e.g.,
derivatization and desalination) and long assay time (∼12 h per
sample). In contrast, non-targeted laser desorption/ionization
(LDI) MS affords strengths of high-throughput, no pretreat-
ment, and rapid analysis. Whereas, LDI MS usually demands
organic matrices for energy and ion/electron transfer during
the desorption/ionization process, decreasing the detection
accuracy due to the interference in the low mass range and
limited selectivity/sensitivity.[11a,12] With the development
of nanomaterial,[11b,13] a nanoparticle based laser desorp-
tion/ionization mass spectrometry (NPLDI MS) can improve the
charge transfer and reduce heat dissipation for photon-induced
desorption/ionization of analytes.[11a,12] Notably, the energy ab-
sorption is performed without forming cluster ions which degen-
erate the biological signals, making it a potential solution for LDI
MS.[11a]

The development and occurrence of diseases, especially can-
cer, consist of complicated biological mechanisms, in which
single modal data is insufficient for analyzing the pathogenic
factors. Multi-omics analyses will not only be able to reveal
the complex mechanisms underlying cancer progression and
development,[14] but also have been proposed as the key to
promoting precision medicine in the clinic, such as diag-
nostic/therapeutic biomarker discovery,[15] treatment response
evaluation,[16] and survival prediction.[17] Particularly, a recent
prospective and interventional study demonstrated that blood
tests with positron emission tomography-computed tomography
can localize several types of cancers safely and precisely for indi-
viduals who were not previously known to have cancer,[18] proof-
ing the clinical potential of integrating biological biomarkers with
radiological features for early cancer screening.

The success of multi-modal applications depends on tai-
lored data science models. In our work, the integrative serum
metabolic fingerprints (SMFs) are defined as SMFs, known for
high-dimensionality and sparsity,[12b] in combination with the
protein tumor marker and image features, making it unstruc-
tured data instead of structured data. Due to the nonlinear trans-
formation and maximum utilization of unstructured data,[19]

deep learning methods have been successfully applied in multi-
modal data analysis, such as the infusion of transcriptomics
and microscopy/electrophysiology data for neuronal cells.[20] Yet,
deep learning for modeling requires careful structure design and
parameter tuning, making a tailored deep learning model for in-
tegrative SMFs in demand.

Herein, we developed a multiplexed assay on an optimized
NPLDI MS platform for the direct metabolic analysis of patients’
sera. The NPLDI MS platform can directly trap metabolites
from complex biosamples, allowing for a high-throughput and
high sensitive/selective collection of metabolic fingerprints.
By combining SMFs with clinical indexes (protein tumor
marker, carcinoembryonic antigen (CEA) and image features),
we achieved both early diagnosis of LUAD and accurate classifi-
cation of pulmonary nodule with artificial intelligence strategies
toward multi-modal recognition. The integrative SMFs model
may represent a revolution in screening of early-stage can-
cer and contribute to improving health care, not limited to
LUAD.
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Figure 1. Overall experimental schematic of nanoparticle based laser desorption/ionization mass spectrometry (NPLDI MS). 1 μL of native serum was
incubated with ferric nanoparticles without pretreatment and directly analyzed by laser desorption/ionization mass spectrometry (LDI MS) to record
Na+ and K+ adducted signals. The deep learning method was used to construct diagnostic models based on the serum metabolic fingerprints. Blind
test was conducted with the same protocol to evaluate the performance of the diagnostic models.

2. Results

2.1. Study Design

The workflow of the study, including sample preparation, ma-
trix reagents loading, NPLDI MS detection, and automated anal-
ysis, is presented in Figure 1. To determine LUAD specific SMFs
and develop the integrative SMFs based diagnostic model, we
employed NPLDI MS to record SMFs of treatment-naïve LUAD
patients (n = 958) and clinically relevant controls (n = 1318) as
shown in Table S1, Supporting Information. Furthermore, from
the above participants, a total of 480 samples with pulmonary
nodule on LDCT images were selected to construct and evalu-
ate the multi-modal model for nodule classification (Figure S1,
Supporting Information).

2.2. Extraction of SMFs

Ferric nanoparticles (Figure S2A, Supporting Information) were
chosen as the matrix of NPLDI MS for the rough surface, strong
absorption of light, good water dispersity, and the negative-
charged surface. For the rough surface indicated by scanning
electron microscopy (SEM, Figure S2B, Supporting Informa-
tion), it could assist the size-selective trapping of metabolites.[13e]

For the strong absorption of light indicated by the ultraviolet-
visible spectrum (Figure S2D, Supporting Information), it could
help the transfer of laser energy during desorption/ionization
process. In addition, the ferric nanoparticles also display the good

water dispersity for evenly mixing the suspension without precip-
itation (dynamic light scattering analysis, Figure S2E, Support-
ing Information) and the negative-charged surface (zeta poten-
tial, Figure S2F, Supporting Information) for cation adduction.

