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BACKGROUND: Machine-learning algorithms are becoming popular techniques to predict ambient air PM2.5 concentrations at high
spatial resolutions (1 × 1 km) using satellite-based aerosol optical depth (AOD). Most machine-learning models have aimed to
predict 24 h-averaged PM2.5 concentrations (mean PM2.5) in high-income regions. Over Mexico, none have been developed to
predict subdaily peak levels, such as the maximum daily 1-h concentration (max PM2.5).
OBJECTIVE: Our goal was to develop a machine-learning model to predict mean PM2.5 and max PM2.5 concentrations in the Mexico
City Metropolitan Area from 2004 through 2019.
METHODS: We present a new modeling approach based on extreme gradient boosting (XGBoost) and inverse-distance weighting
that uses AOD, meteorology, and land-use variables. We also investigated applications of our mean PM2.5 predictions that can aid
local authorities in air-quality management and public-health surveillance, such as the co-occurrence of high PM2.5 and heat,
compliance with local air-quality standards, and the relationship of PM2.5 exposure with social marginalization.
RESULTS: Our models for mean and max PM2.5 exhibited good performance, with overall cross-validated mean absolute errors (MAE)
of 3.68 and 9.20 μg/m3, respectively, compared to mean absolute deviations from the median (MAD) of 8.55 and 15.64 μg/m3. In 2010,
everybody in the study region was exposed to unhealthy levels of PM2.5. Hotter days had greater PM2.5 concentrations. Finally, we
found similar exposure to PM2.5 across levels of social marginalization.
SIGNIFICANCE: Machine learning algorithms can be used to predict highly spatiotemporally resolved PM2.5 concentrations even in
regions with sparse monitoring.
IMPACT: Our PM2.5 predictions can aid local authorities in air-quality management and public-health surveillance, and they can
advance epidemiological research in Central Mexico with state-of-the-art exposure assessment methods.
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pollution
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INTRODUCTION
Fine particulate matter with aerodynamic diameter ≤2.5 microns
(PM2.5) affects more people than any other pollutant, and has
been consistently associated with mortality and morbidity from
cardiovascular and respiratory causes [1]. Over the last decade,
epidemiological evidence has related PM2.5 to many other health
outcomes, such as cardio-metabolic diseases (including diabetes,
hypertension, metabolic syndrome), neurological disorders
(stroke, dementia, Alzheimer’s disease, autism, Parkinson’s dis-
ease), and perinatal outcomes (premature birth and low birth

weight) [2]. At the same time, exposure scientists have developed
new modeling approaches for air-pollution epidemiology, moving
away from the use of data from ground monitors alone. Interest
has grown in models using remote-sensing products, particularly
aerosol optical depth (AOD) for the prediction of ground level
PM2.5 concentrations at high spatial resolutions, such as 1 × 1 km.
AOD is a measure of the amount of light absorbed and scattered
throughout the atmospheric vertical column by the collection of
suspended particles (e.g., urban haze, smoke, desert dust, sea salt)
in the atmosphere. AOD is related to PM2.5 concentrations as
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measured by ground monitors, but the relationship is complex
and depends on a number of other factors [3]. Popular approaches
to predicting ground-level PM2.5 concentration using AOD include
chemical-transport models, mixed-effect models, geographically
weighted regression, and land-use regression, which use addi-
tional PM2.5 predictors and modifiers of the PM2.5–AOD relation
such as weather and land use [3, 4]. Among the most
comprehensive efforts to reconstruct ground concentrations of
PM2.5 is NASA’s Global Modeling Initiative (GMI) chemistry
transport model integrated with Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-2 GMI),
which estimates the global distribution of PM2.5 mass concentra-
tions with a spatial resolution of 0.5° × 0.625°, and temporal
resolution as fine as 1 h [5, 6].
Predicting ground-based PM2.5 from satellite AOD retrievals is

difficult. AOD is strongly influenced by particles above the surface
layer, which have different characteristics from ground-level
particles. Also, AOD retrieval algorithms assume consistent particle
size distributions within large regions, such as Mexico and Central
America [7]. Furthermore, AOD often has gaps in spatial coverage
due to clouds, snow, or ice. Thus, researchers must often impute
missing AOD [8], and the complex relationship between AOD and
PM2.5, along with the use of additional PM2.5 predictors, has
motivated machine-learning approaches such as neural networks,
random forests, and gradient boosting [4, 9–12]. Given the
challenges to develop a single model that fits large hetero-
geneous regions (e.g., national models), ensemble models
combining the outputs from different machine learning algo-
rithms have been used in recent studies [9].
AOD-based PM2.5 (AOD-PM2.5) models and predictions have

