Table 3.
Results of discriminative CMs in group 1 in the testing group.
| QBDT | Xgboost | RF | Distance Correlation | LASSO | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | |
| SVM | 0.850 | 0.922 | 0.821 | 0.894 | 0.815 | 0.882 | 0.751 | 0.777 | 0.722 | 0.787 |
| KNN | 0.835 | 0.908 | 0.810 | 0.882 | 0.840 | 0.882 | 0.746 | 0.778 | 0.731 | 0.751 |
| LDA | 0.884 | 0.825 | 0.869 | 0.806 | 0.867 | 0.791 | 0.732 | 0.737 | 0.752 | 0.819 |
| GausiannNB | 0.830 | 0.913 | 0.815 | 0.872 | 0.736 | 0.848 | 0.752 | 0.785 | 0.601 | 0.740 |
| Adaboost | 0.811 | 0.882 | 0.721 | 0.807 | 0.776 | 0.822 | 0.721 | 0.753 | 0.711 | 0.786 |
| LR | 0.845 | 0.903 | 0.811 | 0.886 | 0.791 | 0.860 | 0.757 | 0.715 | 0.697 | 0.775 |
| DT | 0.801 | 0.798 | 0.826 | 0.818 | 0.761 | 0.759 | 0.722 | 0.708 | 0.682 | 0.668 |
AUC, Area under curve; Decision tree, DT; GBDT, Gradient boosting decision tree; KNN, K-nearest neighbor; LASSO, least absolute shrinkage and selection operator; LDA, Linear Discriminant analysis; LR, Logistic regression; RF, Random forest; SVM, Support vector machine; Xgboost, Extreme gradient boosting.