We further evaluated the analytical performance of the NPLDI
MS from the aspects of sensitivity, protein/salt tolerance, and sta-
bility. For sensitivity, NPLDI MS with ferric nanoparticles could
detect trace amounts of analytes in biofluids with a detection limit
as low as ∼pmol (Table S2, Supporting Information). For pro-
tein/salt tolerance, NPLDI MS with ferric nanoparticles success-
fully identified the molecular peaks from the highly concentrated
protein (Figure S3A, Supporting Information) and salt solutions
(Figure S3B,C, Supporting Information). For detection stability,
we performed two experiments to evaluate the NPLDI MS plat-
form: 1) repeated experiments of the same sample with the same
conditions; 2) repeated experiments of the same sample with fer-
ric nanoparticles from different batches. In the first experiment,
we performed NPLDI MS detection of glucose, valine, and lysine
with the concentration of 1 ng nL−1 in three technical replicates,
and observed a coefficient of variation (CV) of 2.72%, 10.83%, and
8.06% for glucose, valine, and lysine in sodium adducts, respec-
tively (Figure S4, Supporting Information). In the second exper-
iment, we performed the NPLDI MS detection using the ferric
nanoparticles from three batches (average size of 332.5, 313.0,
and 332.1 nm, Figure S5A–C, Supporting Information), and ob-
served a CV < 10% for glucose, valine, and lysine in sodium
adducts (Figure S5D–F, Supporting Information). Therefore, the
property of high sensitivity, protein/salt tolerance, and stability
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make ferric nanoparticles the suitable matrix for LDI MS detec-
tion.

We then built the serum metabolic database using the high-
throughput NPLDI MS analysis. In total, there existed ∼125 000
data points in the raw MS results per sample, and the m/z sig-
nals were attained with total ion counts (referred to the sum of
the peak intensity for every sample) of ∼8.29 × 106 at the low
mass range of 100∼400 Da (Figure S6A, Supporting Informa-
tion). Notably, the SMFs, which consisted of 2316 m/z signals,
were extracted from raw MS results after data preprocessing (Fig-
ure S6B, Supporting Information), serving as the input data for
diagnosis use.

2.3. SMFs Based Single and Dual Modal Models for LUAD
Diagnosis

In order to validate the diagnostic capacity of SMFs for clini-
cal use, we randomly split the enrolled samples into a train-
ing cohort of n = 1526 (n = 669/214/643; HC/LBD/LUAD)
and a non-overlapped test cohort of n = 750 (n = 329/106/315;
HC/LBD/LUAD) with well-matched age and sex (p > 0.05) (Fig-
ure 2A). Notably, the samples were mainly from early-stage
LUAD, with stage 0 – II cancers comprising 71.2% (458/643) and
75.2% (237/315) of the total patients in the training and test co-
hort, respectively (Table S1, Supporting Information).

The modeling of MS big data in serum samples plays a crit-
ical role in the clinical application to obtain accurate perfor-
mances. The results of t-SNE showed no clustering in the first
two principal components, indicating the hardly indistinguish-
able nature of SMFs by naïve machine learning methods (Fig-
ure S7A,B, Supporting Information). We applied conventional
machine learning for LUAD diagnosis with SMFs plus protein
tumor marker CEA to verify the hardly indistinguishable nature.
We performed linear models, which include logistic regression
(LR), elastic net (EN), and least absolute shrinkage and selection
operator (LASSO), and nonlinear models, which include support
vector machine (SVM) and random forest (RF), for the binary
classification. For linear models, the area-uder-curve (AUC) of
blind test achieved 0.659/0.576/0.570 for LASSO/EN/LR, respec-
tively (Figure S7C, Supporting Information). For nonlinear mod-
els, we obtained AUCs of 0.746 and 0.657 for RF and SVM, re-
spectively (Figure S7D, Supporting Information).

Then, we turned to deep learning for building the diagnos-
tic models. We named the model based on SMFs as METabolic
Neural Network (Met-NN) and the model based on SMFs plus
protein tumor marker as Metabolic fingerprints with Protein tu-
mor marker Neural Network (MP-NN, Figure 2A, Figure S7E,
Supporting Information). The MP-NN score showed an increas-
ing trend from HC to LUAD, with significantly higher scores in
patients with LUAD than those in HC and LBD (p < 0.001, Fig-
ure 2B). The MP-NN model showed excellent capacity for dis-
tinguishing LUAD patients from HC and LBD patients for the
training set (Figure 2C–E). As shown in Table 1, the obtained
AUC value for LUAD versus HC/LBD was 0.952 (95% confidence
interval (CI) 0.942–0.961), correlating to a sensitivity/specificity
combination of 91.45%/86.86%, which was significantly higher
than the AUC of CEA (0.570, 95% CI 0.540–0.600; p < 0.001) and
the single modal model Met-NN (0.908, 95% CI 0.894–0.923; p <

0.001). Importantly, the MP-NN model demonstrated better per-
formance for the detection of early-stage LUAD patients (stage 0-
II) from HC/LBD patients than CEA (p < 0.001) and the Met-NN
(p < 0.001) and even for the detection of patients with adenocar-
cinoma in situ (stage 0) (Table 1).

We further validated the MP-NN model in the indepen-
dent test set. Consistent results were acquired with an in-
creasing MP-NN score trend from HC to LUAD (p < 0.001;
Figure S6C, Supporting Information) and comparable diag-
nostic performance (AUC of 0.809, correlating to a sensitivity
of 76.19% and specificity of 67.59%) within the training co-
hort (Table 1). We attributed the success of MP-NN to nonlin-
ear transformation and maximum utilization of unstructured
data. For nonlinear transformation, LR, LASSO, and EN only
achieved AUCs of 0.570, 0.659, and 0.576 in blind test set, re-
spectively (Figure S7C, Supporting Information). In contrast,
MP-NN obtained a significant AUC of 0.809 (p < 0.0001 com-
pared with LASSO, EN, and LR), indicating the superiority
of nonlinear transformation. For maximum utilization of un-
structured data, MP-NN achieved a significant AUC of 0.809
in blind test set, while RF and SVM only had AUCs of 0.764
and 0.658 (p < 0.0001 compared with deep learning method)
(Figure S7D, Supporting Information), indicating the superior-
ity of its better utilization of unstructured data (multiple inputs
for deep neural network).