allowed epidemiologists to move away from exposure-assessment
methods that rely on proximity to sparse ground monitors. With
sufficient spatiotemporal resolution, AOD-PM2.5 models may
further improve exposure assessment in epidemiologic research
by picking up the effects of microenvironments. Few AOD-PM2.5

models exist for middle-income countries. Our group developed
one of the first AOD-PM2.5 models using daily Multi-Angle
Implementation of Atmospheric Correction (MAIAC) spectral AOD
derived from the Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument on NASA’s Aqua satellite at a 1 × 1 km spatial
resolution, along with data from ground monitors, land use, and
meteorological features [7]. Our previous model for the Mexico City
region provides daily PM2.5 predictions from 2004–2014, and those
predictions have been used in several epidemiologic studies in this
region [13]. However, model improvements are needed to better
characterize the spatiotemporal distribution of PM2.5, particularly
since the Mexico City Metropolitan Area has undergone consider-
able urban sprawl. PM2.5 in large metropolitan areas affects not
only people in the city center but also people in its suburban and
rural outskirts [14]. People in the outskirts, where air-quality
information is scarce, may face disproportionate health risks due to
lower socioeconomic status and less access to healthcare. This
environmental injustice can be even more pronounced in low- and
middle-income regions [15].
AOD-PM2.5 models covering large urban areas have great value

for epidemiology, but also for public-health surveillance (e.g.,
quantifying mortality and morbidity attributable to PM2.5) [16],
environmental regulation (e.g., assessment of compliance with air
quality standards) [17], and risk communication (e.g., designing
air-quality indices) [18]. Furthermore, AOD-PM2.5 models can help
air-quality administrators to see trends in the spatiotemporal
distribution of PM2.5, map hotspots in regions with few monitors,
identify emissions sources to consider for abatement actions, as
well as forecast and surveillance of air pollution contingencies and
wildfires [19]. Overall, AOD-PM2.5 models can be powerful aids for
decision-making.
Most of the satellite-based PM2.5 models yield predictions of 24-h

mean concentrations, perhaps driven by traditional approaches in

epidemiology that have focused on this exposure metric, which in
turn support standards for daily PM2.5 levels. There is growing
interest in identification of specific sub-daily PM2.5 exposures (e.g.,
peak concentrations) that may trigger the onset of adverse health
outcomes and harm vulnerable people. To our knowledge, this is the
first model reconstructing sub-daily PM2.5 concentrations in Mexico.
In this study, we present a new model based on extreme

gradient boosting (XGBoost) and inverse-distance weighting (IDW)
that uses satellite and land-use variables to predict daily mean and
max PM2.5 concentrations in Central Mexico. We use predictions
from our models for novel and policy-relevant analyses of the
determinants and distribution of population exposures.

METHODS
We constructed and evaluated two models: one for daily mean PM2.5,
spanning 2004 through 2019, and one for daily max PM2.5 (i.e., the greatest
hourly concentration of PM2.5 observed each day), spanning 2011 through
2019. We restricted our max PM2.5 predictions to 2011 onwards because of
greater coverage of ground monitoring stations. Days were defined
according to UTC− 6, which coincides with the local time of the study
region (Mexico’s Zona Centro) when daylight-saving time is not in effect
(namely, before the first Sunday of April and after the last Sunday of
October).

Study region
We modeled an irregularly shaped area of 6650 km2, 127 km in diameter,
around Mexico City. The model used a grid of 7745 square cells, 927m on a
side, in a global sinusoidal projection (the same one used for NASA’s
MODIS products). This study area and its grid was a subset of that
considered in our ambient temperature model for Central Mexico [20]. We
built the subset by finding the largest connected set of cells in the Valley of
Mexico with all cells ≤3 km above sea level (Fig. 1). The Valley of Mexico is a
plateau with a mean elevation of 2250m above sea level, and is
surrounded on three sides by mountain ranges, preventing the dispersion
of air pollutants [21].

