Table 2.
Results of discriminative RMs in group 1 in the testing group.
| QBDT | Xgboost | RF | Distance correlation | LASSO | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | |
| SVM | 0.806 | 0.876 | 0.761 | 0.841 | 0.761 | 0.878 | 0.761 | 0.779 | 0.722 | 0.787 |
| KNN | 0.776 | 0.823 | 0.766 | 0.832 | 0.771 | 0.853 | 0.761 | 0.804 | 0.731 | 0.751 |
| LDA | 0.771 | 0.814 | 0.772 | 0.849 | 0.781 | 0.829 | 0.767 | 0.730 | 0.752 | 0.819 |
| GausiannNB | 0.761 | 0.847 | 0.746 | 0.824 | 0.721 | 0.831 | 0.756 | 0.799 | 0.601 | 0.740 |
| Adaboost | 0.731 | 0.828 | 0.761 | 0.819 | 0.716 | 0.769 | 0.701 | 0.740 | 0.711 | 0.786 |
| LR | 0.771 | 0.829 | 0.757 | 0.791 | 0.751 | 0.796 | 0.757 | 0.715 | 0.697 | 0.775 |
| DT | 0.711 | 0.706 | 0.756 | 0.746 | 0.721 | 0.714 | 0.672 | 0.658 | 0.682 | 0.668 |
AUC, Area under curve; Decision tree, DT; GBDT, Gradient boosting decision tree; KNN, K-nearest neighbor; LASSO, least absolute shrinkage and selection operator; LDA, Linear Discriminant analysis; LR, Logistic regression; RF, Random forest; SVM, Support vector machine; Xgboost, Extreme gradient boosting.