The MP-NN model outperformed the traditional tumor
marker CEA (Figure 2F,G; Figure S6D, Supporting Information)
in the test cohort. In addition, the detection rate of MP-NN model
in the LUAD group was higher than that of CEA with specificity
of 80%, 90%, and 98%, and the false positive rate was lower with
sensitivity of 80%, 90%, and 98% (Figure 2H). We also found
a correlation between MP-NN scores and LUAD clinical stage
(Figure 2I). Particularly, MP-NN detected 87.4%, 82.8%, 86.2%,
94.3%, and 93.2% of patients with stage of 0, I, II, III, and IV
LUAD, respectively (Figure 2J), demonstrating that MP-NN score
may serve as a direct indicator of tumor burden and may show
utility in treatment monitoring and early detection of cancer re-
lapse (Figure S6E,F, Supporting Information). Besides, we fur-
ther performed a permutation test to evaluate the overfitting ef-
fects of MP-NN (Figure S8, Supporting Information). Specifi-
cally, the distribution of the AUC in the blind test set demon-
strated no overfitting effect significantly (p < 0.05). The AUC was
calculated with the uninformative data obtained from random
permutation, which has been universally employed to estimate
overfitting.[21]

2.4. Performance of MP-NN for Pulmonary Nodule Classification

MP-NN also works in the classification of pulmonary nodule. A
total of 480 samples with pulmonary nodule on LDCT images
were selected from the participants (Figure 3A, the detailed de-
mographic characteristics are listed in Table S3, Supporting In-
formation). The average MP-NN score of patients with malig-
nant pulmonary nodule was significantly higher than that of pa-
tients with benign pulmonary nodule (Figure 3B,C). The MP-NN
achieved an AUC of 0.778 (95%CI 0.729–0.828) with sensitivity
of 81.79% a specificity of 56.91% (Figure 3D, Table 2). To verify
the superiority of MP-NN model, we introduced the clinical as-
sessment models and CT image artificial intelligence models for
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Figure 2. Development and blind test of serum metabolic fingerprints (SMFs) based lung adenocarcinoma (LUAD) diagnostic model. A) Schematic
overview of the deep learning approach used to develop and validate the SMFs based integrated LUAD diagnostic model. B) Score of the MP-NN
identified in the training cohort. p-values were calculated using a Wilcoxon test. Error bars refer to interquartile. C) Area-under-curve (AUC) for individual
parameters in the training cohort. p-values were calculated using a DeLong test. Error bars refer to 95% confidence intervals (CIs). D) Receiver operating
characteristic curve (ROC) of the individual parameters in the training cohort. E) Confusion tables of binary results of the MP-NN model in the training
cohort. F) ROC of the individual parameters in the test cohort. G) Confusion tables of binary results of the MP-NN model in the test cohort. H) Detection
rates of MP-NN and carcinoembryonic antigen (CEA) at different specificity in the test cohort. I) MP-NN score levels summarized by stage in the whole
LUAD cohort. p-values were calculated using a Chi-square test. Error bars indicate interquartile. J) MP-NN detection rates summarized by stage in the
whole LUAD cohort. p-values were calculated using a Chi-square test. *p < 0.05, and *** p < 0.001.

Adv. Sci. 2022, 9, 2203786 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203786 (5 of 14)



www.advancedsciencenews.com www.advancedscience.com

Table 1. MP-NN performance for lung adenocarcinoma (LUAD) diagnosis.

Characteristics Threshold AUC (95% CI) Sensitivity [%] Specificity [%] PPV [%] NPV [%] Accuracy [%] p1 valuea) p2 valueb)

Training set

AD (Stage 0-IV)

CEA 5 ng mL−1 0.570 (0.540–0.600) 23.79 92.75 70.51 62.57 63.70 / /

Met-NN 0.521 0.908 (0.894–0.923) 86.63 78.94 74.97 89.02 82.18 <0.001 <0.001

MP-NN 0.433 0.952 (0.942–0.961) 91.45 86.86 83.52 93.31 88.79 <0.001

AD (Stage 0-II)

CEA 5 ng mL−1 0.527 (0.494–0.561) 9.61 92.75 40.74 66.42 64.35 / /

Met-NN 0.521 0.908 (0.892–0.923) 86.68 78.94 68.10 91.95 81.58 <0.001 <0.001

MP-NN 0.433 0.943 (0.931–0.955) 89.96 86.86 78.03 94.34 87.92 <0.001

AD (Stage 0)

CEA 5 ng mL−1 0.679 (0.613–0.745) 0.00 92.75 0.00 92.54 86.30 / /

Met-NN 0.521 0.916 (0.886–0.946) 92.42 78.94 24.70 99.29 79.87 <0.001 <0.001

MP-NN 0.433 0.945 (0.925–0.965) 89.39 86.86 33.71 99.10 87.04 <0.001

Test set

AD (Stage 0-IV)

CEA 5 ng mL−1 0.529 (0.485–0.573) 20.32 97.47 85.33 62.81 65.07 / /

Met-NN 0.521 0.782 (0.750–0.814) 76.19 63.45 60.15 78.63 68.80 <0.001 0.004

MP-NN 0.433 0.809 (0.779–0.839) 76.19 67.59 62.99 79.67 71.20 <0.001

AD (Stage 0-II)

