Table 4.
Results of discriminative RMs in group 2 in the testing group.
| QBDT | Xgboost | RF | Distance correlation | LASSO | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | |
| SVM | 0.695 | 0.760 | 0.645 | 0.702 | 0.636 | 0.684 | 0.655 | 0.699 | 0.605 | 0.570 |
| KNN | 0.628 | 0.658 | 0.639 | 0.634 | 0.611 | 0.669 | 0.654 | 0.655 | 0.545 | 0.502 |
| LDA | 0.705 | 0.730 | 0.679 | 0.721 | 0.611 | 0.702 | 0.696 | 0.740 | 0.620 | 0.663 |
| GausiannNB | 0.638 | 0.747 | 0.689 | 0.717 | 0.628 | 0.733 | 0.604 | 0.721 | 0.546 | 0.576 |
| Adaboost | 0.687 | 0.666 | 0.630 | 0.638 | 0.595 | 0.598 | 0.637 | 0.599 | 0.605 | 0.582 |
| LR | 0.696 | 0.763 | 0.680 | 0.732 | 0.670 | 0.722 | 0.688 | 0.720 | 0.664 | 0.587 |
| DT | 0.613 | 0.602 | 0.637 | 0.630 | 0.608 | 0.570 | 0.561 | 0.532 | 0.546 | 0.524 |
AUC, Area under curve; Decision tree, DT; GBDT, Gradient boosting decision tree; KNN, K-nearest neighbor; LASSO, Least absolute shrinkage and selection operator; LDA, Linear Discriminant analysis; LR, Logistic regression; RF, Random forest; SVM, Support vector machine; Xgboost, Extreme gradient boosting.