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ABSTRACT

A significant proportion of infant B-cell acute lym-
phoblastic leukemia (B-ALL) patients remains with a
dismal prognosis due to yet undetermined mecha-
nisms. We performed a comprehensive multicohort
analysis of gene expression, gene fusions, and RNA
splicing alterations to uncover molecular signatures
potentially linked to the observed poor outcome.
We identified 87 fusions with significant allele fre-
quency across patients and shared functional im-
pacts, suggesting common mechanisms across fu-
sions. We further identified a gene expression sig-
nature that predicts high risk independently of the

gene fusion background and includes the upregu-
lation of the splicing factor SRRM1. Experiments in
B-ALL cell lines provided further evidence for the role
of SRRM1 on cell survival, proliferation, and invasion.
Supplementary analysis revealed that SRRM1 poten-
tially modulates splicing events associated with poor
outcomes through protein-protein interactions with
other splicing factors. Our findings reveal a potential
convergent mechanism of aberrant RNA processing
that sustains a malignant phenotype independently
of the underlying gene fusion and that could poten-
tially complement current clinical strategies in infant
B-ALL.
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GRAPHICAL ABSTRACT

INTRODUCTION

B-cell acute lymphoblastic leukemia (B-ALL) is the most
common form of childhood cancer worldwide and one of
the leading causes of cancer-related deaths in children (1).
B-ALL presents a general lack of mutations in gene drivers
that could be therapeutically targeted and are common in
solid tumors and other leukemias (2). In contrast, B-ALL
presents frequent chromosomal translocations that lead to
the expression of gene fusions that are associated with
marked differences in response to chemotherapy and sur-
vival. For instance, the frequent ETV6-RUNX1 and TCF3-
PBX1 fusions have been associated with better prognosis
(3), whereas BCR-ABL1, the highly frequent rearrange-
ments of the gene KMT2A (KMT2A-r), and the less fre-
quent TCF3-HLF are associated with poor prognosis (3,4).
Other rarer, less studied fusions remain with an uncertain
prognosis.

The prevalence of gene fusions has spurred multiple ef-
forts to identify treatments that target them or their down-
stream effectors, albeit with limited success (5). In partic-
ular, many fusions involve transcription factors, which are
difficult to target directly (6). Despite these challenges, com-
bination chemotherapy and recent advances in Chimeric
Antigen Receptor (CAR) T-cell therapy have led to a 90%
increase in the 5-year survival rate in children younger than
15 years and a 75% increase for adolescents (15–19 years).
However, infant B-ALL remains with a bad prognosis, es-
pecially for the KMT2A-r cases, which occur in about 80%
of the infant patients during embryonic/fetal hematopoiesis
(7). A total of 135 different translocation partners have been
identified for KMT2A, with the most frequent ones being
members of transcriptional elongation complexes, account-
ing for 90% of all KMT2A-r cases (8). Furthermore, many
of these fusions may occur at any age and are also frequent
in acute myeloid leukemia (AML) (8). Genome-sequencing
studies of KMT2A-r B-ALL have confirmed a very low
frequency of somatic mutations, suggesting that KMT2A-r
may not require additional alterations to induce transfor-
mation (9,10). However, B-ALL cannot be recapitulated in
pre-clinical models that only integrate the fusion, suggest-
ing that additional alterations are necessary for leukemoge-
nesis (11,12).

The rarity of many of the fusions in B-ALL and their
apparent links to functionally distinct pathways complicate
their interpretation and the identification of effective thera-
pies. On the other hand, there is increasing evidence for con-
vergent molecular signatures in B-ALL that indicate similar
disease progression patterns and common therapeutic vul-
nerabilities, despite presenting different genetic alterations.
For instance, a BCR-ABL1-like B-ALL subtype was de-
scribed that shows a gene expression profile and a thera-
peutic vulnerability similar to BCR-ABL1 patients, despite
not presenting the BCR-ABL1 fusion (13). For KMT2A-r
fusions, the functional impacts of the different fusion gene
pairs have been linked to common downstream mechanisms
of chromatin and transcription dysregulation (12). The oc-
currence of KMT2A-r across different ages and lineages and
their general association with poor prognosis suggests that
a convergent phenotype might be potentially identified in B-
ALL associated with poor prognosis. We hypothesized that
this phenotype might be captured in the transcriptome and
present in high-risk B-ALL tumors independently of the fu-
sion background.

