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The prognostic index 
of  m7G‑related genes in CRC 
correlates with immune infiltration
Xinkun Huang 1,2,6,7, Bin Zhu 3,4,7, Chenyu Qian 1,5,6 & Ying Feng 1*

N7‑methyladenosine  (m7G) modifications have been the subject of growing research interest with 
respect to their relationship with the progression and treatment of various cancers. This analysis was 
designed to examine the association between  m7G‑related gene expression and colorectal cancer 
(CRC) patient outcomes. Initial training analyses were performed using the TCGA dataset, with the 
GSE28722 dataset then being used to validate these results. Univariate Cox analyses were initially 
conducted to screen out prognostic  m7G‑related genes, after which a LASSO approach was used to 
construct an  m7G risk score (MRS) model. Kaplan–Meier curves, ROC curves, and Cox analyses were 
subsequently used to validate the prognostic utility of this model in CRC patients. The R maftools 
package was further employed to assess mutational characteristics in CRC patients in different MRS 
subgroups, while the ESTIMATE, CIBERSORT, and ssGSEA tools were used to conduct immune 
infiltration analyses. A WGCNA was then performed to identify key immune‑associated hub genes. 
The EIF4E3, GEMIN5, and NCBP2 genes were used to establish the MRS model. Patients with high 
MRS scores exhibited worse overall survival than patients with low scores. In Cox analyses, MRS 
scores were independently associated with CRC patient prognosis. Patients with low MRS scores 
exhibited a higher tumor mutational burden and higher levels of microsatellite instability. In immune 
infiltration analyses, higher immune checkpoint expression and greater immune cell infiltration were 
also observed in patients with low MRS scores. WGCNA analyses further identified 25 CD8+ T cell 
infiltration‑associated genes. These findings suggest that MRS values represent a useful biomarker 
capable of differentiating among CRC patients with different immunological features and prognostic 
outcomes, offering an opportunity to better determine which patients are likely to benefit from 
immune checkpoint inhibitor treatment.

Colorectal cancer (CRC) is among the most common malignancies and was the second leading cause of cancer-
associated death in  20201. Primary prevention is one of the main strategies used in an attempt to reduce the 
rising global prevalence of CRC cases. While colonoscopy procedures are invaluable in this context, they are 
expensive, necessitate trained endoscopists, and require patient compliance in order to accurately diagnose and 
treat CRC. When patients with early-stage disease undergo standardized treatment, their 5-year survival rates can 
exceed 90%2,3. However, roughly 30% of patients with CRC already harbor metastases when initially diagnosed, 
and the 5-year survival rate for these patients is just 20% even with surgical tumor resection and standardized 
systemic adjuvant  therapy4,5.

The main treatment strategy for CRC still primarily consists of radical surgical resection together with tar-
geted radiotherapeutic and chemotherapeutic interventions selected based on the condition of a given patient. 
Curative options for metastatic CRC patients, however, are lacking in most cases. The most frequently applied 
chemotherapeutic regimen in metastatic CRC cases consists of fluorouracil combined with folinic acid and iri-
notecan (FOLFIRI), but the emergence of chemoresistance has largely hampered the long-term efficacy of such 
interventions. Recent advances in molecular biological techniques have enabled the more detailed analysis of the 

OPEN

1Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong 226001, 
Jiangsu, China. 2Graduate School of Dalian Medical University, No.9 West Section of South Lushun Road, 
Dalian 116000, Liaoning, China. 3Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of 
Nanjing University Medical School, Yancheng, China. 4Department of Central Laboratory, Yancheng Medical 
Research Center of Nanjing University Medical School, Yancheng, China. 5Medical School, Nantong University, 19 
Qixiu Road, Nantong 226001, Jiangsu, China. 6Research Center of Clinical Medicine, Affiliated Hospital of Nantong 
University, 20 Xisi Street, Nantong 226001, Jiangsu, China. 7These authors contributed equally: Xinkun Huang and 
Bin Zhu. *email: fengying7017@ntu.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-25823-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21282  | https://doi.org/10.1038/s41598-022-25823-w