Data
We used PM2.5 data from ground monitoring stations organized by the
Instituto Nacional de Ecología y Cambio Climático de México (INECC)
including records from the Automated Atmospheric Monitoring Network
(RAMA) from the Mexico City’s Atmospheric Monitoring System (SIMAT,
website http://www.aire.cdmx.gob.mx/). We downloaded observations from
INECC’s website (http://scica.inecc.gob.mx). For each station in the study
area and day of PM2.5 observations, we computed the mean and max PM2.5

among the hourly observations, so long as there were at least 18 h of
observations in the day. Other station-days were discarded. The result was a
total of 60,365 station-days from 25 stations for mean PM2.5 and 40,819
station-days from the same 25 stations for max PM2.5. The number of days
of observations contributed per station ranged from 266 to 5198 (median
2030) for mean PM2.5, and from 50 to 2901 (median 1753) for max PM2.5.

Our models used the following 14 predictors:

* Longitude and latitude in degrees
* The date, as an integer count of days
* The IDW mean (exponent 2) of all observations of the same dependent
variable (i.e., mean PM2.5 or max PM2.5) on the given day

* MAIAC AOD from NASA’s Terra and Aqua satellites [22], with 1 km
spatial resolution, whose local overpass times range from 10:40 to
15:15 and 13:10 to 15:05, respectively. We used the primary MCD19A2
product of AOD at 470 nm.

* PM2.5 (μg/m3) as predicted by MERRA-2 GMI at the surface level, with
~50 km spatial resolution [6], either the mean of the day’s 24 hourly values
(for modeling mean PM2.5) or the value at 10:00 UTC− 6 (for max PM2.5)

* Temperature (K), precipitation (mm), and vapor pressure (Pa) from
Daymet [23] with 1 km spatial resolution, and the temperature being
computed as the mean of Daymet’s maximum and minimum
temperature

* The height of the planetary boundary layer (m) and meridional and
zonal wind speeds (m/s) from the 5th generation reanalysis of the
global climate dataset (ERA5) of the European Center for Medium-
Range Weather Forecasts (ECMWF), was downloaded from the
Copernicus Climate Change Service (C3S) Climate Data Store [24],
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using the mean of the day’s 24 hourly values (for mean PM2.5) or the
value at 10:00 UTC− 6 (for max PM2.5), with ~30 km spatial resolution

* The density of roads (m/km2) from OpenStreetMap [25], considering
only primary, secondary, residential, and tertiary roads.

We selected the midmorning time of day 10:00 UTC− 6 in constructing
some of the predictors for the max PM2.5 model because it was the most
frequent hour of greatest daily per-station PM2.5 concentration in our sample.

Model evaluation
We evaluated models with leave-one-station-out cross-validation (CV).
There are 25 stations, so for each dependent variable, we fit the model 25
times, leaving out one station from training and then testing the model’s
predictions on the left-out station. We evaluated models with absolute loss
rather than squared loss so as not to overweight the importance of a
minority of very high observed concentrations of PM2.5. Absolute loss leads
to mean absolute error (MAE) as a natural measure of predictive accuracy
(in place of root mean square error, RMSE, for squared loss), and mean
absolute deviation from the median (MAD) as a measure of baseline
variation in place of the standard deviation (SD) for squared loss. Note that
R2, which is often used for model assessment, is defined as a squared-loss
metric. For our study, we compute R2 as 1 minus the MSE divided by the
variance, and we show R2, RMSE, and SD in tables for completeness,
although the models are more properly judged in terms of absolute loss.
When computing the IDW predictor during CV, we excluded the held-

out station to avoid data leakage.

Models
We predicted PM2.5 with XGBoost [26], a scheme for fast boosted decision
trees. We used a log-cosh objective function to approximate absolute loss.

Instead of providing PM2.5 as the dependent variable to XGBoost directly,
we provided PM2.5 minus the IDW interpolation and added the IDW back
to XGBoost’s predictions. This method partly smooths out the otherwise
discrete predictions produced by decision trees. We tuned XGBoost with
twofold station-wise CV; during the larger CV discussed above, this CV was
nested within each fold. Tuning adjusted four hyperparameters:

* The number of trees, which could be 10, 25, 50, or 100
* The maximum tree depth, which could be 3, 6, or 9
* The learning rate η, which could range from 0.01 to 0.5
* A ridge penalty λ, which could range from 2−10 to 2 [10].

