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T3 and glucose increase expression of
phosphoenolpyruvate carboxykinase (PCK1)
leading to increased b-cell proliferation
Liora S. Katz 1,*, Carmen Argmann 1,2, Luca Lambertini 1, Donald K. Scott 1
ABSTRACT

Objectives: Thyroid hormone (T3) and high glucose concentrations are critical components of b-cell maturation and function. In the present
study, we asked whether T3 and glucose signaling pathways coordinately regulate transcription of genes important for b-cell function and
proliferation.
Methods: RNA-seq analysis was performed on cadaveric human islets from five different donors in response to low and high glucose con-
centrations and in the presence or absence of T3. Gene expression was also studies in sorted human b-cells, mouse islets and Ins-1 cells by RT-
qPCR. Silencing of the thyroid hormone receptors (THR) was conducted using lentiviruses. Proliferation was assessed by ki67 immunostaining in
primary human/mouse islets. Chromatin immunoprecipitation and proximity ligation assay were preformed to validate interactions of ChREBP and
THR.
Results: We found glucose-mediated expression of carbohydrate response element binding protein alpha and beta (ChREBPa and ChREBPb)
mRNAs and their target genes are highly dependent on T3 concentrations in rodent and human b-cells. In b-cells, T3 and glucose coordinately
regulate the expression of ChREBPb and PCK1 (phosphoenolpyruvate carboxykinase-1) among other important genes for b-cell maturation.
Additionally, we show the thyroid hormone receptor (THR) and ChREBP interact, and their relative response elements are located near to each
other on mutually responsive genes. In FACS-sorted adult human b-cells, we found that high concentrations of glucose and T3 induced the
expression of PCK1. Next, we show that overexpression of Pck1 together with dimethyl malate (DMM), a substrate precursor, significantly
increased b-cell proliferation in human islets. Finally, using a Cre-Lox approach, we demonstrated that ChREBPb contributes to Pck1-dependent
b-cell proliferation in mouse b-cells.
Conclusions: We conclude that T3 and glucose act together to regulate ChREBPb, leading to increased expression and activity of Pck1, and
ultimately increased b-cell proliferation.

� 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

The association between thyroid dysfunction and diabetes has long
been recognized, and both hypothyroidism and hyperthyroidism are
associated with diabetes [1e10]. Thyroid hormones act to promote or
antagonize insulin’s actions depending on the context as well as the
cell type they are acting upon. Thus, thyroid hormones participate in a
fine balance that promotes normal glucose metabolism and any de-
viation of thyroid hormone abundance can perturb glucose homeo-
stasis [4].
One way that T3 affects glucose homeostasis is through its influence
on b-cell mass. Thyroid hormone (T3) is required for islet development
and function [11e15]. T3 promotes b-cell proliferation in human and
rodent cell lines and in the embryonic murine pancreas in explant
culture [13,16e18]. Glucose is also a known b-cell mitogen,
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implicated in adaptive b-cell expansion [19e22]. One transcription
factor known to mediate this effect is Carbohydrate Response Element
Binding Protein (ChREBP) [23,24]. ChREBP is a glucose responsive
transcription factor that has two splice isoforms. One is ChREBPa
which is mostly cytoplasmic and repressed in low glucose. The protein
consists of an N-terminal low glucose inhibitory domain, containing a
nuclear export signal that folds over and represses the activation
domain. The C-terminal contains a beta-helix-loop-helix Zip DNA-
binding domain. The other major isoform is ChREBPb, which is a
product of alternative splicing Where the low glucose inhibitory domain
and nuclear export signals are removed but is otherwise identical to
ChREPBa [25]. Consequently, ChREBPb is mostly nuclear, and is
constitutively and potently active [25]. Notably, both T3 and high
glucose concentrations are critical components of protocols that drive
differentiation of stem cells to b-cells [14,26e28].
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In mouse brown adipose tissue (BAT) we demonstrated that T3 and
glucose synergistically regulate ChREBP, which in turnupregulates
Ucp1, Glut4 and Fasn, resulting in increased thermogenesis,
decreased body weight, and improved glycemic levels. Recently, T3
was shown to promote lipogenesis in hepatocytes [30]. Similarly, T3
and glucose were shown to coordinately interact to activate ChREBPb
transcription, which in turn activates lipogenesis and fatty acid
oxidation in hepatocytes [31]. In islets, both ChREBP splice isoforms- a
& b [25], are expressed [29]. The expression of the b isoform is
induced in response to increased glucose concentrations and is mostly
nuclear, while ChREBPa is mostly cytoplasmic [25,32]. In b-cells,
ChREBPb (but not ChREBPa) expression is upregulated in response to
glucose, leading to increased expression of known ChREBP target
genes and increased b-cell proliferation [29]. Furthermore, this
upregulation of ChREBPb is required for glucose-stimulated b-cell
proliferation and adaptive expansion of b-cell mass [29,32]. In
pancreatic b-cells, ChREBP is a known regulator of liver-type pyruvate
kinase (Pklr), which encodes an enzyme that catalyzes the conversion
of phosphoenolpyruvate to pyruvate, the last step of glycolysis [33].
ChREBP also regulates expression of thioredoxin-interacting protein
(Txnip) [34] which is involved in oxidative stress and is implicated in
the regulation of b-cell death [35,36]. Other target genes of ChREBP
include lipogenic genes, and hence ChREBP is thought to play a role in
mediating glucolipotoxicity in b-cells [32,37e39]
Since ChREBP was shown to play a key role in glucose stimulated b-
cell proliferation [29,40], we tested the hypothesis that glucose and T3
have a synergistic effect on ChREBP transcription and thus b-cell
proliferation. We found that T3 and glucose act together to regulate
expansion of b-cells in response to glucose. We identified a novel
pathway that controls proliferation in pancreatic b-cells, the activation
of phosphoenolpyruvate Carboxykinase (PEPCK-C) activity. PEPCK-C
(gene name PCK1) is a main control point for the regulation of
gluconeogenesis. PEPCK-C converts oxaloacetate and GTP into
phosphoenolpyruvate, GDP and CO2. PEPCK promotes cancer cell
proliferation in vitro and in vivo by increasing glucose and glutamine
utilization toward anabolic metabolism. This effect is mediated at least
partially by mTORC1 [41,42]. PCK1 was demonstrated by Shalev et al.
to be the second most glucose responsive gene in pancreatic human
islets after Txnip [43]. In the liver, ChREBP is regulated by glucose
levels [25,44], and also by T3 [45,46]. However, crosstalk or coop-
erative signaling effects between glucose and T3 in b-cells have not
been studied.
While it is now established that human and murine a-cells express
PCK1 [47], it is widely thought that mature b-cells do not express PCK1
[48]. In this study and by examining various available data sets for b-
cell and human and rodent pancreatic progenitor cell differentiation,
we found that PCK1 is expressed during maturation and development
of b-cells [49e53], at a time when the proliferative capacity of b-cells
is the highest [54,55]. We hence suggest a mechanism whereby T3
and glucose signaling pathways coordinately regulates transcription of
genes important for b-cell function and mass, a novel concept in islet
biology.