www.nature.com/scientificreports/

specific genetic and biomolecular factors that drive oncogenic transformation and progression, providing the 
opportunity to better define diagnostic or prognostic biomarkers for CRC. Treatment with the epidermal growth 
factor receptor inhibitor cetuximab has led to prolonged CRC patient  survival6, as has Bevacizumab  treatment7,8. 
However, only a limited subset of CRC patients are positioned to benefit from these specialized therapeutic drugs. 
Unlike conventional therapeutics, immune checkpoint inhibitor (ICI) therapies that target PD-1, PD-L1, and 
CTLA4 have achieved positive outcomes in many CRC patient  subgroups9–11. Even so, the benefits of ICI treat-
ment in CRC are often limited, and the efficacy of these ICIs is often influenced by the tumor microenvironment 
(TME), with few biomarkers currently available that can reliably predict ICI treatment  outcomes12. Efforts to 
better define prognostic biomarkers associated with the therapeutic efficacy of different treatment regimens are 
warranted to better guide the individualized immunotherapeutic treatment of CRC patients.

Over 170 chemical modifications of RNA molecules have been detected to date and shown to influence 
a diverse range of cellular  processes13,14. The N7-methylguanosine  (m7G) modification has been detected on 
tRNAs, rRNAs, mRNA 5′ caps, and internal regions of RNA molecules, thereby influencing virtually all aspects 
of mRNA  metabolism15,16. Notably, recent work suggests that these  m7G modifications are also related to the 
onset and progression of various cancers. For example, METTL1 has been reported to increase cisplatin sen-
sitivity in CRC cells through the downregulation of S100 calcium-binding protein A4 (S100A4)17. Moreover, a 
positive correlation between the expression of METTL1 and both advanced clinical stage and high tumor grade 
has been observed in bladder  cancer18. The expression of both WDR4 and METTL1 has also been reported to 
be increased in patients with esophageal squamous cell carcinoma and linked to poorer patient  outcomes19. 
In glioma, METTL1 can drive MAPK pathway signaling to enhance tumor growth and  proliferation20, with 
WBSCR22 similarly promoting glioma  progression21. While  m7G-associated genes are also likely to influence 
the progression of CRC, their roles in this oncogenic setting have yet to be defined.

In this study, a prognostic biosignature was developed for CRC patients based on  m7G-associated gene 
expression. Initially, 29  m7G-associated genes were identified based on the GOMF_M7G_5_PPPN_DIPHOS-
PHATASE_ACTIVITY dataset, the GOMF_RNA_7_METHYLGUANOSINE_CAP_BINDING dataset, the 
GOMF_ RNA_CAP_BINDING dataset, and a recent  review22. The expression and mutational profiles for these 
29  m7G-associated genes were then analyzed among CRC patients in The Cancer Genome Atlas (TCGA), which 
a LASSO regression model then being constructed based on  m7G-associated genes that were significant in 
initial univariate prognostic analyses, leading to the establishment of an  m7G-related gene score (MRS) model. 
The predictive utility of this MRS model as a guide to assessing CRC patient prognosis was then validated 
through Kaplan–Meier, ROC, and Cox analyses and by constructing appropriate nomograms. Genes differen-
tially expressed in different MRS patient subgroups were then subjected to analyses of GO term enrichment, 
mutational landscapes, and immune cell infiltration. Lastly, key immune infiltration-related hub genes in these 
MRS-patient subgroups were identified through a weighted gene co-expression network analysis (WGCNA) 
approach. Overall, these analyses revealed that the developed MRS model offers utility as a prognostic biomarker, 
with patients in the low-MRS subgroup exhibiting better immune activity such that they were predicted to exhibit 
better responses to immunotherapeutic treatment.

Results
Analyses of CRC patient  m7G‑associated gene expression and mutational profiles. Initially, 
the expression of 29 different  m7G-associated genes was analyzed, revealing AGO2, DCPS, EIF3D, EIF4A1, 
EIF4E1B, GEMIN5, LARP1, METTL1, NCBP1, NCBP2, NCBP2L, NSUN2, NUDT3, NUDT4, and WDR4 to 
be upregulated in CRC patient tumor tissues, whereas CYFIP1, EIF4E3, EIF4G3, IFIT5, NCBP3, NUDT10, 
NUDT11, and NUDT16 were downregulated in these tissues (Fig. 1A). In correlation heat maps, some of these 
genes exhibited co-occurrence whereas others exhibited mutually exclusive expression patterns (Fig. 1B,C). In 
total, 23 of these 29 genes were found to be mutated in the analyzed CRC patient tumor tissue samples (Fig. 1D), 
although these mutations were not significantly related with patient OS (Supplementary Fig. 1A).

