Table 5.
Results of discriminative CMs in group 2 in the testing group.
| QBDT | Xgboost | RF | Distance correlation | LASSO | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | |
| SVM | 0.721 | 0.802 | 0.723 | 0.799 | 0.721 | 0.797 | 0.731 | 0.761 | 0.605 | 0.570 |
| KNN | 0.730 | 0.756 | 0.656 | 0.726 | 0.730 | 0.777 | 0.774 | 0.783 | 0.545 | 0.502 |
| LDA | 0.687 | 0.785 | 0.637 | 0.686 | 0.687 | 0.778 | 0.755 | 0.793 | 0.620 | 0.663 |
| GausiannNB | 0.705 | 0.808 | 0.723 | 0.774 | 0.688 | 0.772 | 0.680 | 0.752 | 0.546 | 0.576 |
| Adaboost | 0.637 | 0.676 | 0.688 | 0.697 | 0.596 | 0.610 | 0.645 | 0.612 | 0.605 | 0.582 |
| LR | 0.705 | 0.774 | 0.714 | 0.783 | 0.730 | 0.780 | 0.705 | 0.787 | 0.664 | 0.587 |
| DT | 0.640 | 0.629 | 0.631 | 0.616 | 0.630 | 0.621 | 0.630 | 0.597 | 0.546 | 0.524 |
AUC, Area under curve; Decision tree, DT; GBDT, Gradient boosting decision tree; KNN, K-nearest neighbor; LASSO, least absolute shrinkage and selection operator; LDA, Linear Discriminant analysis; LR, Logistic regression; RF, Random forest; SVM, Support vector machine; Xgboost, Extreme gradient boosting.