Here, we describe a comprehensive multi-cohort, in-
fant, and child-focused characterization of high-risk B-
ALL transcriptomics signatures. We identified a predictive
gene expression signature of high-risk independent of the
fusion background. This signature was mainly composed
of ribosome biogenesis and RNA processing regulators,
including the splicing factor SRRM1. Experiments in B-
ALL cell lines provided evidence for the functional role of
SRRM1 in cell survival, proliferation, and invasion. Fur-
thermore, we found an alternative splicing program asso-
ciated with the high-risk signature potentially mediated by
splicing factors interacting with SRRM1. Our results pro-
vide a new layer of molecular variation that has remained
undetected so far and represents a potential source of novel
prognostic markers and therapeutic strategies in B-ALL.

MATERIALS AND METHODS

Data availability

All samples were obtained from various sources through
controlled or public access. The series from St Jude Chil-
dren’s Research Hospital (SJH) (EGAS00001000246) (14)
and Lund University (LUND) (EGAS00001001795) (15)
were downloaded from the European Genome-phenome
Archive (EGA) and the corresponding clinical informa-
tion was obtained from the associated publications. The
series from Children’s Hospital of Philadelphia (CHOP)
(GSE115656) was downloaded from Gene Expression Om-
nibus (GEO) (16). Samples from TARGET (Therapeu-
tically Applicable Research to Generate Effective Treat-
ments) were downloaded from the TARGET data por-
tal at the National Cancer institute (NIH) together with
the associated clinical information, corresponding to db-
GAP accessions phs000463 (ALL phase 1) and phs000464
(ALL phase 2). Data from patients from the Princess
Maxima Center for Pediatric Oncology (PMJCI) from
(17) was obtained from the authors. We also analyzed
data from 12 B-ALL cell lines coming from the Can-
cer Cell Line Encyclopedia (CCLE) (18), from normal
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blood and spleen samples from The Genotype-Tissue Ex-
pression (GTEx) project (19) and from 16 B-cell pro-
genitors from CHOP (GSE115656) (16,20). We also an-
alyzed an independent cohort of B-ALL patient RNA-
seq datasets (21), with EGA IDs EGAD00001004461,
EGAD00001006609 and EGAD00001007530, downloaded
under Data Access Agreement between Children’s Hospital
of Philadelphia and St. Jude Children’s Research Hospital –
Washington University Pediatric Cancer Genome Project.

Clinical information and data extraction

All the information related to the clinical annotations and
sample extraction is described in detail in their respective
publication. A summary of the sequencing platforms used
for each cohort included in this study is provided in Sup-
plementary Table S1. A detailed description of the samples
selected from each project with their relevant clinical infor-
mation is provided in Supplementary Tables S2 and data file
1. We only used samples classified as B-cell ALL that had
at least 25% of the reads mapping to the genome (GRCh38)
and such that these corresponded to at least 5M reads.
FASTQ files from SRA for the TARGET samples were ex-
tracted using the SRAToolKit (v 2.9.0) (https://github.com/
ncbi/sra-tools). FastQC (22) was used for quality control of
all the FASTQ files. All the samples were processed with the
same pipeline outlined in Supplementary Figure S1.

Fusion detection

We used STAR-Fusion v.1.4.0 (23) to identify gene fu-
sions from the RNA-seq data. The index was generated
using the Gencode (v27) annotation and the GRCh38 as-
sembly. STAR-Fusion was run for each FASTQ file us-
ing the default parameters described at https://github.com/
STAR-Fusion/STAR-Fusion/wiki/Home/. We required at
least one read count supporting the fusion junction given
by the field JunctRC (or JunctionReads in the latest ver-
sion of the manual) in the STAR-Fusion output, one read
count connecting the fusion junction (SpanRC or Span-
ningFrags field), 0.1 Fusion Fragments Per Million to-
tal reads (FFPM), and junction reads that cover at least
25 bases on both sides of the breakpoint (indicated as
‘YES LDAS’ in the STAR-Fusion output). The fusion al-
lele frequency (FAF) was defined as the average of the allele
frequency for both partners of the fusion pair, i.e. FAF =
(FAFL + FAFR)/2, where each value FAFi, for i = L, R was
defined as FAFi = Fi/(Fi + WTi), where the Fi represents
the number of reads that support the fusion breakpoint and
WTi represents the number reads that support the wild type
fragment of the gene, not present in the fusion.