2. MATERIALS AND METHODS

2.1. Cell culture
INS-1ederived 832/13 rat insulinoma cells were maintained in RPMI
1640 medium with 10% FBS, 10 mM HEPES, 2 mM L-glutamine, 1 mM
sodium pyruvate, and 50 mM b-mercaptoethanol, 100 U/mL penicillin,
100 mg/mL streptomycin and further supplemented with 11 mM
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glucose, at 37 �C in a 5% CO2 incubator. To specifically study the
effect T3, 10% resin-stripped FCS, was used to deplete thyroid hor-
mones as described in Cao et al. [56].

2.2. RNA-seq analysis
Total RNA from w100 islets per condition, from five different human
donors was isolated using the RNAeasy micro kit (Qiagen) according to
the manufacturer’s protocol. RNA integrity was assessed using Ribo-
green to determine total mass and Fragment Analyzer. All samples
passed QC. The RQN (RNA quality) scores ranged from 7.7 to 10.
Samples were submitted to the New York Genome Center and RNA
was amplified via the NuGEN Ovation RNA-Seq System V2 prior to RNA
sequencing. 35e40 million 2 � 50 bp paired-end reads were
sequenced per sample on the HiSeq2500 instrument (Illumina). Raw
count data was pre-filtered to keep genes with CPM >1.0 for at least
60% of the samples. After filtering, count data was normalized via the
weighted trimmed mean of M-values [57] and normalized counts were
further transformed into normally distributed expression values via the
voom-transformation using a model that included technical and de-
mographic covariates (gender, age, body mass index, intronic rate). We
estimated the correlation between measurements made on the same
subject using the limma function, duplicate Correlation and the inter-
subject correlation was input into the linear model fit using the limma
block design [58]. The voom-transformed, adjusted expression data
was the final input for statistical modeling. Statistical analysis was
carried out using R language version 3.0.3 and its available packages
[59]. Volcano plots were generated using ggplot2 function in R [60].
Data is available in GEO (GSE218334).
Comparisons between groups (log-fold-changes) were obtained as
contrasts of the fitted linear modes generated using weighted least
squares (lmFit) and empirical Bayes method [58,61]. A factorial design
was also used to determine if genes respond differently to thyroid
stimulation in low glucose versus high glucose concentrations (inter-
action term).

2.3. Identification of ChoREs
Carbohydrate response elements (ChoREs) binding motifs were
downloaded from the Schmidt et al. paper [62], which aimed at
determining such motifs by ChIP-seq in rat. By using the “seq2profi-
le.pl” function of HOMER version 4.11 displayed in over the ChREBP
chromatin peaks, we regenerated the ChoRE motif matrix used to build
the top logo of Figure 3F from Schmidt et al. We then further “trained”
the motif matrix by adding the ChoRE binding sites described by
Poungvarin et al. [63] for mouse exons 1a and 1b. The final matrix
(Supplementary Figure 9) was fed to the “findMotifs.pl” HOMER
function by using the human GRCh38/hg38 and the GRCm38/mm10
mouse genomes. The coordinates of the ChoRE sites mapping within
each of the genes (�5,000 bp) of Figure 5A and Supplementary
Figure 8 were determined by using the “genome_join” function of
the “fuzzyjoin” version 0.1.6 package of r 4.2.0.

2.4. THRB and RXRA sites
Coordinates of the binding sites for the human THRB and RXRA tran-
scriptional regulators were downloaded from the ReMap2022 data-
base (available at: https://remap.univ-amu.fr) [64]. For each
transcriptional regulator, sites were mapped to the same gene area
(�5,000 bp) as described above for the ChoREs.
Murine Thrb and Rxra transcriptional regulator binding sites were
downloaded from, respectively, the Mendoza et al. [31] paper and the
ReMap2022 database and mapped as above.
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2.5. Pathway enrichment analysis of gene sets
Gene sets were tested for functional enrichment using the KEGG
(downloaded 17/02/2020), Reactome (downloaded 17-02-2020) and
Gene Ontology (downloaded: 03-04-2020) pathway databases using
the Cytoscape (v3.7.2 PMID: 14597658) ClueGO (v2.5.7 PMID:
19237447) and CluePEDIA (v1.5.7 PMID: 23325622) apps. Pathways
were reported with BenjaminieHochberg (BH) multiple test correction
>0.05. Gene sets were tested for transcription factor target enrich-
ment using the GTRD (Gene Transcription Regulation Database v19.10
(GTRD, gtrd.biouml.org, [65]) collection from MSigDB [66] that was
imported into the ClueGO environment. GTRD consists of genes pre-
dicted to contain transcription factor binding sites in their defined
promoter region.