CEA 5 ng mL−1 0.575 (0.528–0.622) 7.59 97.47 62.07 65.94 65.77 / /

Met-NN 0.521 0.775 (0.741–0.810) 75.53 63.45 52.96 82.63 67.71 <0.001 0.463

MP-NN 0.433 0.782 (0.748–0.817) 71.73 67.59 54.66 81.44 69.05 <0.001

AD (Stage 0)

CEA 5 ng mL−1 0.636 (0.524–0.748) 0.00 97.47 0.00 93.60 91.38 / /

Met-NN 0.521 0.794 (0.726–0.862) 75.86 63.45 12.15 97.53 64.22 0.027 0.002

MP-NN 0.433 0.843 (0.789–0.898) 82.76 67.59 14.55 98.33 68.53 0.003

AUC = area under curve; NPV = negative predictive value; PPV = positive predictive value; CI = confidence interval.
a)

The p1 values indicate the statistical significance for
the differences of AUC as compared with traditional tumor marker CEA.

b)
The p2 values indicate the statistical significance for the differences of AUC between Met-NN and

MP-NN.

comparison. The performance of MP-NN is superior to the Mayo
Clinic and Veterans Affairs models, which are constructed with
radiological characteristics and clinical information (p < 0.001,
Figure 3D). It is worth noting that the performance of MP-NN
was consistent across all nodule sizes, radiological types, and
histology types (Figure 3E,F, Table 2). In the intervening years,
medical image approaches combined with deep learning tech-
nology became a leading research topic in detecting and distin-
guishing benign and malignant pulmonary nodules.[22] We devel-
oped a deep learning-based Image Artificial Intelligence software
(Image-AI) previously.[23] As shown in Figure 3D and Table 3, the
obtained AUC of MP-NN was significantly higher than Image-
AI in the test set (p = 0.026) and MP-NN was highly sensitive,
but showed poor specificity, while Image-AI was highly specific,
thus a comprehensive intelligent model integrating MP-NN and
Image-AI will be significantly valuable.

2.5. SMFs Based Tri Modal Model for Pulmonary Nodule
Classification

To further improve the ability to classify the intermediate pul-
monary nodules, we constructed a tri modal model integrating
SMFs, tumor marker CEA, and Image-AI (Figure 4A). To effec-

tively aggregate information from different modalities and select
the optimal classifier, we first tested different machine learning
models for comparison, including LR, radiological characteris-
tics, SVM, decision trees (DT), extra trees (ET), XGBoost, Light-
GBM, and RF. The previously 480 samples dataset was randomly
split into 8:2 as the training and test set. The RF algorithm was de-
termined to be the best classifier for output fusion based on MP-
NN and Image-AI on the training set in tenfold cross-validation
(Figure 4B). The best parameters of RF found with grid-search
were adopted to retrain the RF model on the entire training set
and generated the final tri modal MPI-RF model (Figure 4A). As
shown in Figure 4C, the integration of Image-AI with MP-NN
significantly improved the prediction accuracy. MPI-RF achieved
better performance than any single and dual modal models
both in the training and the test set (Figure 4D, Table 3). More
importantly, at higher specificity (80%), MPI-RF attained over
80% sensitivity, which is notably better than that of Image-AI
alone (Figure 4D).

Studies have revealed the different proteogenomic landscapes
between smokers and non-smokers.[24] We compared smoking
status and nodule size to the MPI-RF score assigned to each sam-
ple to assess the effects of clinical risk factors such as smoking
and nodule size. The two factors did not appear to correlate with
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Figure 3. Performance of MP-NN in pulmonary nodule classification. A) Schematic depicting the approach for evaluation of the performance of MP-NN
in pulmonary nodule classification. B) MP-NN score levels in patients with benign and malignant nodules. p-values were calculated using a Wilcoxon
test. Error bars indicate interquartile. C) Representative data of patients with pulmonary nodules. Left, data of two patients with low MP-NN scores
who were diagnosed with pulmonary infection (# 1486; # 2255). Right, data from two patients with high MP-NN scores who were diagnosed with
lung adenocarcinoma (LUAD) (# 550; # 515). D) Receiver operating characteristic curve (ROC) of MP-NN, Image-AI, Mayo Clinic, and Veterans Affairs
model for pulmonary nodule classification in the whole cohort. E) ROC of MP-NN in different nodule radiological subtypes. F) ROC of MP-NN in different
nodule sizes. *** p < 0.001.
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Table 2. MP-NN performance in different nodule sizes and radiological subtypes.

Characteristics AUC (95% CI) Sensitivity [%] Specificity [%] PPV [%] NPV [%] Accuracy [%]

All nodules 0.778 (0.729–0.828) 81.79 56.91 84.64 51.85 75.42

Nodule size

Nodules ≥ 0.8 cm 0.782 (0.727–0.836) 82.81 57.00 84.59 53.77 76.10

Nodules < 0.8 cm 0.769 (0.653–0.886) 77.78 56.52 84.85 44.83 72.63

Nodule radiological type

Pure GGN 0.801 (0.636–0.966) 87.72 42.86 96.15 17.65 85.12

Part-solid nodule 0.809 (0.710–0.908) 77.11 70.37 94.12 33.33 76.17

Solid nodule 0.771 (0.698–0.843) 83.12 53.93 60.95 78.69 67.47

Histological type

AIS 0.788 (0.726–0.851) 84.72 56.91 53.51 86.42 67.18

MIA 0.781 (0.722–0.841) 82.52 56.91 61.59 79.55 68.58

IA 0.773 (0.719–0.827) 80.22 56.91 73.37 66.04 70.82

GGN refers to ground-glass nodule; AIS refers to adenocarcinoma in situ; MIA refers to minimally invasive adenocarcinoma; IA refers to invasive adenocarcinoma.