MRS model construction. A volcano plot was used to graph these  m7G-associated genes, with the 11 
genes meeting the established significance criteria (|logFC|> 0.6, adj. P < 0.05) being selected for further analysis 
(Fig. 2A). Of these genes, three exhibited a P-value < 0.1 in univariate Cox analyses (Fig. 2B). Using the TCGA 
database was used as a training dataset and GSE28722 as a validation dataset, the MRS model was then estab-
lished as follows through a LASSO regression analysis: MRS = (− 0.322311542390686) × EIF4E3 + (− 0.7005475
76450906) × GEMIN5 + 0.506142039510906 × NCBP2 (Fig. 2C,D). Risk curves demonstrated that patient risk 
rises as MRS scores increase (Fig. 2E,F), and the survival of patients in the low- and high-MRS subgroups were 
analyzed (Fig. 2G,H). Heatmaps depicting the expression of EIF4E3, GEMIN5, and NCBP2 in CRC patients are 
presented in Fig. 2I,J.

MRS model validation. Those patients in the training and validation datasets exhibiting high MRS scores 
presented with worse OS than patients in the low-MRS subgroup in Kaplan–Meier analyses (Fig. 3A,D). The area 
under the ROC curve for this MRS score at 3, 4, and 5 years was > 0.6, consistent with the ability of this model 
to effectively predict patient prognosis (Fig. 3B,E). This model was also able to predict CRC patient outcomes in 
a time-ROC analysis (Fig. 3C,F), and univariate and multivariate Cox analyses confirmed that MRS scores were 
independently associated with CRC patient prognosis (Fig. 3G,H). Predictive nomogram models were further 
constructed to assess the utility of MRS as a means of predicting the 1-, 3-, and 5-year prognosis of CRC patients 
(Fig. 3I,J), with calibration curves demonstrating that these MRS scores offered good prognostic utility for all 
three of these time intervals (Fig. 3K,L).
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Figure 1.  CRC patient  m7G-related genes expression and mutational profiles. (A) The expression of 29  m7G-
associated genes in normal and CRC patient tumor tissue samples. (B) Correlation heat map of expression 
between  m7g genes, plotted using the corrplot function in the corrplot package of the R language (version 4.1.2, 
https:// www.r- proje ct. org/). (C) The co-occurrence and mutual exclusivity of these 29  m7g-related genes after 
mutation were plotted using the somaticinteraction function in the maftools package of the R language (version 
4.1.2). (D) Waterfall plots representing the mutational characteristics of these 29  m7g-related genes were drawn 
using the oncoplot function in the maftools package of the R language (version 4.1.2). *P < 0.05; **P < 0.01; 
***P < 0.001.

https://www.r-project.org/
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The mutational profiles of patients in different MRS subgroups. Next, differential gene expres-
sion analyses were conducted by comparing the high- and low-MRS subgroups in the TCGA training dataset, 
with significant DEGs (|logFC|> 1, adj.P < 0.05) being retained for GO analyses. These genes were significantly 

Figure 2.  MRS model construction. (A) The volcano map depicts 29 identified  m7g-related genes visualized 
by EnhancedVolcano package in R language (version 4.1.2). (B) Selection of  m7G-associated genes exhibiting 
significance in univariate Cox analyses (|logFC|> 0.6, adj.P < 0.1). (C) Numbers and coefficient values for 
different λ values during model construction. (D) Continuous adjustment of potential model parameters 
ultimately yielded the best model (left dashed line) and the simplest model (right dashed line), with the above 
values corresponding to the number of model features at the indicated λ value. (E,F) Risk score distributions 
based on the  m7G-associated gene model in the training and validation datasets. (G,H) Differences in survival 
outcomes between patients in the high- and low-MRS subgroups in the training and validation datasets. (I,J) 
Heatmap represents the expression levels of three selected  m7g-related genes in individual patients, plotted using 
the pheatmap function in the pheatmap package of the R language (version 4.1.2).
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enriched in the CXCR chemokine receptor binding, humoral immune response, and other immune pathways 
(Fig. 4A). Analyses of gene mutations in CRC patients in the TCGA database were then conducted, with the 
top 20 genes exhibiting the highest mutation frequencies in the high-MRS and low-MRS subgroups being rep-