2.6. Immunostaining
After islet dispersal by 0.05% trypsin, cells were plated on 12-mm
Laminin coated glass coverslips placed in 24-well plates (34,35).
Islet cells were either uninfected or transduced with a multiplicity of
infection (MOI) of 150 of the adenoviruses indicated. Thereafter,
cells were incubated overnight in fresh medium with 10% strip FBS
containing indicated glucose and T3 concentrations. Then, cells
were rinsed with PBS and fixed in 4% paraformaldehyde, and b-cell
proliferation by staining for ki67 (Thermo Scientific) and Insulin
(Dako). At least 2000 b-cells were blindly counted per human
donor/mouse. Cells were imaged on a Zeiss 510 NLO/Meta system
(Zeiss, Oberkochen, Germany), using a Plan-Apochromat 20�
objective.

2.7. Quantitative reverse transcription PCR
Total RNA was extracted using the Qiagen RNeasy micro kit, reverse
transcription was performed using the MMLV reverse transcriptase
(Promega), following by real-time PCR with the SYBER-green reagent
(BioRad). The sequences of primers used are shown in Supplementary
Table 1.

2.8. Chromatin Immunoprecipitation
Chromatin immunoprecipitation (ChIP) assays were performed with
100 mg of cell chromatin extracts from 20 � 106 Ins1 cells. DNA was
obtained with the Active Motif (Carlsbad, CA) chromatin shearing kit.
Chromatin was precipitated by incubation with 3 mg of ChREBP anti-
body (Novus Biologicals) or 3 mg thyroid hormone receptor antibody
which recognizes both THRA and THRB genes (Abcam, ab2743, clone
C3 [67]) 1:10,000 dilution of rabbit immunoglobulin G (Abcam) fol-
lowed by separation with protein G magnetic beads (Active Motif).
Binding was analyzed by real-time PCR. Primer sequences are shown
in Supplementary Table 1.

2.9. Proximity ligation assay (PLA)
PLA was used to determine endogenous proteineprotein interactions
[68e70]. ChREBP and ThR antibodies were conjugated to Duolink
oligonucleotides, PLUS and MINUS oligo arms, respectively, using
Duolink� In Situ Probemaker kits. Cells were rinsed with PBS, fixed
with 4% methanol-free formaldehyde solution for 10 min at room
temperature, and blocked with Duolink Blocking Solution for 1 h at
37 �C and then incubated with 4 mg/mL ChREBP-Plus and ThR-MINUS
overnight at 4 �C. PLA was performed according to the manufacturer’s
directions. No secondary antibodies were used, because PLUS and
MINUS oligo arms were directly conjugated to ChREBP and ThR. Cells
were imaged on a Zeiss 510 NLO/Meta system (Zeiss, Oberkochen,
Germany), using a Plan-Apochromat 63�/1.40 oil differential inter-
ference contrast objective.
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2.10. Human islets
Human cadaveric islets received from the Integrated Islet Distribution
Program were dispersed by trypsinization as described previously [19].
To obtain a population highly enriched in b-cells. Dispersed human
islets were transduced with an adenovirus expressing ZsGreen driven
by a MIP-miniCMV promoter and harvested by fluorescence-activated
cytometric sorting (FACS Aria II) as described previously [71,72]. The
b-cell fraction was confirmed to be >92% pure by immunolabeling of
sorted cells with insulin, and by qRT-PCR [72].

2.11. Statistics
One-way or Two-way Anova was used to compare sets of data ob-
tained from independent groups of samples. All data were analyzed
using Prism version 9 (Graphpad software Inc., San Diego, CA). Sta-
tistical significance was considered at P < 0.05.