Table 3. Performance of multi-modal platforms for benign and malignant pulmonary nodule diagnosis.

Model Threshold AUC (95% CI) Sensitivity [%] Specificity [%] PPV [%] NPV [%] Accuracy [%] p1 valuea) p2 valueb)

Training set

Met-NN 0.521 0.717 (0.655–0.778) 82.52 50.00 82.81 49.49 74.22 0.015 <0.001

Image-AI 0.780 0.686 (0.628–0.745) 55.94 76.53 87.43 37.31 61.20 0.128 <0.001

MP-NN 0.433 0.755 (0.698–0.812) 80.77 53.06 83.39 48.60 73.70 / <0.001

MPI-RF 0.697 0.897 (0.863–0.930) 83.57 80.61 92.64 62.70 82.81 / /

Test set

Met-NN 0.521 0.792 (0.682–0.902) 85.92 64.00 87.14 61.54 80.21 0.011 0.008

Image-AI 0.780 0.719 (0.614–0.825) 52.11 84.00 90.24 38.18 60.42 0.026 <0.001

MP-NN 0.433 0.878 (0.792–0.964) 85.92 72.00 89.71 64.29 82.29 / 0.231

MPI-RF 0.697 0.912 (0.854–0.970) 81.69 92.00 96.67 63.89 84.38 / /

a)
The p1 values indicate the statistical significance for the differences of AUC comparing the dual modal model MP-NN with the single modal model Met-NN and Image-AI.

b)
The p2 values indicate the statistical significance for the differences of AUC comparing the tri modal model MPI-RF with the single modal model Image-AI and Met-NN and

the dual modal model MP-NN.

the MPI-RF score, nodules of all sizes and smoking status were
spread across the model score spectrum (Figure S9, Supporting
Information). To quantify this observation, the Chi-square Hos-
mer and Lemeshow test and Pearson correlation were calculated
(Table S4, Supporting Information), and the results indicated that
the MPI-RF was independent of the two currently used risk fac-
tors for malignancy (p > 0.05). Thus, MPI-RF model may provide
incremental clinical information for pulmonary nodule classifi-
cation.

3. Discussion

LUAD survival is largely dependent on stage at diagnosis. The
identification of novel non-invasive biomarkers is critical to im-
prove the diagnosis of early-stage LUAD, and is especially im-
portant for the accurate classification of pulmonary nodule. A
novel lung cancer biomarker will be clinically valuable if it sat-
isfies the unsatisfied clinical need or brings strengths over stan-
dard practice (e.g., higher accuracy, more straightforward to use,
higher analysis speed, lower costs). Currently, clinically proven

lung cancer biomarkers such as CEA are used for monitoring
cancer development rather than early diagnosis because of insuf-
ficient sensitivity.

Progress in high-throughput technologies and artificial intel-
ligence approaches has contributed to the discovery of biomark-
ers for cancer diagnosis and prognosis. Liquid biopsies, such as
tumor-derived autoantibodies,[25] circulating tumor DNA methy-
lation panels,[26] and protein biomarker panels,[27] have been con-
sidered as an easier, safer, and less invasive method for can-
cer diagnosis. However, few approaches have reached extensive
clinical use mainly because of methodological limitations. Re-
cently, computer-aided screening systems have been studied to
detect pulmonary nodules and classify malignant and benign
ones.[5b,28] Despite the improved prediction accuracy, several lim-
itations exist, including the issue of overfitting and the lack of
clinical/biological information. A single modal marker is un-
likely to have sufficient performance because of the heterogeneity
and complexity of cancer.[29] Hence, identifying new biomarker
panels for monitoring cancer presence and progression using ad-
vanced omics tools is critical. In this study, we constructed and
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Figure 4. Development and blind test of serum metabolic fingerprints (SMFs) based tri modal pulmonary nodule classification model. A) Schematic
overview of the random forest approach used to develop and validate the SMFs based tri modal pulmonary nodule classification model. B) Receiver
operating characteristic curve (ROC) of different machine learning algorithms using ten fold cross-validation in the training set. C) Scatter plot for the
graphical comparison of Image-AI and MPI-RF in the whole cohort. D) ROC of pulmonary nodule classification models in the training and test set.

validated integrative models for lung cancer early detection and
pulmonary classification by multi-modal fusion of radiomics and
other omics.

Metabolomics is considered a hallmark of cancer, promising
for biomarker development.[30] Metabolites are exported from
cells to blood and transported out of the body by urine or feces.
Thus, metabolites could serve as the efficient and non-invasive

biomarkers which accurately reflect tumor cells’ metabolic activ-
ity. Current application of metabolites in diagnosis is limited by
several critical difficulties including low bio-molecule abundance
and high sample complexity.[31] Accordingly, metabolic analysis
relies heavily on pretreatment methods, such as chemo-selective
extraction or liquid chromatography, which are time-intensive
and labor-consuming, making it unpractical for large-scale use.
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LDI MS has afforded significant advantages with its rapid and di-
rect analysis of analytes (≈seconds), simple sample preprocess-
ing/preparation for large-scale use, high sensitivity, and low costs
for practical applications.[32] Here, we established a rapid NPLDI
MS approach to analyze SMFs. This method is distinct from tradi-
tional MS approaches that require huge volumes of serum (∼mL)
to enhance metabolite abundance and lengthy pretreatment pro-
cedures (∼hours) to address sample complexity.

