Skip to main content
. 2022 Nov 24;12:1043163. doi: 10.3389/fonc.2022.1043163

Table 4.

Results of discriminative RMs in group 2 in the testing group.

QBDT Xgboost RF Distance correlation LASSO
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC
SVM 0.695 0.760 0.645 0.702 0.636 0.684 0.655 0.699 0.605 0.570
KNN 0.628 0.658 0.639 0.634 0.611 0.669 0.654 0.655 0.545 0.502
LDA 0.705 0.730 0.679 0.721 0.611 0.702 0.696 0.740 0.620 0.663
GausiannNB 0.638 0.747 0.689 0.717 0.628 0.733 0.604 0.721 0.546 0.576
Adaboost 0.687 0.666 0.630 0.638 0.595 0.598 0.637 0.599 0.605 0.582
LR 0.696 0.763 0.680 0.732 0.670 0.722 0.688 0.720 0.664 0.587
DT 0.613 0.602 0.637 0.630 0.608 0.570 0.561 0.532 0.546 0.524

AUC, Area under curve; Decision tree, DT; GBDT, Gradient boosting decision tree; KNN, K-nearest neighbor; LASSO, Least absolute shrinkage and selection operator; LDA, Linear Discriminant analysis; LR, Logistic regression; RF, Random forest; SVM, Support vector machine; Xgboost, Extreme gradient boosting.