3. RESULTS

3.1. Expression of ChREBP isoforms is dependent on both glucose
and T3
To explore the relationship between T3 and glucose, we measured the
expression of numerous genes following 48 h h of exposure to various
concentrations of either glucose or T3 or a combination of both agents
in INS-1 832/13 rat insulinoma cells [ [73] henceforth INS-1 cells].
Since fetal bovine serum contains relatively high concentrations of
thyroid hormones, we utilized a T3/T4-free cell culture system by
stripping FBS with anion exchange resin, which removes T3 and T4
from bovine serum [56]. We found that ChREBPa expression was
induced in the presence of T3 but was not sensitive to changes in
glucose concentrations (Figure 1A). By contrast, ChREBPb expression
was induced with increasing doses of glucose, in a dose-dependent
manner both in the presence and absence of T3, which reached
higher levels in the presence of T3 (10 nM), with the highest induction
in the presence of T3 (Figure 1B). By comparison, in humans, ac-
cording toAmerican Thyroid Association guidelines, the normal circu-
lating levels of T3 are 0.9e2.8 nM and total T4 levels are 57e148 nM.
When titrating T3 concentrations in either low (2 mM) or high (20 mM)
glucose, we found that in ChREBPa expression was sensitive to
changing T3 concentrations, but only in high glucose concentrations
(Figure 1E). By contrast, ChREBPb levels markedly increased with
1 nM T3 in high glucose but trended down with increasing concen-
trations of T3 (Figure 1F). ChREBP plays a number of important roles in
pancreatic b-cells. In pancreatic b-cells, ChREBP is a known regulator
of liver-type pyruvate kinase (Pklr), which encodes an enzyme that
catalyzes the conversion of phosphoenolpyruvate to pyruvate, the last
step of glycolysis [33]. ChREBP also induces expression of thioredoxin-
interacting protein (Txnip) [34], which binds to and inhibits thioredoxin
and is thus implicated in glucotoxic oxidative stress and b-cell death
[35,36]. Other target genes of ChREBP include lipogenic genes as well
as oxidative stress genes [74,75], thus ChREBP is thought to play a role
in mediating glucolipotoxicity in b-cells [37e39]. Consistent with the
changes in ChREBP expression, an effect of glucose concentration on
the expression of the well-studied target genes of ChREBP genes, Pklr
and Txnip was also noted. Txnip and Pklr expression increased in the
presence of T3 (Figure 1C, D), and T3 potentiated the expression of
these genes in high glucose (Figure 1G,H).
We next studied the effect of T3 and glucose concentrations on the
expression of ChREBPa and b and the same target genes in human
islets. Remarkably, we obtained very similar effects on mRNA
expression in both model systems (Figure 1IeL). In the presence of T3
(2, 6 and 10 nM) the expression of ChREBPb mRNA was highly
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Figure 1: ChREBP-dependent glucose responses require T3. Ins-1 cells were cultured for 48 h in RPMI with 10% resin-stripped serum and the indicated concentrations of T3
and glucose. Response of ChREBPa (A, E), ChREBPb (B, F), Txnip (C, G) and Pklr (D, H) mRNA levels to increasing glucose (A, D) or T3 (E, H) concentrations in cells incubated the
presence (10 nM) or absence of T3 or in Low (2 mM) and High (20 mM) glucose. Data are the mean � SEM of three independent experiments. (IeL) In human islets, ChREBPa (I)
and Txnip (L) transcription is dose dependent on glucose concentration, while ChREBPb (J) and Pklr (K) are dependent on T3 concentration. Human islets from five different, non-
obese human donors were dispersed and cultured for 72 h in RPMI with 10% resin stripped serum. Islets were cultured in three different glucose concentrations (2, 6 and 20 mM)
in combination with four different T3 concentrations (0, 2, 5 and 10 nM). mRNA was extracted and quantified by qPCR. Data are the means � SEM of five independent ex-
periments. All mRNA levels were normalized to b-actin; *P < 0.05 by two-way ANOVA.

Original Article
responsive to varying concentrations of glucose. Transcription of
ChREBPa in both 6 and 10 mM glucose was dose dependent on T3
levels. The responsiveness of ChREBP target genes TXNIP and PKLR
showed a similar pattern of expression of ChREBPa and ChREBPb to
what was observed in Ins-1 cells (Figure 1). Together, these obser-
vations show a strong relationship between T3 and glucose signaling.

3.2. Knockdown of the thyroid hormone receptor results in
downregulation of both ChREBP splice isoforms
Next, we tested whether silencing of the two thyroid hormone re-
ceptors (Thra and Thrb) would alter the expression of ChREBP. In rats,
the two genes of Thr are expressed at different amounts during
development. Thra is the predominate form just after birth in rodents.
Thra and Thrb are expressed at equal levels from postnatal day 9e15,
and after 15 days, Thrb becomes the predominant isoform in islets
[12]. Here we find that in Ins-1 cells, Thrb is expressed at much higher
levels than Thra [as can be appreciated by the respective mRNA levels
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compared to actin (Figure 2A,B)]. Using lentiviral shRNA, we silenced
each of these genes in a specific manner (Figure 2A,B). Silencing of
either Thra or Thrb resulted in a significant decrease in ChREBPa and
ChREBPbmRNA levels (Figure 2C,D), with ChREBPb decreased to
similar levels by both THR isoforms shRNAs and ChREBPa decreased
more efficiently with shThra. Txnip expression was efficiently
repressed by both shRNAs (Figure 2E), whereas Pklr mRNA was
decreased with shThrb only in the presence of T3. (Figure 2F).

3.3. Effect of T3 and glucose on beta-cell proliferation
Since ChREBP is essential for glucose-stimulated b-cell proliferation
[29,32,74], we measured proliferation of b-cells (insulin positive cells)
by Ki67 and insulin immunolabeling in isolated and dispersed human
and mouse islet cells (Figure 3A,B), and BrdU immunostaining in Ins-1
cells (Figure 3C). In all three systems, glucose promoted proliferation,
as expected (Supplemental Figure 1A-in human islets, visualized by
the overall percent of cells positive for ki67). Yet, surprisingly, the
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 2: Silencing of thyroid hormone receptors results in decreased ChREBPa and ChREBPb transcription. Ins-1 cells were transduced with lentivirus containing shRNA
directed against Thra, Thrb or control shRNA. Following the transduction, Ins-1 cells were cultured for 48 h in RPMI with 10% resin stripped serum with the indicated glucose and
T3 concentrations. Thra, Thrb, ChREBPa, and ChREBPb mRNA levels were determined by qRT-PCR. (A, B) The specificity of each shRNA to silencing its own receptor was tested.
Sequence for silencing as well as for qPCR detects both splice isoforms of each respective gene (CeF) The effect of knocking down each thyroid hormone receptors on ChREBPa
(C) and ChREBPb (D), Txnip (E), and Pklr (F) expression was examined. Data are the mean � SEM of at least three independent experiments. All mRNA levels were normalized to
b-actin.*P < 0.05; **P < 001; ***P < 005; ****P < 001, compared to control 2 mM glucose within each respective group (0 nM T3 or 10 nM T3). $P < 0.05 compared to
control 20 mM within each respective group. Statistical test-two way Anova.
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highest percentage of cells that were double-positive for insulin and
ki67 was obtained in low glucose and high T3 (Figure 3), indicating that
fine tuning of glucose and T3 levels could be fundamental for con-
trolling differentiation and proliferation of b-cells. It is therefore crucial
to understand the mechanisms controlling expression of genes by
those pathways and which genes are responsive to both T3 and
glucose.