Fusion filtering and classification

Fusion calls involving pseudogenes were removed from the
output, as well as fusions between paralogous genes (genes
with 70% or more sequence identity), as they were consid-
ered potential artifacts. Fusions between immunoglobulin
or hemoglobulin genes were also discarded. Additional fil-
ters for possible false positives were applied: A promiscuity
filter was used to remove fusions involving genes paired with

more than one other gene within the same sample, known
to be potential artifacts from the library preparation (24).
Moreover, we removed all predicted fusions that occurred
only in one project to avoid project biases. We also filtered
out fusions previously detected in non-cancerous tissues or
cells (25), detected in normal samples from TCGA (26),
or seen with STAR-fusion in RNA-seq data from normal
blood cell types (27).

Additionally, we only kept fusions that appeared in five or
more patients. Fusions involving genes previously reported
to have mutations or fusions in leukemia were kept indepen-
dently of these filters, but only if they appeared in five or
more patients. Finally, the FAF was used to select the most
relevant fusions (see Methods section Calculation of Fusion
Allele Frequency for details). Based on the FAF distribu-
tion across all patients from the different cohorts, each fu-
sion was required to have a median FAF >0.1. The partner
with the lowest allele frequency in the fusion was required
to have a median of 0.01 for the individual FAF value.

We classified the fusions into four major groups: (i)
‘ALL’, which indicated those already reported in any of
the analyzed ALL datasets or reported previously in the
databases COSMIC (28), TCGA (26) or MitelmanDB (29);
(ii) ‘blood’, which indicated those fusions known to ap-
pear in other hematological malignancies according to the
same databases; (iii) ‘solid tumors’, which indicated fusions
known in other solid tumors and present in the same public
databases and (iv) ‘novel’, which indicated fusions that were
not present in the public databases. Fusions were grouped
and labeled according to the most recurrent partner for dif-
ferential expression analysis, co-occurrence analysis, and vi-
sualization purposes. Fusion groups that were not showing
a pattern of mutual exclusion with any of the other groups
according to a waiting time model for mutually exclusive
cancer alterations implemented by the R package TiMEx
(30) were grouped as ‘Other’.

Analysis of domains disrupted by fusions

The same fusion breakpoint given by the RNA-seq reads
was used if this occurred inside an exon expressed in the
fusion. Otherwise, the positions used were the last base of
the last exon from gene 1 included in the fusion, and the first
base of the first exon from gene 2 included in the fusion. Us-
ing these values, we defined the breakpoints for genes 1 and
2 of the identified fusions. PFAM domains mapping to the
proteins encoded by each fusion gene were extracted from
Biomart (31), the protein coordinates of the domain span
were converted to genomic coordinates and overlapped with
the fusion breakpoints of the corresponding genes to estab-
lish for each breakpoint whether the domain was kept or
lost as a result of the fusion.

Gene expression and functional enrichment analysis

Transcript level quantification for the Gencode transcrip-
tome release 27 (GRCH38.p10) (32) was obtained in tran-
scripts per million (TPM) units using Salmon (v 0.7.2) (33).
Gene level quantification was obtained by transforming
transcript TPMs to counts per gene using the tximport li-
brary function from Bioconductor (34).