In order to identify accurate and systematic models for LUAD
early detection, we further expanded our analysis of SMFs and
integrated SMFs with clinical accessible data (e.g., traditional tu-
mor markers or CT features) to generate multi-modal platforms.
We described the development and validation of the dual modal
model (MP-NN) integrating SMFs with tumor marker CEA (Fig-
ure 2A), and demonstrated that MP-NN had better performance
than single modal Met-NN and CEA in screening of early LUAD
patients from controls (Figure 2B–H). Of note, the MP-NN scores
correlate well with tumor stage (Figure 2I,J), and may have utility
in further study of the treatment monitoring and early detection
of cancer relapse. Additionally, our results suggested that the MP-
NN model may be a promising diagnostic adjunct to the current
paradigm for detecting indeterminate lung nodules. It achieved
an AUC of 0.778 (0.729–0.828, 95% CI), with sensitivity of 81.79%
and specificity of 56.91%, which outperformed current clinical
prediction models (Figure 3D, Table 2). Recently, a blood-based
methylation model PulmoSeek was demonstrated as a potential
solution for lung nodule diagnosis, however, it takes at least 4
days from sample to report, with at least $500 cost (including
extraction of cell-free DNA, conversion of bisulfite, construction
of library, sequencing, and bioinformatics analysis) in a clinical
laboratory.[26b] In contrast, our approach achieved appealing
analytical performance (∼seconds) and superior diagnostic
performance (AUC of ∼0.8 for pulmonary nodule classification
and of ∼0.95 for early LUAD detection), enabling low-cost and
large-scale rollout for use in clinics. The above results showed
that the MP-NN model provided a new strategy, independent
of nodule characters, for accurate classification of pulmonary
nodule.

Image features are mostly recommended by guidelines for pul-
monary nodule classification, but are limited partly by variability
in image interpretation among radiologists and lack of bio-omics
information. The multi-modal fusion of radiomics and biomics
holds great potential to address this issue. Researchers have pre-
viously discussed the feasibility of incorporating blood test with
routine image scan to improve early cancer screening/diagnosis
performance and pulmonary nodule classification.[18,23b] We con-
structed a tri modal model integrated SMFs, tumor marker CEA,
and Image-AI via RF classifier (MPI-RF), which is more robust
and accurate for nodule risk stratification than dual modal MP-
NN and single modal Image-AI (Figure 4). RF is an ensemble
tree-based algorithm involving multiple decision trees which are
combined to yield a single prediction that is collective and con-
sensus of multiple trees. By integrating large numbers of deci-
sion trees, we can obtain results with dramatic improvements in
prediction accuracy. The MPI-RF model yields an AUC of 0.912
with significantly improved detection sensitivity at higher speci-
ficity range than any individual method. This result implicated
that radiomics and biomics biomarkers may offer complimen-
tary information and that both domains of knowledge should be

utilized for a more comprehensive evaluation of pulmonary nod-
ule classification.

The advantages of our work include the development of the
rapid and low-cost NPLDI MS platform for sensitive and selective
collection of SMFs, and the construction of SMFs based single,
dual, and tri modal platforms for early LUAD diagnosis and accu-
rate pulmonary nodule classification. This study has several lim-
itations. First, both training and test studies were conducted us-
ing retrospective samples, a prospective study is required to fur-
ther validate the performance of the models. Second, the present
study mainly focused on the development and validation of the di-
agnostic models. The potential pathways and mechanisms need
further investigation. Finally, improving lung cancer outcome is
the clinic’s most important task. We are performing the follow-
up to collect patients’ prognostic information, and the outcome
of prognostics will be reported in the future.

4. Conclusion

Overall, we have developed and validated integrative SMFs
based multi-modal platforms for LUAD early detection and pul-
monary nodule classification. The strategy was demonstrated to
be practically feasible based on NPLDI MS platform and high-
dimensional data processing methods, and clinically useful with
the potential to aid the existing diagnostic approaches in lung
cancer screening. This work lays the conceptual and practical
foundation for clinical application of omics tools and further pro-
vides new insights for biomarker study.

5. Experimental Section
Study Design: A total of 2276 participants, including 320 patients with

lung benign disease (LBD), 958 patients with LUAD, and 998 healthy con-
trols (HC) undergoing routine health care maintenance were enrolled be-
tween November 2016 and May 2018. The 2276 participants were collected
from Shanghai Chest Hospital. All serum samples were collected before or
at clinical diagnosis. Exclusion criteria included the lack of histopathologic
diagnosis, a history of other types of malignant diseases or acute diseases
for patients with lung cancer, and other systematic diseases (e.g., systemic
lupus erythematosus) for the controls. Written consent was attained from
each participant, with approval by the ethics committee of Shanghai
Chest Hospital (ethical approval number KS1961) and registered in the
Chinese Clinical Trial Registry (ChiCTR2000036938). Lung cancer was
diagnosed by histopathology according to the guidelines of the National
Comprehensive Cancer Network.[33] Lung cancer staging was performed
based on the eighth IASLC TNM Staging System.[34] Lung benign diseases
included pulmonary infection, chronic obstructive pulmonary disease,
hamartoma, and others. There was no significant difference (p > 0.05)
in age and sex with detailed information listed in Table S1, Supporting
Information.