3.4. Genes upregulated by glucose and T3 in human islets
We performed RNA-seq analysis of cadaveric human islets from five
different donors in response to low and high glucose concentrations (6
and 20 mM, respectively) and in the presence or absence of T3
(10 nM). All donors were between the age of 24e61 and with body
mass indexes (BMIs) ranging from between 18 and 26 (Supplementary
Table 2). Covariate analysis was performed and BMI, intronic rate, age
and gender were adjusted for and the multiple sampling from subjects
was handled through the limma block function and duplicate corre-
lation function (see Methods). We observed no significant interactions
between the effect of glucose and T3 hormone on gene expression
(Supplementary Figure 3). We therefore determined significantly
differentially expressed genes (DEG) altered by glucose treatment
regardless of T3 presence or altered by T3 regardless of glucose
concentration. Volcano plots (Supplementary Figure 4) and a Venn
diagram (Figure 4A) summarizing the intersection of the T3 (181 down-
and 332 up-regulated genes) and high glucose responsive genes (91
down- and 73 up-regulated genes) are shown. Nine genes including
PCK1 (phosphoenolpyruvate carboxykinase-1) were found commonly
up-regulated by T3 or high glucose treatment, in addition to ChREBPb,
already identified by qPCR analysis (Figure 4A,B), which is a splice
isoform of ChREBP that is highly glucose-responsive through a positive
feed-back loop that promotes b-cell proliferation [25].
Pathway enrichment analyses of the DEGs associated with T3 and high
glucose treatment are summarized in Supplementary Figures 5 and 6.
Pathways associated with high glucose included ‘response to starva-
tion’ and ‘amino acid regulation of mTORC1’. Pathways associated
with T3 DEGs included ‘cellular response to hormone stimulus’ as well
as ‘pancreatic secretion’ and ‘voltage-gated ion channel activity’.
Transcription factor enrichment analysis of the genes upregulated by
high glucose or T3 are shown in Supplementary Figure 7. Consistent
with known glucose responsive elements, ChREBP-associated target
genes were significantly enriched for in the high glucose DEGs, and
THRA-associated target genes were significantly enriched for in the T3
up-regulated DEGs.

3.5. THR and ChREBP bind chromatin in close proximity
As a first approach to investigate cooperativity between T3 and glucose
signaling, we concentrated on genes that are co-upregulated by both
T3 and glucose-namely ChREBPb, PCK1, SLC9A4, RGS16, ABHD17C
OXGR1, KLF10 (Supplemental Figure 2). We identified ChREBP sites in
the human genome by feeding to HOMER a carbohydrate response
elements (ChoREs) binding site matrix (Supplementary Figure 9) ob-
tained by using the ChoRE list from Schmidt et al. [62], the ChoRE
sequences from Jeong et al. [76] and from our own experimental work
on exon 1b of ChREBP (Figure 5A). To support our results, we con-
ducted a parallel analysis with the mouse genome (Supplementary
Figure 8). Binding sites for THRB were downloaded from the
ReMap2022 database and Mendoza et al. [31] for human and mouse
respectively (Figure 5, Supplementary Figure 8 and Supplementary
Tables 3 and 4). We found biding sites for both ChREBP and THRs
on promoters/gene regions of all genes in both human (Figure 5A) and
mouse (Supplementary Figure 8). Interestingly, two genes were
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upregulated both by T3 and glucose in all four conditions tested in
human islets, ChREBPb and PCK1 (phosphoenolpyruvate
carboxykinase-1). ChREBPb is a splice isoform of ChREBP that is
glucose responsive and regulates b-cell proliferation [25]. PCK1 is
involved in hepatic gluconeogenesis and glycerolneogenesis in fat
tissue but is not typically expressed in mature pancreatic b-cells [47].
Pck1 is a well-studied target gene of T3 in hepatocytes [77].
We identified conserved thyroid response element (TRE) and ChREBP
binding sites in the promoter of the ChREBPb isoform (Figure 5A and
Supplementary Figure 8). We validated those positionson the ChREBPb
promoter that bind ChREBP and THR, respectively using ChIP
(Figure 5B). We noticed some of the THR and ChREBP binding sites
identified on the ChREBP promoters are in very close proximity with
each other. Therefore, a proximity ligation assay (PLA) was performed
to determine whether endogenous proteineprotein interactions exist.
A fluorescent signal is obtained when the distance is less than 40 nm
between THR and ChREBP (Figure 5D). We found that in the presence
of T3, both in low and high glucose, there is a physical interaction
between these two transcription factors. These results suggest a
cooperativity between these two transcription factors to integrate T3
and glucose signals.