https://github.com/ncbi/sra-tools
https://github.com/STAR-Fusion/STAR-Fusion/wiki/Home/
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For differential expression analyses, we considered the
patients with only one identified fusion (after performing
all the filtering steps) and for the most frequent fusions: 87
patients for KMT2A-r, 68 for ETV6-r, 9 for BCR-r, 36 for
P2RY8-r, 14 for PAX5-r, 25 for PWLC1-r, 5 for RUNX-
r, 35 for ST3GAL1-r, 33 for TCF3r, 33 for TTYH3-r, and
12 for ZNF384-r, plus the 133 patients with no fusions de-
tected. We calculated the differentially expressed genes be-
tween pairs of groups. The read counts per gene were trans-
formed to log2 counts per million (logCPM) using edgeR
(35), and genes with mean log CPM < 0 were filtered out.
The data was normalized with the TMM method from the
edgeR package. Differential expression analysis was per-
formed with LIMMA (36) using the function limma.voom
adjusted by SVA with the covariables of sex, project, and
tissue (bone marrow or peripheral blood).

Gene set enrichment analysis was performed with GSEA
(37) for the list of hallmarks and for the biological process
ontology using the pre-ranked enrichment method, sort-
ing all the genes by the value of −log10(P-value) · log2FC
obtained from the differential expression analysis. In the
case of splicing factors and RBPs, as there is no pathway
or hallmark gene set associated with them in the available
databases, we built a list of genes splicing factor and/or
RBP function from previous studies (38,39) and run a pre-
ranked GSEA with the absolute value (Data file 2).

Gene selection to construct a predictive model of prognosis

We used gene expression data from 133 TARGET patients
with complete clinical information about the age of diagno-
sis and time to the first relapse and calculated a log2 fold-
change (log FC) per gene using the normalized log CPM
mean expression between patients with relapse and with-
out relapse. Similarly, we calculated a logFC from the gene
expression of 140 patients from all other cohorts (SJH,
LUND, CHOP and PMJCI) comparing the ones carrying
only KMT2A-r against the ones with only ETV6-r. We only
considered genes with a log FC > 0.5 in both compar-
isons and that were included in at least one of three sets:
(i) the GSEA hallmark as MYC targets (v1 and v2), in (ii)
the Gene Ontology Biological Process of translation (initi-
ation, elongation, or termination) or (iii) and a list of genes
encoding splicing factors and RBPs (Data file 2). For ev-
ery gene, we applied a cox regression survival model ad-
justed by age and gender, selecting only the genes with a P-
value <0.05 according to a Wald test (Supplementary Table
S3). This produced a total of 39 overexpressed genes associ-
ated with prognosis and with our target biological functions
and pathways. From these 39 genes, the expression variabil-
ity between cohorts was evaluated using mean logCPM ex-
pression in each dataset and the maximum logFC between
datasets. Genes with the highest variability across datasets
(max log FC > 3) were removed to avoid any dataset-related
bias, obtaining the final 37 genes to build the predictive
model. Training data was restricted to the 133 TARGET B-
ALL patients. The model consisted of a random forest, im-
plemented using the randomForest library in R, with a total
of 400 trees and four variables randomly sampled as a can-
didate at each split. The leave-one-out strategy was used to
evaluate the prediction accuracy, while avoiding overfitting.

A numeric k-score between 0–1 obtained from the predic-
tion of the random forest model was used to classify the pa-
tients according to risk. A threshold was established on 0.7,
according to accuracy measures, to classify the patients as
high-risk (k-score ≥ 0.7) or low-risk (k-score < 0.7). To ap-
ply the predictive model to expression values given in terms
of regularized-log (rlog) values, we used the TARGET sam-
ples as before, applying a regularized log transformation us-
ing the package DESeq2 with the rlog function (40). We
then built and tested the model as before, using the rlog val-
ues instead of the log CPM values.