We preselected a set of 25 random vectors from this space with a
maximin Latin-hypercube sample using the function ‘maximinLHS‘ from
the R library ‘lhs‘, version 1.1.3 [27].
Once the outer CV was done, to make new predictions, we trained the

two models (one for mean PM2.5 and one for max PM2.5) on all the data,
with one more tuning CV apiece. These final models had the following
hyperparameters, obtained from the aforementioned tuning procedure: for
mean PM2.5, 10 trees, max depth 3, η= 0.047, λ= 10; for max PM2.5, 25
trees, max depth 9, η= 0.073, λ= 260.

Applications
We present three applications of our PM2.5 predictions for the Mexico City
Metropolitan Area. We examined co-occurring exposures to high PM2.5

concentrations and high temperatures from our published spatiotemporal
model [20]. Person-time estimates of exposure relied on population
density estimates for 2010. We estimated the population density within
each of our grid cells using the R package exactextractr [28] to calculate
the area-weighted mean of the population density in the intersecting
Gridded Population of the World (GPWv4) ~1-km raster cells [29]. The
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Fig. 1 Map of study area in Central Mexico. The study area used for our PM2.5 models in the Mexico City Metropolitan Area (MCMA).
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GPWv4 used data from the 2010 census in Mexico at the level of Área
Geoestadística Básica (AGEBs; the Mexican equivalent of US Census tracts).
When comparing exposures to permissible annual limits, we computed
“yearly” means as the means of four 3-month means, per the Mexican
standard [30]. Finally, we examined how AGEB-level PM2.5 exposure varied
with social marginalization within the study region [31]. Every AGEB was
assigned the mean PM2.5 prediction of all 1 × 1 km grid cells whose
centroids fell within the AGEB polygon.
We used R 4.2.0 [32] with package xgboost 1.4.1.1 [33] for analysis.

RESULTS
Overall, the observed PM2.5 that we trained and tested on had a
median of 23 μg/m3 (MAD= 8.55, IQR= 14.08) for mean PM2.5, and
a median of 44 μg/m3 (MAD= 15.64, IQR= 25.00) for max PM2.5.
The model for mean PM2.5 achieved a MAE of 3.68 μg/m3

(compared to a MAD of 8.55 μg/m3), and the model for max PM2.5

achieved a MAE of 9.20 μg/m3 (compared to a MAD of 15.64 μg/m3).
These differences indicate a substantial improvement in accuracy
compared to assigning the median exposure to all places and
times throughout the study domain. The much greater MAE for
max PM2.5 than mean PM2.5 is to be expected, because maxima
are inherently more difficult to predict than means. Tables 1 and 2
show the performance of these models stratified by year.

We also compared model performance by season: cold dry
(spanning November through February), warm dry (March to May),
and rainy (June to October) [34]. Supplementary Table 1 shows
that the largest improvement in prediction accuracy (MAD minus
MAE) was observed during the cold dry season for both mean and
max PM2.5 models, although this season still had the largest MAE.
Supplementary Table 2 shows the Pearson correlations among

observed and predicted PM2.5 for both models. As would be
expected, all four variables are positively related. Predictions are
more associated with the kind of observation they are meant to
predict than the other kind, but there are also strong correlations
between mean and max PM2.5.
After making predictions for every grid cell and day with both

models, we mapped the per-cell mean PM2.5 and max PM2.5

averaged over 2019 (Fig. 2). Discontinuities in the prediction surfaces
evident in our maps are the result of model-based splits selected in
the longitude and latitude predictors. Although we also include an
IDW interpolation that adds some smoothness, XGBoost selects for
the most predictively accurate model. Smoothing our predictions
more aggressively could make for more intuitive maps, but would
not necessarily improve predictive accuracy. As expected, the
highest concentrations (shown in dark purple) are in the center-
north and center-east subregions of the Mexico City Metropolitan

Table 1. Assessment of cross-validated predictions from the daily mean PM2.5 model by year.