3.6. PCK1 is regulated by glucose and T3 and its activity drives
proliferation of b-cells
PCK1 is typically not expressed at high levels in mature b-cells.
However, a recent study by Jaccovetti et al. comparing mRNA
expression from young (p10) rats and adult rats, found that Pck1 is
expressed 1000-fold higher in young rat islets compared with adults
[50]. Similarly, Avrahami et al. recently found that Pck1 is expressed in
beta cells of newborn humans [49]. Developmentally, b-cells prolif-
erate at their highest rate just after birth [78,79]. We tested if combined
treatment of T3 and glucose under our culture conditions would in-
crease expression of PCK1 in human b-cells, and if any upregulation
contributed to b-cell proliferation. Dispersed human islet cells were
transduced with RIP-ZsGreen (as a marker to identify and sort b-cells
[71]), treated with 6 mM or 20 mM glucose in the presence or absence
of 10 nM T3 and cell-sorted to separate b-cells and non- b-cells. RNA
was isolated and RT-qPCR was performed. Following sorting, we
obtained a population of b-cells highly enriched in insulin mRNA
(Figure 6A). Pck1 was highly upregulated with a combination of 20 mM
glucose and 10 nM T3 In b-cells, but not in non- b-cells (Figure 6B).
Additionally, 20 mM glucose and 10 nM T3 increased the expression of
both ChREBPa and ChREBPb exclusively in b-cells (Figure 6C,D). In
additional, looking carefully at datasets available for islets on GDS
browser (https://www.ncbi.nlm.nih.gov/sites/GDSbrowser), we are
clearly able to demonstrate that Pck1 is expressed in rodent and hu-
man islets as well as in purified b-cells (Table 1).
To test if PCK1 and its activity can control proliferation in b-cells, we
overexpressed PCK1 in human islets cultured with non-stripped FCS
and found that overexpression of PCK1 increases proliferation of adult
human b-cells (Figure 7A). Furthermore, addition of dimethyl malate
(DMM), a cell permeable substrate that can be metabolized to
oxaloacetate, the substrate of Pck1, results in a significantly greater
rate of b-cell proliferation (Figure 7A). Lastly, in mouse islets floxed
for ChREBPb, cultured with non-stripped FCS [32,74], we found
significantly less proliferation when overexpressing PCK1 together
with DMM in the absence of ChREBPb, indicating that ChREBPb is
required for maximal proliferation in response to PCK1-
overexpression (Figure 7B). Taken together we conclude that PCK1,
whose expression is controlled by T3 and glucose, has the capacity
to promote b-cell proliferation.
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 3: T3 and glucose enhance b cell proliferation. Human islets (A), Mouse islets (B) or Ins-1 cells (C) were dispersed and incubated at the indicated glucose or T3
concentrations in RPMI containing 10% resin-stripped serum. After 48 h, cells were fixed and immunolabeled for Ki67 and insulin. Presented are the percent of Ki67-positive and
Insulin-positive cells. Data are the means � SEM of at least three independent experiments. *P < 0.05; **P < 001; ***P < 005; ****P < 001 by two-way ANOVA.
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Figure 4: Determining genes affected by high glucose and T3. A. A Venn diagram showing the up- and down-regulated genes found differentially expressed either following
glucose or T3 treatment. Only genes that were found significantly differentially expressed in either condition (at BH Adj P < 0.05 and no logFold change cut-off) were compared.
Target validation, from the same donors used for the RNA-Seq, with indicated glucose and T3 concentrations. ChREBPb and Pck1 mRNA levels were determined by qRT-PCR. Data
are the means � SEM of three independent experiments. All mRNA levels were normalized to b-actin. *P < 0.05; **P < 001; ***P < 005 by one-way ANOVA.