Differential splicing analysis

SUPPA (41,42) was used to perform the differential splicing
analysis. SUPPA predicts the relative inclusion and differen-
tial splicing of the events using isoform-level relative abun-
dances. Using RT-PCR experiments, SUPPA’s accuracy was
shown to be comparable to methods based on the direct
quantification of event PSI from reads (41,42). SUPPA gen-
erateEvents was used to generate alternative splicing events
defined from protein-coding transcripts and covering the
annotated ORFs. The relative inclusion of each event was
calculated as a Percent Spliced In (PSI) value with SUPPA
psiPerEvent using the transcript abundances in TPM units
obtained before. A minimum total expression of the tran-
scripts involved in the event of 1 TPM was required. Events
without a defined PSI value in more than 10% of the pa-
tients across all cohorts were discarded. These included
events that did not pass the transcript expression filter or
that had all the transcripts involved in the event with zero
expression. The remaining missing PSI values were imputed
using nearest neighbor averaging with the impute.knn func-
tion in R from the Impute library (43). To test the signifi-
cant differential inclusion of the events in the comparisons
of high against low-risk patients and in KTM2A-r against
ETV6-r patients, a �PSI was calculated as the difference of
the mean PSI from each group. We discarded all events with
a standard deviation (SD) across groups lower than 0.1. We
applied a linear regression model with a logit transforma-
tion of the PSI to estimate the significance of the splicing
changes and adjusted the P-value by calculating a false dis-
covery rate (FDR), using the same covariables adjustment
as in the differential expression analysis described previ-
ously. We considered significant all the changes with |�PSI|
> 0.2 and an FDR corrected P-value < 0.01. Differential
splicing between B-cell precursors and GM12878 was cal-
culated with the SUPPA diffSplice command with default
options.

Motif enrichment analysis

We searched for RBP binding motifs on the regions neigh-
boring each splicing event with MoSEA (https://github.
com/comprna/MoSEA) (39). MoSEA was run against a
database of Position Frequency Matrices (PFM) and k-
mers (6-mers) associated with each RBP. Enrichment was
assessed by comparing a set of events differentially spliced
between conditions with a set of events with no signifi-
cant change between the same conditions. For each motif,
MoSEA calculated a z-score from the comparison of the

https://github.com/comprna/MoSEA
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observed frequency observed in differentially spliced events
with the distribution of frequencies in 100 control subsam-
ples of the same size, considering the length distribution and
GC content of the differentially spliced events set. We con-
sidered those motifs PFMs and 6-mers with z-score > 1.5.

Retrieving protein-protein interactions

We used the STRING database (44) to retrieve protein–
protein interactions with the detailed scores of the links be-
tween proteins. Only those with experimental scores differ-
ent from 0 and a combined score higher than 900 were kept.

Co-occurrence analysis of differentially spliced events and
high risk

An alternative exon was considered included for PSI > 0.5
and absent otherwise for each sample. For every fusion
group, a matrix was built with the presence or absence of
events in each patient. The co-occurrence of the events with
high risk was tested with a probabilistic model of species co-
occurrence implemented in the R package co-occur (45).

Functional enrichment analysis of differentially spliced genes

Genes associated with differentially spliced events were
tested for functional enrichment of Gene Ontology Biolog-
ical Process terms with the R package clusterProfiler from
Bioconductor (46). Benjamini–Hochberg (BH) correction
was used to calculate adjusted P-values (q-values). Only on-
tologies with P-value and q-value <0.05 were selected.

Leukemia cell lines selection

SEM, MHH-CALL-3, KOPN-8, NALM-19, REH and
SUP-B15 cells were obtained from the Leibniz Insti-
tute DSMZ (#ACC546, #ACC339, #ACC552, #ACC522,
#ACC22 and #ACC389, respectively) and cultured accord-
ing to the supplier’s recommendations. These cell lines were
previously checked for mycoplasma contamination by PCR
as previously reported (47). Results were expressed as a per-
centage with respect to scramble-transfected controls.

RNA isolation, real-time qPCR, and customized qPCR dy-
namic array based on microfluidic technology

Total RNA from leukemia cell lines was extracted with
TRIzol® Reagent (ThermoFisher Scientific, #15596026).
Total RNA concentration and purity were assessed by
Nanodrop One Microvolume UV-Vis Spectrophotome-
ter (ThermoFisher Scientific). For qPCR analyses, to-
tal RNA was retrotranscribed by using random hex-
amer primers and the RevertAid RT Reverse Transcrip-
tion Kit (ThermoFisher Scientific, #K1691). Thermal
profile and qPCR analysis to obtain absolute mRNA
copy number/50 ng of sample of selected genes are re-
ported elsewhere (48). To control the possible varia-
tions in the efficiency of the retrotranscription reaction,
mRNA copy numbers of the different transcripts ana-
lyzed were adjusted by ACTB expression. Specific primers
for human and mouse transcripts including ACTB and

SRRM1 genes were specifically designed with the Primer3
software [SRRM1 (NM 001303448.1)––forward: GTAG
CCCAAGAAGACGCAAA, reverse: TGGTTCTGTGAC
GGGGAG; ACTB (NM 001101)––forward: ACTCTTCC
AGCCTTCCTTCCT, reverse: CAGTGATCTCCTTCTG
CATCCT].