Year Number of stations Observations R2 SD RMSE MAD MAE

2004 8 2751 0.76 12.02 5.86 9.12 3.91

2005 8 2701 0.81 14.80 6.43 11.28 4.38

2006 8 2685 0.68 13.19 7.48 9.55 5.04

2007 9 2855 0.71 10.87 5.85 8.16 4.28

2008 9 3040 0.64 12.16 7.29 9.27 4.61

2009 9 2670 0.75 10.14 5.09 7.71 3.61

2010 9 2844 0.79 11.70 5.41 8.83 3.64

2011 12 3019 0.77 11.53 5.56 8.90 3.88

2012 13 4025 0.76 10.10 4.95 7.63 3.59

2013 13 4362 0.80 11.75 5.25 8.85 3.87

2014 14 4203 0.73 9.87 5.10 7.50 3.86

2015 19 5194 0.77 10.78 5.11 7.90 3.76

2016 17 5307 0.83 11.44 4.73 8.56 3.37

2017 17 4901 0.80 10.79 4.78 8.42 3.15

2018 17 4633 0.84 9.91 3.94 7.19 2.83

2019 20 5175 0.86 11.50 4.26 7.98 2.85

SD Standard deviation, RMSE Root mean squared error, MAD Mean absolute deviation, MAE Mean Absolute Error.

Table 2. Assessment of cross-validated predictions from the daily 1-h maximum PM2.5 model by year.

Year Number of stations Observations R2 SD RMSE MAD MAE

2011 12 3019 0.47 24.26 17.63 16.65 10.36

2012 13 4025 0.46 21.80 16.09 15.18 10.17

2013 13 4362 0.58 23.78 15.49 17.28 10.27

2014 14 4203 0.52 19.54 13.58 14.46 9.76

2015 19 5194 0.63 25.30 15.34 16.37 9.97

2016 17 5307 0.62 25.33 15.59 16.48 8.68

2017 17 4901 0.56 23.86 15.75 15.85 8.48

2018 17 4633 0.63 19.68 11.96 13.74 7.83

2019 20 5175 0.66 21.39 12.50 14.08 8.04

SD Standard deviation, RMSE Root mean squared error, MAD Mean absolute deviation, MAE Mean Absolute Error.
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Area (north and east of Mexico City, respectively), with the highest
population density and industrial land use. This pattern is also visible
in the max PM2.5 map, but is most pronounced in the center-north.
The lowest PM2.5 concentrations (shown in light purple and yellow)
are in the southwest, corresponding to the least populated and the
most vegetated subregion.
We examined the per-day ratio (collapsing across all cells) of

mean and max PM2.5. Supplementary Fig. 1 shows this ratio for
each day in 2019. Generally, the max is about twice the mean, but
the ratio decreases in the first half of the year and increases in the
second. During the rainy season (June to October), we examined
how the ratio differed between days with and without a mean
per-cell precipitation of at least 1 mm, and found little difference:
the mean ratio was 2.03 on dry days and 2.13 on rainy days.
With our temperature model [20], we examined the relationship

between mean daily PM2.5 and mean daily temperature. The Kendall
correlation between the two over the whole study period was 0.05,
indicating a very weak positive relationship overall. Figure 3 breaks
this relationship down by season. It can be observed that the PM2.5

concentrations are more stable and remain high during the cold dry
season, which has been related to the stable atmospheric conditions
and frequent thermal inversions in the study region. For the warm
dry season and rainy season, there is a clearer tendency for higher
PM2.5 concentrations on hotter days.
Considering the 88,399 cell-days in which mean PM2.5 exceeded

Mexico’s permissible daily limit of 41 μg/m3 [30], the median
temperature was 19.2 °C, somewhat warmer than the median in all
other cell-days, 15.9 °C. Considering the 173,170 cell-days with a
mean temperature of at least 20 °C, we found substantially higher
median PM2.5, 30.2 μg/m

3, than in all other cell-days, 19.7 μg/m 3.
We used population density from GPWv4 in every prediction cell

of the study area to estimate person-days of PM2.5 exposure in 2010,
referring to Mexico’s standards for annual and daily ambient
concentrations of PM2.5 [30]. We compared the exposure estimated
by our XGBoost-with-IDW model to that estimated by IDW alone, a
PM2.5 interpolation technique that has been used for a health-
impact assessment in this region [35]. The study area contained
20,279,491 people in 2010. According to both our model and the
IDW-only model, every single person in the Mexico City Metropolitan