Figure 3.  MRS model validation. (A–C) The training dataset was analyzed using Kaplan–Meier (A), ROC (B), 
and Time-ROC curves (C). (D–F) The validation dataset was analyzed using Kaplan–Meier (D), ROC (E), and 
Time–ROC curves (F). Univariate and multivariate Cox regression analyses were performed for MRS values 
in the training (G) and validation datasets (H). An MRS-based nomogram was constructed for the training (I) 
and validation datasets (J), with corresponding 1-, 3-, and 5-year calibration curves for these nomograms in the 
training (K) and validation datasets (L). *P < 0.05; **P < 0.01; ***P < 0.001.
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resented with waterfall plots. In the high-MRS subgroup just 7 genes had mutational frequencies > 20% as com-
pared to 16 genes in the low-MRS subgroup. The APC and TP53 genes were less frequently mutated in the low-
MRS subgroup relative to the high-MRS subgroup (Fig. 4B,C). CO-occurrence and mutual exclusivity analyses 
revealed that APC, TP53, and KRAS presented with mutually exclusive relationships with other genes in the 
low-MRS group, whereas the 17 other genes strongly co-occurred with one another (Fig. 4D). Both tumor muta-
tional burden (TMB) and microsatellite instability (MSI) are important biomarkers that can predict the efficacy 
of immunotherapeutic interventions. Relative to patients in the high-MRS subgroup, those in the low-MRS 
subgroup exhibited significantly higher levels of TMB and MSI, with the average MRS score of patients in the 
MSI-H group consistently being lower than that of patients in the MSI-L and MSS groups (Fig. 4E,F). Mismatch 
repair (MMR) activity can also be analyzed to gain insight into the repair of errors in DNA replication in tumor 
cells, with the impairment of this process contributing to higher rates of somatic mutation. The association 
between mutations in four MMR-related genes (MLH1, MSH2, MSH6, and PMS2) and MRS patient subgroups 
was analyzed (Fig. 4G–J).

The immunological characteristics and predicted ICI treatment responsivity of CRC patients 
in different MRS subgroups. Given that the above GO and mutational analyses highlighted a potential 
relationship between MRS values and immune activity, the CIBERSORT algorithm and ssGSEA analyses were 
next used to more fully explore the immunological characteristics of patients in these two MRS subgroups. In the 
CIBERSORT analyses, patients in the low-MRS subgroup exhibited higher levels of M1 macrophage infiltration 
(Fig. 5A), and ssGSEA analyses suggested that low-MRS patient samples exhibited higher levels of infiltration by 
immune cell types including both activated CD4+ and CD8+ T cells (Fig. 5B). MRS scores were negatively cor-
related with stromal score, immune score, and assessment score values whereas they were positively correlated 
with tumor purity (Fig. 5C–F). While there were no significant differences in stromal scores between the two 
MRS patient subgroups, both immune scores and assessment scores were elevated in the low-MRS patient sub-
group relative to the high-MRS subgroup, whereas tumor purity exhibited the opposite trend (Supplementary 
Fig. 2A–D). Next, the expression of 68 different immune checkpoint genes was assessed, revealing 48 to be dif-
ferentially expressed between these two patient subgroups, with the majority of these genes, including PD-1 and 
CTLA4, being expressed at higher levels in the low-MRS group relative to the high-MRS group (Fig. 5G,H). The 
immunophenoscore (IPS) can be used to predict patient immunotherapy  responsiveness23, and CRC patients 
in the low-MRS group exhibited significantly better IPS scores for both PD-1 and combination PD-1 + CTLA4 
targeted immunotherapeutic treatment (Fig. 5I–L).

