Skip to main content
. 2022 Nov 24;12:1043163. doi: 10.3389/fonc.2022.1043163

Table 3.

Results of discriminative CMs in group 1 in the testing group.

QBDT Xgboost RF Distance Correlation LASSO
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC
SVM 0.850 0.922 0.821 0.894 0.815 0.882 0.751 0.777 0.722 0.787
KNN 0.835 0.908 0.810 0.882 0.840 0.882 0.746 0.778 0.731 0.751
LDA 0.884 0.825 0.869 0.806 0.867 0.791 0.732 0.737 0.752 0.819
GausiannNB 0.830 0.913 0.815 0.872 0.736 0.848 0.752 0.785 0.601 0.740
Adaboost 0.811 0.882 0.721 0.807 0.776 0.822 0.721 0.753 0.711 0.786
LR 0.845 0.903 0.811 0.886 0.791 0.860 0.757 0.715 0.697 0.775
DT 0.801 0.798 0.826 0.818 0.761 0.759 0.722 0.708 0.682 0.668

AUC, Area under curve; Decision tree, DT; GBDT, Gradient boosting decision tree; KNN, K-nearest neighbor; LASSO, least absolute shrinkage and selection operator; LDA, Linear Discriminant analysis; LR, Logistic regression; RF, Random forest; SVM, Support vector machine; Xgboost, Extreme gradient boosting.