Area experienced a yearly mean PM2.5 worse than the permissible
limit of 10 μg/m3. The large majority of people (97%, or more than
99% according to IDW) experienced a yearly mean more than twice
the limit. Similarly, all people experienced at least one day with a
mean PM2.5 worse than the daily permissible limit of 41 μg/m3.
People experienced a mean of 21.6 (23.7 according to IDW) days
exceeding the limit. The total number of exceeded person-days was
439 million (481 million according to IDW). Overall, we find
widespread exposure to worse-than-permissible air pollution,
although our full model suggests slightly less exposure than an
IDW-only model. To show population exposure distributions over
time, we also calculated the annual average concentration for each
populated grid cell for each year, using more than 45 million model
predictions. Figure 4 shows the empirical cumulative distribution
functions for these annual concentrations calculated with 2010
census population densities. As observed in Fig. 4, there has been an
overall reduction in the annual exposure to PM2.5 since the earliest
years (2004 and 2005); however, there is considerable variability in
the estimated annual exposures, with less clear recent trends.
We used an index of social marginalization developed by the

Consejo Nacional de Población (CONAPO), which considers access
to education and health, housing characteristics, and possession
of goods [31], to compare urban marginalization in 2010 to mean
PM2.5. There were 2,065 AGEBs with available marginalization
scores (AGEBs’ median area was 0.46 km2, range 0.014 to 7.4 km2),
with one score per AGEB and year, so we summarized mean PM2.5

in 2010 by AGEB. Overall, marginalization and PM2.5 were Kendall-
correlated 0.024, which is a relationship in the expected direction
(i.e., AGEBs with more marginalized populations being exposed to
more air pollution), but very weak. Breaking the AGEBs into 0.5-
unit groups of marginalization (with one group for marginalization
−2 to −1.5, one for −1.5 to −1, etc.), we find a small range of
mean per-group PM2.5, from 21.78 to 22.56 μg/m3.

DISCUSSION
We constructed and validated models to predict mean and max
PM2.5 in the Mexico City Metropolitan Area, and examined potential
applications in air-pollution epidemiology and air-quality

Fig. 2 Maps of the averaged annual daily mean and daily max PM2.5 concentrations for 2019 in the Mexico City Metropolitan Area. Solid
and dotted lines indicate the Mexico City Metropolitan Area and Mexican states boundaries, respectively. Black dots indicate ground monitors.
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management. Our machine-learning-based model is the first of its
kind in Mexico, although previously, our team used mixed-effects
models with AOD to predict mean PM2.5 in this region [13]. Also new
is our consideration of max PM2.5, an exposure metric that is
becoming relevant to address subdaily health effects from peak
exposures to PM2.5 [36]. Overall, our models exhibited good
performance, with prediction errors that decreased over time, as
the number of ground monitoring stations increased. Our per-year
R2 for mean PM2.5 ranged from 0.64 to 0.86, similar to the R2 values
for our team’s XGBoost model in the Northeastern US, which ranged
from 0.64 to 0.80 [11]. Our new modeling approach could be
extended to other regions with low or intermediate density of
ground monitoring stations.
Recently the ensemble model framework has become a popular

approach to combine PM2.5 estimates from different machine-
learning models, mostly in data-rich regions where ensemble
models have utilized tens to over 100 predictors [9]. The
implementation of ensemble models in sparsely monitored
regions like the Mexico City Metropolitan Area would be
challenging because it typically requires withholding more data
in order to construct model weights. Despite their potential
benefits, the incremental performance from ensemble models

compared to single machine-learning algorithms has been
reported as small, especially when the base learners perform well
(e.g., R2 > 0.7), and the same predictors are involved [9]. Overall,
the performance of our XGBoost model to predict mean PM2.5 was
good, and similar to the performance of other tree-based models
using a single learner [10], or ensembles using XGBoost [37] or not
[9] as one of their learners. Boosted trees (fitting trees sequentially
to the residual error of the prior ensemble) typically outperform
the independent trees in random forests. XGBoost’s multiple
forms of regularization help to avoid overfitting and achieve high
accuracy and it is often a best-in-class predictive algorithm with
smaller datasets [26, 38].
PM2.5 predictions from AOD-PM2.5 models have been used in

epidemiology to reduce exposure measurement error, but may
also be useful for applications such as air-quality management,
particularly in sparsely monitored regions [19]. Figure 2 shows
wide variation in both PM2.5 metrics across the Mexico City
Metropolitan Area. More PM2.5 has historically been observed in
the center-north and center-east (in the densely populated limits
between Mexico City and the State of Mexico), where there are
substantial emissions from industry and traffic [39]. Our PM2.5