WGCNA‑based identification of CD8+ T cell‑related hub genes. CD8+ T cells play a central role in 
tumor immunosurveillance, as they can detect neoantigens expressed by these malignancies and subsequently 
kill these tumor cells. Tumors, however, are able to evade these mechanisms by upregulating immune checkpoint 
proteins such as PD-L1, which can interact with PD-1 on the surface of CD8+ T cells and thereby suppress their 
activation and cytotoxicity. A WGCNA analysis was thus next conducted based on the genes that were differ-
entially expressed in the two MRS patient subgroups (Supplementary Fig. 3A–D). In the resultant correlation 
heatmap, the identified turquoise module was found to be positively correlated with CD8+ T cells and activated 
CD8+ T cells, but negatively correlated with the progression of CRC (Supplementary Fig.  3E). Scatter plots 
highlighting the relationship between this turquoise module and key genes associated with CD8+ T cells and 
activated CD8+ T cells are provided in Supplementary Fig. 3F,G. In total, this turquoise module was comprised 
of 25 hub genes (AIM2, LY6G6F-LY6G6D, CD109, CIITA, CXCL10, CXCL11, CXCL5, FCGR3B, GBP4, GBP5, 
HMSD, IDO1, IFNG, KIR2DL4, KLRC4, KRT2, LY6G6D, M1AP, NCR1, PRDM8, RAB27B, TNNC2, TRIM7, 
TRPV6, ZNF683).

Analyses of hub gene immune‑related characteristics. When comparing the expression of these 
25 hub genes between the high- and low-MRS subgroups, 3 and 22 were respectively upregulated and down-
regulated (Fig. 6A). GO analyses indicated that these genes were associated with key immunological pathways 
including the chemokine-mediated signaling, chemokine receptor binding, and regulation of innate immune 
response pathways (Fig. 6B). Correlations between the expression of these 25 genes and stromal score, immune 
score, assessment score, and tumor score values in samples from patients in the high-MRS subgroup were 
assessed (Fig. 6C), as were correlations with immune cell-related gene expression (Fig. 6D).

qRT‑PCR validation of  m7G‑related gene expression. Lastly, 10 paired CRC tumor and paracancer-
ous tissue samples were obtained, and qRT-PCR analyses revealed that EIF4E3 and GEMIN5 were downregu-
lated in CRC, whereas NCBP2 was upregulated (Fig. 7A–C).

Discussion
Over 170 different chemical RNA modifications have been identified to date and shown to influence cellular 
growth and other key physiological  processes13,14. The  m7G modification of tRNA, rRNA, mRNA 5′ cap, and 
mRNA internal regions is a relatively common finding in  cells15, and such  m7G modifications have recently 
been linked to the development and progression of tumors. METTL1, for example, can promote bladder can-
cer  development18. The upregulation of METTL1 and WBSCR22 in glioma is also linked with the oncogenic 
 process21, while METTL1 can inhibit PTEN signaling in hepatocellular carcinoma cells, thus enhancing their 
proliferative and migratory  activity24. The present results further indicate that  m7G-associated gene expression 
is closely linked to CRC patient prognosis and the immunogenicity of CRC tumors.
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Figure 4.  Mutational profiles in different MRS patient subgroups. (A) Enrichment analyses for genes 
differentially expressed in the different MRS patient subgroups. (B,C) The top 20 genes exhibiting the highest 
mutational frequencies in patients with high (B) and low MRS scores (C) were visualized by the maftools 
package for R language (version 4.1.2). (D) The co-occurrence and mutual exclusivity of the genes with the top 
20 mutational frequency values in the high- and low-MRS subgroups, were plotted using the somaticinteraction 
function in the maftools package of the R language (version 4.1.2). (E) The association between TMB and 
MRS subgroups. (F) The association between MSI and MRS subgroups. (G–J) The association between MRS 
subgroups and the mutational status of the MLH1 (G), MSH2 (H), MSH6 (I), and PMS2 (J) genes. *P < 0.05; 
**P < 0.01; ***P < 0.001.
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Figure 5.  The immune characteristics of different MRS patient subgroups. (A) CIBERSORT analyses were 
used to assess immune cell infiltration in the indicated MRS subgroups. (B) ssGSEA analyses were used to 
assess immune cell-related gene expression in the indicated MRS subgroups. (C–F) Analyses of the relationship 
between MRS scores and stromal score (C), immune score (D), estimate score (E), and tumor purity (F). (G,H) 
The association between MRS subgroups and the expression of immune checkpoint genes. (I) The relationship 
between MRS subgroups and predicted immunotherapy outcomes. (J–L) The relationship between different 
MRS subgroups and predicted treatment outcomes for CTLA4 (J), PD-1 (K), or CTLA4 + PD-1 (L) targeted 
treatments. *P < 0.05; **P < 0.01; ***P < 0.001.
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Figure 6.  Analysis of hub gene immune-related characteristics. (A) Hub gene volcano plots. (B) Hub gene 
enrichment analyses. (C) The correlation heatmap between hub genes and industrial score, immune score, 
estimate score, and tumor purity is drawn by the corrplot function in the corrplot package of R language 
(version 4.1.2). (D) The heatmap of the correlation between the Hub gene and the immune cell expression of 
ssGSEA is drawn through the corrplot function of the corrplot package of R language (version 4.1.2). *P < 0.05; 
**P < 0.01; ***P < 0.001.
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Initially, the mutational characteristics of 27  m7G-associated genes in CRC patient tumor tissues were ana-
lyzed, revealing mutations in 23 of these genes. However, these mutations were unrelated to CRC patient OS. 
The MRS model was then constructed via a LASSO regression approach based on  m7G-associated EIF4E3, 
GEMIN5, and NCBP2 expression. In a prior report, EIF4E3 was identified as a novel  m7G-associated tumor sup-
pressor  gene25,26, while GEMIN5 is an  m7G cap-binding protein with unknown relevance in  cancer27. Moreover, 
the  m7G-associated gene NCBP2 has been linked to hepatocellular carcinoma patient prognostic outcomes. In 
Kaplan–Meier analyses, the OS of patients in the high-MRS subgroup was found to be worse than for low-MRS 
patients. MRS model validation was then performed with ROC curves and nomogram analyses, verifying the 
ability of MRS scores to predict CRC patient prognosis. Consistently, MRS scores were identified as an independ-
ent predictor of CRC patient OS. Moreover, in time-ROC analyses the area under the curve values at 3, 4 and 
5 years were > 0.6, indicating that this model was capable of reliably gauging CRC patient survival outcomes in 
line with the results of nomogram-based analyses.