Original Article
4. DISCUSSION

In this paper, we demonstrate that thyroid hormone and glucose co-
regulate ChREBP transcription and together the fine-tuning between
the two signals can regulate gene expression and proliferation of rodent
and human pancreatic b-cells. Our data indicate that the expression of
ChREBPa is potentiated by T3, and that the expression of ChREBPb and
other downstream targets require and are augmented by T3. By
8 MOLECULAR METABOLISM 66 (2022) 101646 � 2022 The Author(s). Published by Elsevier G
stripping the serum in the growth media using resin we manage to
eliminate thyroid hormone [56]. However, we also eliminate many other
peptides and molecules that are important for b-cell proliferation and
survival such as lactogens and growth factors. Therefore, we obtained
lower proliferation rates than are normally found even when T3 is added
back to the media, and it is likely that thi approach produces some
alterations in gene expression and phenotype. However, the stripped-
serum model system allows us to specifically study the role of T3
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 5: Promoters of key regulatory genes for islet development contain THR and ChREBP binding sites. A. ChREBP and THRB binding sites in human selected genes.
Each panel is arranged as follows. The ideogram of the gene with its chromosomal location from the UCSC genome browser is shown. The representation displays exons (dark blue
boxes) and introns (dark blue lines with arrowheads pointing to the direction of transcription). The promoter region (TSS � 2,500 bp) is shown as a transparent red arrow. For the
ChREBP gene, the position of the additional exon 1b is marked with a purple box and the intron between exons 1b and 1a is marked with a purple line with arrowheads oriented as
for the rest of the gene. Blue and red upward arrowheads identify the center of ChREBP and THRB binding sites. ChREBP binding sites have been scored with the HOMER package
(see material and methods) by using the frequency matrix of Supplementary Fig. 9, except for three sites that have been experimentally validated and are marked with asterisks
near the respective arrowheads. The two ChREBP binding sites experimentally validated within exon 1b of the ChREBP gene have been tested by our lab. The single ChREBP
binding site upstream of the PCK1 promoter has been tested by Jeong et al. [76]. THRB sites have been extracted from the ReMap2022 database. Supplementary Table 3 provides
the coordinates of both ChREBP and THRB sites displayed. B. Chromatin Immunoprecipitation in Ins-1 cells grown in RPMI (11 mM glucose) supplemented with regular FCS. ChIP
was performed using ChREBP and THR (alpha and beta, [30,67]) antibodies to detect binding on ChREBP promoter area and actin coding area (C). D. Proximity ligation assay for
ChREBP and THR in Ins-1 cells was performed as described in materials and methods. Cells were growing low and high glucose, in the presence or absence of T3. Bottom panel-
quantification of cells showing positive proximity ligation signal. *P < 0.05; ***P < 0.01; ****P < 0.005 using one-way ANOVA. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)
and in the context of ChREBP-dependent glucose-regulated gene
expression, which plays important roles in glucose-stimulated b-cell
proliferation and glucotoxicity [29,32]. T3 is a known regulator of
endocrine cell maturation [11,12,96]. Our data demonstrates that in the
absence of T3, in high glucose concentrations there were fewer insulin
positive cells. Concurrently, more premature markers were starting to
be expressed such as PCK1 and HR. Islets of newborn humans and
newly born rats [49,50] express PCK1 shortly after birth. Similarly,
PCK1 is expressed during the differentiation stages of embryonic stem
cells, according to several data sets (see Table 1). While treatment with
T3 is beneficial to patients with metabolic syndrome [97e99], the
many side effects this drug has prevented it from being used in clinic.
The observation that diabetes and thyroid dysfunction are closely linked
is well-recognized [1e10] and here we provide an insight as to how
those two signaling pathways act together to regulate b-cell maturation
and proliferation. While high T3 concentrations seem to lead to a less
mature b-cell phenotype, low T3 concentrations would decrease pro-
liferative capacity of b-cells, which might promote b-cell maturity on
the one hand or prevent b-cell adaptation on the other providing hints to
MOLECULAR METABOLISM 66 (2022) 101646 � 2022 The Author(s). Published by Elsevier GmbH. This is
www.molecularmetabolism.com
the comorbidity of diabetes and thyroid dysfunction. Yet, a b-cell
specific THR agonist, similar to the one designed for liver to treat
hyperlipidemia [100e102] could be developed to induce proliferation of
b-cells as a potential therapeutic for both type 1 and type 2 diabetes
where there is a deficiency in functional insulin producing cells.
Other genes that we found to be upregulated by T3 in both low and
high glucose are Chodl, involved with carbohydrate sensing, enforcing
the notion that T3 regulates glucose metabolism. Recently Ackerman
et al. found Chodl (chondrolectin) to be one of the genes that is
exclusively expressed in b-cells and not alpha cells [103] indicating T3
controls b-cell maturation. DBP was also found to be regulated by T3
in low and high glucose. DBP is involved in insulin production and
secretion [104]. Polymorphisms in DBP are associated with Graves’
disease and type 2 diabetes [105,106]. HR (hairless) is another one of
the genes that is mostly regulated by T3 in both glucose concentrations
tested. HR is a known target of thyroid hormone in the brain and skin
and acts a transcriptional corepressor of the THR [107,108]. In skin
and brain, it was also implicated in the regulation of cell proliferation
[109]. As a member of the notch family, HR has also been
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 9
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Figure 6: PCK1 is expressed in human ß-cells exposed to high glucose and T3 concentrations. Human islets were transduced with adenovirus expressing ZsGreen under
the rat insulin promoter. Islets were dispersed and cultured in low (6 mM) or high (20 mM) glucose concentrations. After 48 h, cells were collected and sorted by FACS to separate
b-cells from non-b-cells. mRNA was extracted and qPCR was performed to assess the levels of insulin, PCK1, ChREBPa or ChREBPb. Data are the mean � SEM of at least three
independent experiments. *P < 0.05; **P < 001; ***P < 005; ****P < 001.
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demonstrated in pancreatic progenitors to control Hes1 expression,
which in turn regulates the expression of Ngn3 [110]. We also found
that CD14 was upregulated in islet cells and this molecule appears to
be a functional LPS receptor on b cells [120]. In addition, we found
several other genes whose roles in islet physiology are not fully un-
derstood. The genes that were responsive to glucose in the presence
and absence of T3 are: Txnip, a major mediator of glucotoxicity [36];
Arrdc4, arrestin domain containing 4 that together with Txnip was
identified to inhibit glucose uptake in adipocytes [121]; and RGS16,
which controls differentiation of progenitors to islet cells [122]. These
results are consistent with glucose being implicated both in islet-cell
destruction and differentiation (Figure 3). As for the genes that we
identified to be co-regulated both by glucose and by T3 (Figure 4 and
Supplemental Figure 2), only a few recruit both ChREBP and THR to
their proximal promoters and/or gene regions (namely ChREBP, PCK1,
10 MOLECULAR METABOLISM 66 (2022) 101646 � 2022 The Author(s). Published by Elsevier G
and KLF10 in both human and mouse as well as Abhd17c only in
mouse). Yet in mouse, we found that all the co-regulated genes recruit
ChREBP. Since the ChREBPb promoter has binding sites for both
thyroid hormone receptor and ChREBP, it is integrating both thyroid
and glucose signaling, providing an insight for the mechanism of co-
regulation. In addition, our data from the proximity ligation assay
strongly suggests that with high T3 and glucose concentrations the two
transcription factors are acting together in same complexes, and
therefore suggest another possible insight for the co-regulation of
downstream genes. Notably, the levels of the three deiodinase en-
zymes, important for the conversion of T4 to T3, remained unaltered in
all conditions tested.
Cytosolic PCK1 is best known as a gluconeogenic enzyme, essential for
the production of glucose in the liver in the fasted state [111,112].
PCK1 is also required for glyceroneogenesis in adipose tissue [113].
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1 e Summary of publicly available GDS datasets for pancreatic islets and purified b-cells suggests Pck1 is expressed in b-cells.