predictions allowed us to assess exposure to PM2.5 in the entire
Mexico City Metropolitan Area, unlike previous studies that could
only partly cover this region with data from ground monitoring
stations alone [35]. The estimated annual mean concentrations
from our model exceeded the current annual PM2.5 Mexican
permissible limits across the entire study region, supporting
previous results pointing out that despite significant improve-
ments in the air quality of Mexico City for PM10 and ozone since
the 1990s, there remain substantial obstacles to reducing
emissions of PM2.5 and its precursors [40]. The use of our
spatiotemporally resolved PM2.5 predictions should improve
future health impact assessments and support targeted exposure
reduction strategies in this region [41].
Seasonally, there is a well-defined pattern of higher PM2.5

concentrations during the two dry seasons (Nov-May), due to
frequent thermal inversions and stable atmospheric conditions,
which favors the accumulation of PM2.5. The lowest PM2.5

concentrations occur during the rainy season (June-Oct), due to
wet deposition [42]. We hypothesized that the observed pattern in
the daily ratios of mean and max PM2.5 (Supplementary Fig. 1)
reflects the influence of seasonal meteorological conditions. We
checked whether higher ratios observed during the rainy season
could be explained by precipitation, since late-afternoon showers
can reduce PM2.5 [42]. However, we found that days with at least

Fig. 3 Heatmaps of mean temperature and mean PM2.5, counting all grid cells and days equally. Darker areas indicate more grid cells,
more days, or both. Temperature and PM2.5 predictions are already rounded to the nearest tenth, so no further grouping is needed for a
heatmap. For legibility, the temperature scale only shows the middle 95% of the data for each season, and the PM2.5 scale only goes up to the
98th percentile for all seasons. Blue lines show the quartiles of PM2.5 conditional on temperature.

Fig. 4 Population estimated annual average exposures. The figure
shows an empirical cumulative distribution curve for each year from
2004 to 2019, generated from our daily mean model and using the
2010 census population density. Specific quantiles are labeled for
the year 2019, where only 10% of the population in the study region
had an annual average exposure below 20.6 μg/m³.

I. Gutiérrez-Avila et al.

922

Journal of Exposure Science & Environmental Epidemiology (2022) 32:917 – 925



1mm of daily precipitation had only a 5% greater ratio than other
days. Evidence from cities at high elevations (>2000 m above sea
level) has shown that relative humidity interacts with precipitation
and PM2.5 emission sources to increase or decrease PM2.5

concentrations [43]. Increasing relative humidity can raise PM2.5

concentration depending on the PM2.5 composition and hygro-
scopic growth ability, especially in traffic-heavy residential areas
where only strong rain events (e.g., precipitation >9mm) are
effective in removing PM2.5 from the atmosphere. In industrial
areas, high relative humidity conditions are more important to
decrease PM2.5 concentrations, regardless of rain events. Weak
rain episodes (e.g., precipitation <1mm), can also increase PM2.5

concentrations by worsening traffic in rush hours and reducing
combustion efficiency [43]. It is possible that the ratios of mean
and max PM2.5 observed in Supplementary Fig. 1 are produced by
the interaction of precipitation, humidity, and PM2.5 sources in the
study region.
In the context of climate change, it is important to characterize

the increasingly common joint occurrence of extreme air pollution
and extreme temperatures [44]. We found that while PM2.5 and
temperature are only weakly related overall, higher PM2.5

concentrations tended to occur on warmer days, particularly in
the rainy season (Fig. 3), and conversely, days with mean
temperatures of at least 20 °C had a substantially worse median
PM2.5 concentration than cooler days. It has been reported that
co-occurring extreme PM2.5 and extreme temperatures may
increase the acute risk of illness [45], and that the influence of
PM2.5 on mortality rates may be stronger in warmer cities [46].
Previous studies in the Mexico City Metropolitan Area have
suggested stronger associations with mortality on days with high
PM2.5 and extreme temperatures [47], but they may have
estimated effects imprecisely, given their citywide approach for
estimating exposure. Our PM2.5 predictions can improve exposure
assessment and air-pollution epidemiology, including studies
addressing the interactive effects of PM2.5 with temperature.
To put into perspective the human cost of PM2.5 exposure, we

found that in 2010, every person in the study region was exposed
to unhealthy air quality according to the Mexican standards for
annual (10 μg/m3) and daily (41 μg/m3) concentrations, which are
several times the recently enacted World Health Organization
Guidelines of 5 and 15 μg/m3, respectively [48]. Overall, in 2010
the population of the study region experienced a mean of nearly
3 weeks of PM2.5 above the current daily Mexican permissible
limit. For epidemiologic research, the distribution of continuous
exposures is more relevant for health studies than the dichot-
omous assessment or duration of compliance with a particular
standard. The annual empirical cumulative distributions for all
inhabited areas in the study region in Fig. 4 are a summary of the
population distribution of our exposure estimates that is suitable
for assessment of long-term ambient PM2.5 exposures and related
chronic health effects.
Concentrations of PM2.5 measured in a single monitoring station