To investigate the ability of  m7G-associated genes to influence the progression of CRC, genes that were dif-
ferentially expressed in different MRS subgroups were identified and found to be closely associated with the 
CXCR chemokine receptor binding, humoral immune response, and antimicrobial humoral immune pathways. 
Analyses of the mutational landscapes in these two MRS subgroups further revealed that while APC mutation 
frequencies were similar in both groups, TP53 was more often mutated in the high-MRS group relative to the 
low-MRS group (49% vs. 69%). Tumors harboring such TP53 mutations tend to be more aggressive and associ-
ated with poorer prognostic  outcomes28,29, particularly for CRC  patients30. Prospective analyses of lung cancer 
patients have revealed that individuals harboring TP53 or KRAS mutations, and especially patients harboring 
mutations in both of these genes, can attain significant benefits from PD-1 inhibitor  treatment31. Mutations in 
MUC16 are also related to better prognostic outcomes and a higher TMB in gastric  cancer32, while mutations 
in TTN are linked to better ICI treatment outcomes in various solid  tumors33. Thus, patients in the low-MRS 
subgroup may be more likely to respond well to immunotherapeutic treatment regimens. Several prospective 
clinical trials, including some conducted in CRC patients, have demonstrated the value of TMB as a biomarker 
capable of predicting ICI treatment responses. Higher TMB levels are also associated with prolonged OS fol-
lowing immunotherapy in most  cancers34–36. Here, patients in the low-MRS subgroup exhibited a higher TMB 
than patients in the high-MRS subgroup. MSI refers to the deletion or insertion of repetitive units, with new 
microsatellite alleles appearing in tumors at specific loci that can function as biomarkers for PD-1  blockade37. 
The composition of the TME in CRC patients can be influenced by MSI status, thereby impacting ICI efficacy 
in these patients, with MSI-H patients being more likely to benefit from ICI treatment relative to MSI-L/MSS 
 patients38. Consistently, lower MRS scores were observed for patients in the MSI-H group as compared to the 
MSI-L and MSS subgroups in this study, in line with the ability of low-MRS patients to benefit from ICI treat-
ment. The loss of MMR function results in higher levels of DNA replication errors that are not properly repaired, 
increasing rates of somatic  mutation9,39. Here, lower MRS scores were observed for patients harboring mutations 
in four MMR-related genes (MLH1, MSH2, MSH6, and PMS2), consistent with the lower MRS scores observed 
among MSI-H patients.

