Skip to main content
. 2022 Dec 8;12:21264. doi: 10.1038/s41598-022-25901-z

Table 2.

Multivariate ordinary least squares (OLS) regression analysis of marathon average speed at each split distance as a function of the weather factors.

OLS regression results
Dep. variable Y R-squared 0.035
Model OLS Adj. R-squared 0.035
Method Least squares F-statistic 5101
Date Sat, 01 Oct 2022 Prob (F-statistic) 0.00
Time 18:38:05 Log-likelihood -1.1319e + 06
No. observations 560,731 AIC 2.264e + 06
Df residuals 560,726 BIC 2.264e + 06
Df model 4
Covariance type Nonrobust
Coef Std err t P >|t| [0.025 0.975]
Const 31.1370 0.470 66.200 0 30.215 32.059
Temperature (°C) −0.1131 0.001 −120.649 0 −0.115 −0.111
Pressure (hPa) −0.0234 0.000 −50.246 0 −0.024 −0.022
Humidity (%) 0.0534 0.000 125.803 0 0.053 0.054
Sunshine (min) −0.0011 0.000 −8.262 0 −0.001 −0.001
Omnibus 33,194.095 Durbin–Watson 0.809
Prob (omnibus) 0.000 Jarque–Bera (JB) 41,714.737
Skew 0.581 Prob (JB) 0.00
Kurtosis 3.660 Cond. No 1.98e + 05 s