A total of 480 samples were selected from the above participants for
multi-modal pulmonary nodule classification platform construction and
validation following the criteria: single pulmonary nodule screened by
standard or LDCT with size less than 30 mm; and nodule types of solid
nodule, part-solid nodule, and pure ground-glass nodule (GGN). The de-
tailed information is listed in Table S3, Supporting Information.

Sample Size: A power analysis was conducted to decide the significant
sample size of machine learning for the MP-NN and MPI-RF. Assuming an
AUC of 0.95 for MP-NN was required in the training set, results showed
that at least 235 participants (including 99 LUAD patients and 136 con-
trols) would achieve a power of 80% to detect that the true AUC was ≥ 0.9
(1 arm binomial test with one sided alpha = 0.05, Figure S10A, Support-
ing Information) in the test set. Assuming an AUC of 0.9 for MPI-RF was
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required in the training set, results showed that at least 98 participants (in-
cluding 73 patients with malignant nodules and 25 with benign nodules)
would achieve a power of 80% to detect that the true AUC was ≥ 0.8 (1
arm binomial test with one sided alpha = 0.05, Figure S10B, Supporting
Information) in the test set.

Preparation of Serum Sample: Whole blood samples were collected be-
tween 6:00 and 7:00 AM, with an overnight fast to remove the disturbance
of diet.[35] To obtain serum, blood samples were drawn by venipuncture
to BD Vacutainer tubes and centrifuged at 3500 rpm for 10 min at 4 °C.
Serum samples were stored at −80 °C immediately until use.

Preparation and Characterization of Nanoparticles: Ferric nanoparticles
were synthesized through a modified solvo-thermal method based on the
previous reports.[11a] 0.60 g of ferric chloride, 0.15 g of trisodium citrate,
and 0.96 g of sodium acetate were dissolved in ethylene glycol solution
successively and the mixture was sonicated until the solution became ho-
mogeneous. The reaction mixture was heated to 200 °C for 10 h in a re-
actor with a capacity of 50 mL. The product was washed using deionized
water and ethanol multiple times until the supernatant was colorless. The
final product was then dried at 60 °C for 12 h and stored in a vacuum
before use. For characterization of nanoparticles, SEM images were at-
tained with the S-4800 (Hitachi, Japan) operating at 10 kV. Transmission
electron microscopy images were recorded on a JEM-2100F instrument
(JEOL, Japan) under an acceleration voltage of 300 kV. Dynamic light scat-
tering was conducted on a Nano ZS instrument at 25 °C (Malvern, Worces-
tershire, UK). Optical absorption measurement of the materials were col-
lected on a UV1900 UV–vis spectrometer (Aucybest, China) at room tem-
perature.

NPLDI MS Analysis: Ferric nanoparticles were disseminated in deion-
ized water at a concentration of 1 mg mL−1 before NPLDI MS detection.
An equal volume ratio of serum analytes and material suspension (1 μL)
was successively dropped onto the target plates and dried for NPLDI MS
test. Mass spectra were acquired in the reflection mode on autoflex speed
time-of-flight mass spectrometry (Bruker, Germany) with the Nd:YAG laser
working at a maximum frequency of 2 kHz and 355 nm. Data from each ex-
periment data were accumulated by 2000 laser shots. Mass calibration was
performed with standard molecules to ensure the accurate mass measure-
ment and avoid intra-plate variation. All serum samples were randomly
dropped on multiple 384-well target plates to reduce systematic errors
and inter-plate variance due to uneven distribution of sample types. In
addition, each spot was repeated five times to ensure the reproducibility
of the mass spectra.

Spectrum Preprocessing: The preprocessing of raw MS spectra was per-
formed in a step-wise manner and included spectrum smoothing, spec-
trum down-sampling, baseline correction, and peak detection. For spec-
trum smoothing, 1D Gaussian Filter with sigma of 1 was performed on
the raw spectra to remove noise. For spectrum down-sampling, the bin-
ning operation with a window size of 0.05 Da was performed to reduce the
complexity from ≈125 000 data points to 9000 data points. For baseline
correction, the white top-hat operation of the morphological transforma-
tions was performed to remove the background baselines. For peak detec-
tion, local maxima operation was performed to extract the final metabolic
features. After the preprocessing procedures, 2316 metabolic features at
the mass range of 100–1000 Da were obtained.

Tumor Marker Analysis: The serum levels of CEA were measured with a
commercially available electrochemiluminescent assay on a Roche Cobas
e601 analyzer (Roche Diagnostics, Germany). The cutoff value was set ac-
cording to the manufacturer’s recommendations.

Existing Clinical Models for Pulmonary Nodule Classification: The Mayo
Clinic prediction model for malignancy in pulmonary nodule is described
by the following equations:[36]

probability of malignancy = ex

(1 + ex)
(1)

x = −6.8272 + (0.0391 × age) + (0.7917 × smoking)

+ (1.3388 × cancer) + (0.1274 × nodule diameter)

+ (1.0407 × spiculation) + (0.7838 × upper lobe) (2)

where e refers to the base of natural logarithms, age is the patient’s age in
years, cigarettes = 0 if the patient has never been a smoker (otherwise = 1,
including current or former smoker), cancer = 1 if the patient has a history
of extrathoracic cancer which was diagnosed over 5 years ago (otherwise=
0), diameter is the diameter of the pulmonary nodule in millimeters, spic-
ulation = l if pulmonary nodule’s edge has spicules (otherwise = 0), and
upper = l if the pulmonary nodule is located in an upper lobe (otherwise =
0).