To better examine the utility of MRS scores as a biomarker capable of guiding patient immunotherapeutic 
treatment, further analyses of the TME in the high- and low-MRS subgroups were conducted. This approach 
revealed clear differences in immune cell composition within the TME of patients in these two subgroups, with 
higher levels of M1 macrophage infiltration and activated CD8+ T cell infiltration in the low-MRS group. This 
is important, given that CD8+ T cell infiltration is associated with better prognostic outcomes in many human 
 cancers40,41. High levels of M1 macrophage infiltration are also associated with a more favorable prognosis in a 
range of  malignancies41–44. When 68 different immune checkpoint genes were analyzed in these two MRS sub-
groups, 48 were found to be differentially expressed of which the majority were upregulated in low-MRS patients 
as compared to high-MRS patients. Immunotherapeutic regimens targeting PD-1 or CTLA4 have shown promise 
in the treatment of CRC  patients11,45,46. Accordingly, the ability of this MRS model to predict patient responses 

Figure 7.  qRT-PCR validation of  m7G-related gene expression. (A–C) qRT-PCR analysis of NCBP2, GEMIN5, 
and EIF4E3 expression in 10 groups of CRC tissues and paraneoplastic tissues. *P < 0.05; **P < 0.01; ***P < 0.001.
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to anti-PD-1/PD-L1 therapy was assessed by computing immunophenotype scores (IPS) values, revealing that 
individuals in the low-MRS group were more likely to respond to treatments targeting PD-1 or PD-1 + CTLA4. 
This suggests that treatment with ICIs is more likely to succeed in low-MRS patients. As such, these findings 
may provide a new foundation for the treatment of CRC  patients47.

Lastly, 25 key CD8+ T cell infiltration-related hub genes were identified among the genes differentially 
expressed in different MRS patient subgroups (AIM2, LY6G6F-LY6G6D, CD109, CIITA, CXCL10, CXCL11, 
CXCL5, FCGR3B, GBP4, GBP5, HMSD, IDO1, (IFNG, KIR2DL4, KLRC4, KRT2, LY6G6D, M1AP, NCR1, 
PRDM8, RAB27B, TNNC2, TRIM7, TRPV6, ZNF683). The majority of these genes were downregulated in 
high-MRS patients, and correlation analyses confirmed that most of these genes were positively correlated 
with immune infiltration, in line with their downregulation in the high-MRS group. These differences may be 
related to patterns of  m7G modification mediated by EIF4E3, GEMIN5, and NCBP2. Importantly, qRT-PCR 
analyses confirmed that EIF4E3 and GEMIN5 were downregulated in CRC patient samples, whereas NCBP2 
was upregulated in these samples.

In conclusion, the MRS model developed in this study is a valuable biosignature that can aid in the prognostic 
classification of CRC patients and can also predict their likelihood of responding to ICI treatment. Despite these 
promising results, this study is subject to certain limitations. For one, the sample size for these analyses was lim-
ited. In addition, no validation of predicted ICI responsivity was conducted in an independent cohort of treated 
patients, highlighting an essential direction for subsequent studies. Further large-scale clinical trials will there-
fore be necessary to further confirm the clinical utility of this MRS model and to expand on the present results.

Materials and methods
Patient data collection. The GSE28722 dataset was downloaded from the GEO database (https:// www. 
ncbi. nlm. nih. gov/ geo/) and used as a validation dataset. The log2(x + 1) transformed TCGA-COAD dataset and 
the corresponding patient clinical information were downloaded from the UCSC Xena database (https:// xenab 
rowser. net/ datap ages/). This dataset included 471 tumor samples and 41 non-tumor normal samples, with the 
TCGA-READ dataset (167 tumor samples and, normal non-tumor samples) being used for further analyses. Of 
the patients in these datasets, those with no clinical follow-up information or with an unknown survival time/
survival status were excluded, with 567 CRC patients being included in the final study.

Differentially expressed gene identification. The DESeq2 package and the R software environment (v 
4.1.2) were used to identify genes that were differentially expressed in the TCGA patient cohort, with significant 
differentially expressed genes (DEGs) being identified with the following criteria: corrected adj.P < 0.05, |log2 
FC|> 1.