Silencing of splicing factors by specific small interfering RNA

Pre-designed and validated specific small interfering RNA
(siRNA) oligos for knockdown of endogenous SRRM1
(#s20018; Silencer® Select siRNAs; ThermoFisher Scien-
tific) were used, which is a pre-validated siRNA. Briefly,
cells (n = 500 000 cells/well) were transfected with 25
nM of each siRNA individually using Lipofectamine®
3000 Transfection Reagent (ThermoFisher Scientific, #
L3000075) according to the manufacturer’s instructions. Si-
lencer® Select Negative Control siRNA (ThermoFisher
Scientific, #4390843) was used as a scramble control. After
24 h, cells were collected for validation of the transfection
by qPCR and seeded for different functional assays.

Proliferation rate determination

Cell proliferation in response to SRRM1 silencing in
leukemia cell lines was analyzed using the alamarBlue™ as-
say (Biosource International, Camarillo, CA, USA), as pre-
viously reported (49). Briefly, cells were seeded in 96-well
plates at a density of 25 000 cells/well and serum-starved
for 24 h. Then, proliferation was evaluated every 24 h using
the FlexStation-III system (Molecular Devices, Sunnyvale,
CA, USA) for up to 72 h. Results were expressed as a per-
centage referred to as scramble-transfected controls.

Apoptosis measurement

Apoptosis induction in response to SRRM1 silencing in
leukemia cell lines (25 000 cells/well onto white-walled
multiwell luminometer plates) was performed by using
Caspase-Glo® 3/7 Assay (Promega Corporation, #G8091)
as previously reported (49). Briefly, Cells were seeded in 96-
well white polystyrene microplate flat bottom clearplates at
a density of 25 000 cells/well and serum-starved for 24h. Re-
sults were expressed as a percentage referred to as scramble-
transfected controls.

Invasion rate determination

The invasion rate in response to SRRM1 silencing in
leukemia cell lines was assessed by using the 96-well cell
Trans-well invasion assay (Basement Membrane-8 �m, As-
sayGenie, #BN01086) according to the manufacturer’s pro-
tocol. The top chamber membrane was coated with the
basement membrane solution. Afterward, cells were seeded
in the top chamber in 0.5% serum media. Then, 10% FBS
media was placed in the bottom chamber to promote cell
invasion in all experimental conditions. Then, proliferation
was evaluated every 24 h using the FlexStation-III system
(Molecular Devices, Sunnyvale, CA, USA).
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Statistical analysis for the B-ALL cell line experiments

Numerical results were evaluated for statistical differences
by t-test, multiple t-tests, and two-way ANOVA. All sta-
tistical analyses were performed using Prism software v.9.0
(GraphPad Software, La Jolla, CA, USA). P-values < 0.05
were considered statistically significant. The plotted data
represent the median (interquartile range) or means ± stan-
dard error of the mean (SEM). Significant difference from
control conditions was indicated as * P-value < 0.05, ** P-
value < 0.01, *** P-value < 0.001.

RESULTS

RNA sequencing identifies novel gene fusions in B-ALL

We collected RNA sequencing (RNA-seq) from 428 patient
samples obtained at diagnosis from five different B-ALL
studies (14–17,50) (Supplementary Table S2 and Data file
1). Patients’ age distribution peaked around one year old,
with most cases being classified as infants or young chil-
dren (Figure 1A). We applied a comprehensive pipeline to
study gene fusions, expression, and RNA splicing (Supple-
mentary Figure S1) (Methods). To identify fusions likely to
be associated with the B-ALL phenotype, we removed fu-
sion candidates that we had also detected in non-cancer tis-
sues and normal hematopoietic cells, as well as potential ar-
tifacts. We kept all fusion candidates reported in the clinical
data of the studied cohorts or involving genes with acute
leukemia mutations in COSMIC (28). Additionally, only
candidates appearing in five or more samples and across dif-
ferent projects were considered. Starting from 1825 unique
candidate fusions, these filters resulted in 158 unique high-
confidence fusions (Supplementary Figure S2) (see Materi-
als and Methods for details).