The Veterans Affairs model for malignancy in pulmonary nodule works
as the following mathematical equations:[5d]

probability of malignancy = ex

(1 + ex)
(3)

x = −8.404 + (2.061 × smoke) + (0.779 × age10)

+ (0.112 × diameter) − (0.567 × years quit10) (4)

where e refers to the base of natural logarithms, smoke = 0 if the pa-
tient has never been a smoker (otherwise 1, including current or former
smoker), age 10 refers to the patient’s age in years divided by 10, diameter
refers to the diameter of the pulmonary nodule in millimeters, and years
quit10 is the number of years calculated from the year of quitting smoking
divided by 10.

LDCT Image Artificial Intelligence: CT scans were attained with a row
scanner of 128-detector (produced in Brilliance, Philips, Cleveland, OH,
USA) by the helical technique at the end of inspiration throughout one
breath hold. Routine CT’s scanning parameters were as follows: pitch, 1.0;
matrix, 1024 × 1024; FOV, 300 mm; 120 kVp and 200 mA. Deep convolu-
tional neural network model based artificial intelligence software (Image-
AI) for lung nodule detection and classification was developed by Sanmed
Biotech and clinical validated previously.[23] A 3D-Unet was used for the
nodule detection and segmentation, while downstream tasks including the
nodule type classification and cancer risk score prediction network were
realized with 3D Resnet. A total of 480 cases of raw chest CT data were
transferred to the workstation, and the software system automatically per-
formed lung nodule identification and labeling in batch.

Diagnostic Model Development: Three models were constructed for
LUAD diagnosis and pulmonary nodule classification, including single
modal (SMFs), dual modal (SMFs + CEA), and tri modal (SMFs + CEA
+ CT imaging) based platforms. A neural network was used for the
construction of the single modal model based on METabolic fingerprints
(Met-NN) and the dual modal model combined metabolic fingerprints
with protein tumor marker CEA (MP-NN). The single and dual modal
classifier consisted of a metabolite-scoring block and a metabolite-protein
fusion block. The metabolite-scoring block was designed for calculating
the predictive score of metabolic features and consisted of a total of six
feature extraction blocks and one fully connected layer for the diagnostic
score calculation. Every feature extraction block contained one fully con-
nected layer with 1024 hidden units followed by Dropout operation and
LeakyReLU activation. Skip connection based on residual mechanism was
introduced to convey information from the input to the output for every
feature extraction block. The metabolite-protein fusion block took the
output of the metabolite-scoring block and the protein tumor marker as
the input and then calculated the final probability with one fully connected
layer. The Adam optimizer was used with an initial learning rate of 0.0001,
𝛽1 of 0.9 and 𝛽2 of 0.999. Binary cross entropy was applied as the loss func-
tion for the guiding of gradient descent. The training process was carried
out on a Nvidia GeForce GTX 2070 GPU (Nvidia Corporation, CA, USA)
for 1000 epochs. Both Met-NN and MP-NN generated a cancer diagnostic
score and represented the predictive probability, ranging from 0 to 1. For
the Met-NN and MP-NN model, the optimal cutoff that maximized the
Youden index in the training cohort was applied to estimate the diagnostic
specificity, sensitivity, positive predictive value, and negative predictive
value. RF was used for the construction of the tri modal (SMFs + CEA +
CT imaging) classifier based on the results of MP-NN and Image-AI (MPI-
RF). The previous 480 samples dataset was randomly split into 8:2 as
the training and test set. On the training set, the RF classifier was trained
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using ten fold cross-validation across a grid of values for
min_samples_leaf (the minimum number of samples required for a
leaf note), max_depth (the maximum depth for one decision tree), and
estimators (the number of decision trees in the forest). In each of the
ten folds, the RF classifier trained multiple decision trees parallelly with
bootstrapping strategy as an ensemble method using 9 of the folds.
Every tree was trained with different subsets of samples and features.
As a result, each decision tree in the RF was unique. At last, the best
parameters found with grid-search were adopted to retrain the RF model
on the entire training set and generate the final tri modal MPI-RF model.
This final MPI-RF model exhibited good generalization by aggregating the
decisions of individual trees. In addition, the resulting MPI-RF model was
blind tested on the remaining test set and compared with MP-NN and
Image-AI. For the MPI-RF model, the optimal cutoff that maximized the
Youden index in the training cohort was applied to estimate the diagnostic
specificity, sensitivity, positive predictive value, and negative predictive
value.

Statistical Analysis: Pre-processing of mass spectra, machine learning
of metabolic fingerprints, and deep learning of metabolic fingerprints and
protein tumor marker were performed by home-build codes with Python
(version 3.7), Pytorch (version 1.6.0), Scipy (version 1.5.2), and Sklearn
(version 1.0). Statistical analyses (including bio-analytical results and ma-
terials characterizations) were performed using the SPSS software (ver-
sion 20.0) to calculate the significance (p-value), including Wilcoxon test,
Chi-square Hosmer and Lemeshow test, and Pearson correlation. Binary
logistic was carried out by SPSS software (version 20.0). The DeLong test
was used to evaluate the significance for the difference of AUCs based on
the MedCalc software (version 19.0.4). The PASS software (version 21.0.3)
was used to calculate the appropriate sample size. The scatter plots, heat
maps, and ROC curves were generated with GraphPad Prism 8.0 (version
8.0) and R (version 3.6.3) package “ROCR” (version 1.0-11) and then em-
bellished with Adobe Illustrator (version 23.0).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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