GEO profile Organism Citation Pck1 in
islets/b-cells

Comments

GDS4934 Mus musculus [80] b-cells Pck1 is expressed in alpha, beta cells and beta cells from Pdx1 KO
GDS4935 Rattus norvegicus [81] b-cells Pck1 is expressed in alpha, beta cells and b-cells from Pdx1 overexpression
GDS4937 Rattus norvegicus [82] b-cells Pck1 is expressed at higher levels in 2-3 day neonates b-cells compared to 10 week adults
GDS4942 and
GDS4939

Mus musculus [83] Islets Pck1 is expressed in pancreatic islets young and adults mice cultured in low and high glucose

GDS4320 Mus musculus [84] Islets Pck1 is expressed in control and PPARb/d
GDS4337 Homo Sapiens [85e88] Islets Pck1 is expressed in pancreatic islets from T2D and Control donors
GDS3983 Homo Sapiens [89] Islets Pck1 is expressed in pancreatic endocrine cells, at lower levels compared with colon, kidney and small intestine
GDS3984 Homo Sapiens [90] Islets Pck1 is expressed in islets, dedifferentiated and redifferentiated islets
GDS3991 Mus musculus [91] b-cells Pck1 is expressed in b-cells at time of isolation as well as 24h and 48h past isolation
GDS4116 Mus musculus [92] b-cells Pck1 is expressed in islets and in purified b-cells from Rag-/- mice
GDS5618 Mus musculus [93] Islets Higher expression of Pck1 in islet graft
GDS4933 Mus musculus [94] Islets Pck1 is expressed in conditional activation of IKK2/NF-kB in pancreatic beta-cells and control islets
GDS5380 Mus musculus [95] b-cells Pck1 is expresses in control and Irs1 knock out islets with or without Tungstate.
PCK1 is not expressed in mature b-cells, but it is apparent in data-
bases of newborn islets [79], which corresponds developmentally with
the time of greatest natural b-cell proliferation [54]. Several cancer cell
lines have been described as having high expression of Pck1 that drive
proliferation [41,114]. While the mechanism by which Pck1 influences
increased proliferation is not fully understood, overexpression of PCK1
increases cataplerosis, allowing increased flux through the TCA cycle
Figure 7: PCK1 activity derives proliferation of ß-cells. A. Human islets were transduce
absence of dimethyl malate (DMM, 10 mM). Dispersed islets were cultured in RPMI (5.5 m
and stained with insulin and Ki67 to assess b-cell-specific proliferation. B. Isolated mouse
containing regular 10% FCS and transduced with LacZ, or Cre adenoviruses in the presenc
of ChREBPb from isolated islets from Floxed ChREBPBb mice transduced with LacZ or Cre
**P < 001; ***P < 005; ****P < 001 by two-way ANOVA, or by student t-test for m

MOLECULAR METABOLISM 66 (2022) 101646 � 2022 The Author(s). Published by Elsevier GmbH. This is
www.molecularmetabolism.com
[115]. In addition, the production of PEP, the product of Pck1, may
increase flux through the serine and nucleotide synthetic pathways.
Since proliferating cells require increased carbon flux through these
pathways [116], increased expression of Pck1 in non-gluconeogenic
tissues may provide a metabolic solution for the requirement for
increasing biomass. Interestingly, we observe that the induction of b-
cell proliferation by PCK1 overexpression is not impaired by ChREBPb
d with an adenovirus containing PCK1 or control adenovirus (LacZ), in the presence, or
M glucose) with regular (therefore containing T3) 10% FCS. After 48 h, cells were fixed
islets from Floxed ChREBPb mice were dispersed, cultured in RPMI (5.5 mM glucose)
e or absence of PCK1 Adenovirus and/or 10 mM DMM. Bottom right panel-mRNA levels
Adenovirus. Data are the means � SEM of four independent experiments. *P < 0.05;
RNA levels.
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deficiency. One possible explanation is that, similar to cancer cells,
PCK1 may drive activation of mTORC1 and glucose utilization [41],
which was previously described to induce proliferation of b-cells
[117,118]. PCK1 also increases nucleotide synthesis and thus pro-
motes proliferation in colorectal cancer cells [114], providing another
possible mechanism for PCK1 mediated b-cell proliferation. We note
that when adding DMM, the substrate for PCK1 we see that to achieve
the highest b-cell proliferation, ChREBPb is required.
In summary, T3 is necessary for glucose-mediated transcription in
rodent and human bcells. T3 and glucose together upregulate Pck1,
which is sufficient to drive bcell proliferation. Finding a mechanism
and link between thyroid disorders and diabetes could help predict,
prevent, and possibly treat diabetes. In the long term, ChREBP may be
a target for therapeutic regulation of b-cell function, proliferation and
survival. Additionally, a T3 analog with islet-selective activity could be
designed, similar to the liver-specific thyroid hormone analog devel-
oped for the treatment of hyperlipidemia [119], and thus regulate
glucotoxicity and b-cell mass. The mechanism by which Pck1 drives
b-cell proliferation should studied in more detail, as it may provide
unique pathways to therapeutically increase b-cell mass.
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