To prioritize the relevance of the identified fusions, we
further calculated a fusion allele frequency (FAF) (23), de-
fined as the proportion of the gene expression correspond-
ing to a fusion averaged over the two genes participating in
the fusion, and which represents a proxy for the fusion clon-
ality (Supplementary Figure S3). We then considered only
those fusions with a median FAF of at least 0.1 and hav-
ing none of its genes with a median individual FAF <0.1.
These analyses resulted in our final list of 87 different fu-
sions (Data file 3) (see Materials and Methods for details).

Using these fusions, all five analyzed cohorts presented a
similar distribution of fusions per patient (Supplementary
Figure S4). Our analyses of the RNA-seq data recovered
81.35% of the most frequent fusions detected in the same
samples with independent experimental methods (Supple-
mentary Figure S5a and b). Although most of the identified
fusions had been observed previously in ALL, we also iden-
tified fusions that had been reported before in other blood
cancers or in solid tumors, as well as novel fusions (Sup-
plementary Figure S5c). Moreover, we identified known B-
ALL fusions in 43 patients that did not have any fusion
annotated in the published clinical information and deter-
mined the fusion partner in 7 cases that were only annotated
as KMT2A-r (Data file 3).

We found that some of the identified fusions are over-
represented in specific age groups (Figure 1B). We recov-
ered the known enrichment of KMT2A-r in infant cases

and ETV6-r in children and young adults (1–18 years). Fu-
sion groups such as BCR-r and P2RY8-r presented a bi-
modal or extended age distribution, including infant and
child. Similarly, PAX5-r appeared in infants and at the up-
per extreme of childhood cases (Supplementary Figure S6).
Despite these associations, age distributions and fusion fre-
quencies may not represent the actual distribution in the
population of leukemia patients, as there may have been
sample collection biases in each cohort.

Overall, high-confidence fusions were detected for 70% of
the samples at diagnosis. Grouping the fusions by the most
frequent gene in the fusion pairs, we could identify six major
fusion groups: KMT2A-r (20%), ETV6-r (16%), ST3GAL1-
r (8%), P2RY8-r (8%), TCF3-r (8%) and TTYH3-r (7%)
(Figure 1C). In the cohorts analyzed, we also found PAX5-
r (3%), ZNF384-r (3%), BRC-r (2%), RUNX1-r (2%) and
GSE1-r (2%), as well as a group of low-frequency fusions
that appeared in 18% of the patients. The calculated fu-
sions in diagnostic samples showed a clear pattern of mu-
tual exclusions and a frequent co-occurrence of the in-
verse fusion for KMT2A-r, ETV6-r, PAX5-r and BCR-r,
but not for other fusions (Figure 1c). Apart from known
fusions in B-ALL and hematological malignancies we de-
scribed fusions previously observed in solid tumors, GSE1-
SLC7A5 and CBFA2T3-PIEZO1. Among the fusions that
have not been previously described in cancer, the majority
can be attributed to new partners of already known fusion
genes in B-ALL or other hematological malignancies such
as ST3GAL1 or P2RY8 (Figure 1C) (Data file 3).

Different gene fusions impact similar functional pathways

We calculated the breakpoints for each of the fusions de-
tected from RNA-seq reads, either as the exon position
where the fusion breakpoint was found or using the bound-
aries of the exons flanking the intron where the breakpoint
was assumed to fall. Fusion genes presented multiple break-
points (Figure 2A) (Supplementary Figure S7). Moreover,
these breakpoints appeared in positions that potentially dis-
rupted the protein domain content. This raised the question
of whether different breakpoints in the same or different fu-
sion genes may lead to similar functional impacts. To deter-
mine this, we calculated the domains that are maintained or
lost in each fusion gene according to the identified break-
points. In terms of the specific domains kept or lost in a
fusion, we observed little overlap between fusions (Supple-
mentary Figure S8). However, when we grouped the protein
domains according to their functional ontologies, multiple
similarities appeared, such as the loss of DNA-binding do-
mains in KMT2A-r and ETV6-r and the loss of signal trans-
duction domains in P2RY8-r and BCR-r (Figure 2B).