are used to represent the pollution conditions over large spatial
domains (up to tens of kilometers) for a specific amount of time,
such as one day or one year. However, PM2.5 levels can be rapidly
influenced by local sources, increasing not only concentrations
between monitoring sites, but also the risks of acute health
effects. A distinguishing feature of our model is that we also
generated a sub-daily metric of PM2.5 concentrations, namely, max
PM2.5 at a 1-km resolution. There are not yet any air-quality
standards for sub-daily PM2.5 concentrations, but new research
into the health impacts from such exposures could eventually
support new standards [49, 50]. The US Environmental Protection
Agency states that “Because a focus on annual average and 24-h
average PM2.5 concentrations could mask sub-daily patterns, and
because some health studies examine PM exposure durations
shorter than 24-h, it is useful to understand the broader
distribution of sub-daily PM2.5 concentrations” [36]. Because it’s

more difficult to reconstruct extrema (e.g., max PM2.5) than
measures of central tendency (e.g., mean PM2.5), future work on
estimating health impacts from max PM2.5 could particularly
benefit from estimating and propagating prediction uncertainty
into downstream analyses [51].
Our comparison of PM2.5 exposure across levels of social

marginalization did not suggest meaningful differences between
groups. However, the 2010 Mexican index of social margin-
alization was only available for urban AGEBs: those with a total
population of more than 2500. Without data for rural AGEBs or
irregular settlements, it is naturally more difficult to assess the
influence of socioeconomic status. Since the methods employed
in the construction of the Mexican index of social marginalization
have changed over time, it would be difficult to analyze multiple
years and make sense of the differences between them. One study
found that in Mexico City in 2015, per-AGEB deprivation was
positively associated with PM10, but negatively associated with
ozone [14]. In this region, PM10 concentrations are highly
influenced by local emissions from point and area sources (mainly
unpaved roads), which may explain why PM10 was associated with
deprivation. However, PM2.5 is strongly influenced by mobile
sources, and most of the PM2.5 concentrations are secondary
aerosols that can travel far from their emission sources, leading to
homogeneous PM2.5 concentrations [39]. AGEBs are the smallest
geographic units with information on marginalization scores, and
homogeneous socioeconomic characteristics are expected within
AGEBs. Nonetheless, it is also possible that socioeconomic
variation exists within AGEBs given the large variability in their
size, which might affect correct classification of unequally exposed
groups.
Despite the good performance of our models throughout the

study period, we observed seasonal differences in their perfor-
mance, which have also been reported in other studies [9, 10, 12].
This suggests that seasonal differences are less a property of our
model than a property of the data. The implications of these
seasonal differences on the accuracy of PM2.5 predictions for
exposure assessment in epidemiologic research should be
addressed in future studies. Also, as in any other PM2.5 prediction
strategy, our models depend on the location of ground monitors,
which may be not representative of the entire study area;
therefore, error in PM2.5 prediction can arise especially in remote
locations.
A particular limitation of our max PM2.5 model arises from the

limited temporal resolution in the AOD data. Each satellite passes
over the Central Mexico region only once during each period of
daylight, possibly missing sudden episodes of intense PM2.5.
However, the overpass time of the Terra satellite is similar to the
daily peak of PM2.5 according to ground monitoring stations, so in
general, Terra AOD should be representative of max PM2.5. Future
work will utilize AOD data from the Advanced Baseline Imager
(ABI) aboard NOAA’s Geostationary Operational Environmental
Satellite-R Series (GOES-16 and GOES-17) with temporal resolution
as high as 5 min over Mexico City. Synergistic AOD products
developed from the ABI and upcoming NASA geostationary
Tropospheric Emissions: Monitoring of Pollution (TEMPO) mission,
planned for launch in 2023, will further enhance capabilities to
predict and monitor PM2.5 concentrations in the region. TEMPO
will advance exposure science in North America, particularly by
providing hourly observations of aerosols and gaseous pollutants
for supporting air-pollution models [52, 53].
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