MRS model construction. Those  m7G-associated genes exhibiting |LogFC|> 0.6 and P < 0.05 in analyses 
of the TCGA patient cohort were analyzed via univariate Cox regression analyses, with those genes attaining 
a P < 0.1 in these analyses being used to conduct LASSO analyses aimed at defining a risk-related prognostic 
 m7G-associated gene (MRS) model as follows: MRS = EIF4E3 × (− 0.322311542390686) + GEMIN5 × (− 0.7005
47576450906) + NCBP2 × (0.506142039510906).

Validation of the prognostic value of the MRS model. The prognostic utility of the established MRS 
model was assessed through Kaplan–Meier curve and ROC curve  analyses48. Nomogram were used to assess 
the risk associated with 1-, 3-, and 5-year overall survival (OS)49, and the independent prognostic utility of MRS 
score values was assessed through univariate and multivariate Cox analyses.

Mutational analyses. Somatic mutational data for 544 CRC patients were downloaded from the TCGA 
database. Samples not included in the present study were excluded from analysis, while the remaining 458 
samples, which included 222 and 236 in the high- and low-MRS groups, respectively, were analyzed with the 
maftools package to assess mutational patterns. Then, tumor mutational burden (TMB) was calculated and a 
tumor mutation gene correlation heatmap was  generated50.

Immune cell infiltration analyses. Immune, stromal, estimated, and tumor purity scores for tumor sam-
ples were computed using appropriate R packages. The R GSVA package was used to conduct ssGSEA analyses 
designed to determine whether there were differences in immune cell infiltration of immunological function 
among different patient  subgroups51.

Heatmap. Mutation mapping correlation heat maps were drawn using the somatic interactions function of 
the maftools package. The correlation heat map was plotted using the corrplot function of the corrplot package. 
The gene expression heat map is plotted using the pheatmap function of the pheatmap package. All the above 
steps were done using the R language software of version 4.1.2.

Patient samples. In total, 10 paired fresh CRC patient tumor and paracancerous tissue samples were 
obtained from the Affiliated Hospital of Nantong University. Patients had not undergone radiotherapeutic, 
chemotherapeutic, or immunotherapeutic treatment prior to sample collection. The ethics committee of the 
Affiliated Hospital of Nantong University approved this study, and all patients provided written informed con-
sent.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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qRT‑PCR. RNA was extracted using TRIzol (Invitrogen, USA). cDNA was generated in a volume of 20 µl 
using HiScript III RT SuperMix for qPCR (+ gDNA wiper) (Vazyme, Nanjing) according to the manufacturer’s 
instructions. RT-qPCR analysis was then performed on a QuantStudio5 Real-Time PCR system (ABI, USA) 
using ChamQ Universal SYBR qPCR Master Mix (Vazyme, NJ). The primer sequences are as follows, GAPDH 
Forward: TGC ACC ACA ACT GCT TAG C; GAPDH Reverse: GGC ATG GAC TGT GGT CAT GAG; EIF4E3 For-
ward: AAG ACT TGC CGA AGC CGA TGC; EIF4E3 Reverse: ACC TGC CAC TTT GAG TCC TAA TTG C; GEMIN5 
Forward: TAA CAG AAA TGA CAG CCA GCA CCT C; GEMIN5 Reverse: CAC CAC TAT GCC ATC CTT GTA GCC; 
NCBP2 Forward: GAT GCT GGG AGA GGA GGC TATGG; NCBP2 Reverse: AAT GGG CTC GTG TGC AGA CTT 
TAG . All the above experiments were repeated three times.

Statistical analysis. All statistical analyses were performed using R v 4.1.2 (https:// www.r- proje ct. org/) 
and GraphPad Prism 7, and P < 0.05 was the significance threshold.

Data availability
CRC expression matrix data were obtained from TCGA database (https:// portal. gdc. cancer. gov/) and GSE28722 
dataset in GEO database (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi?a cc = GSE28722). Mutation spectrum 
data from TCGA database (https:// portal. gdc. cancer. gov/). The above data sets are publicly available and can be 
downloaded from the Internet or obtained by contacting the authors.
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