Common patterns of gene expression across diverse gene fu-
sion backgrounds

To further characterize the cellular processes associated
with the identified fusion groups, we calculated the differ-
ential expression patterns among patient groups. Despite
the heterogeneity of samples used in the comparison, there
were many significant expression changes associated with
KMT2A-r, ETV6-r, ST3GAL1-r, ZNF384-r and TCF3-r
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Figure 1. Multicohort identification of gene fusions in B-ALL. (A) Age distribution of the B-ALL patients studied. (B) The proportion of the gene fusion
groups in each age group from (a). (C) Fusion oncoprint. The plot shows the most frequent fusions (rows) detected in patients (columns). Fusions are
grouped by the most frequent gene in the fusion gene pairs. The bar plot above shows the number of fusions detected per patient. The specific gene fusion
pairs in each patient are given in (Data file 3). A black border line indicates that the reverse fusion was identified in that patient. Cell colors indicate
whether the fusions were detected before in B-ALL (orange), in a blood cancer (yellow), in a solid tumor (purple), or whether it was not reported in any
cancer before (green). A patient with two different fusions detected in the same gene is depicted with two colors, and they were only kept if they had been
previously reported in a tumor and occurred in at least five patients.

in comparison with the other fusion groups and with pa-
tients without fusions (Supplementary Figure S9) (Data
file 4). These patterns included the HOXA overexpression
characteristic of KMT2A-r patients (Supplementary Figure
S10) (17). Interestingly, the differentially expressed genes
associated with each fusion group did not generally over-
lap (Supplementary Figure S11), except for the KMT2A-r
and ETV6-r groups, which showed opposite expression pat-
terns (Supplementary Figure S12). This suggested that the
functional alterations specific to KMT2A-r are reversed in
ETV6-r tumors.

To investigate this possibility, we studied the pathways en-
riched or depleted in each fusion group. Each group tended
to cluster independently, except for ST3GAL1-r, PQLC1-
r and TTYH3-r, which presented similar pathway enrich-
ments, and P2RY8-r, RUNX1-r and PAX5-r, which were
similar to the cases with no fusions (Supplementary Figure
S13). Moreover, genes overexpressed in KMT2A-r patients
were strongly enriched in MYC targets, ribosome biogene-
sis, and RNA processing, including splicing and translation
regulation (Supplementary Figure S13). Interestingly, MYC
targets were upregulated in KMT2A-r patients but depleted
in ETV6-r (Supplementary Figure S13), and transforming

growth factor beta (TGF-b) signaling, which antagonizes
MYC (51), was depleted in KMT2A-r patients. Further-
more, MYC expression was higher in KMT2A-r patients rel-
ative to the other patient groups and normal fetal-liver B-
cells (Supplementary Figure S14), whereas ETV6-r patients
showed MYC expression below normal fetal liver B-cells
(Supplementary Figure S14). This suggested a gene expres-
sion pattern linked to MYC, in association with KMT2A-r,
and reversed in ETV6-r.

A gene expression signature of high-risk B-ALL independent
of the gene fusion background

B-ALL cases with KMT2A-r are generally considered to
have a poor prognosis, whereas ETV6-r are deemed to
be of good prognosis (3). We thus reasoned that the ob-
served opposite expression patterns might be linked to these
risk phenotypes. To investigate this possibility, we calcu-
lated the genes differentially expressed between patients
harboring only KMT2A-r or ETV6-r, without any other
detected fusion (87 KMT2A-r and 68 ETV6-r). All RNA-
seq used was obtained at the diagnostic stage before treat-
ment. Gene set enrichment analysis on the 1405 differen-
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Figure 2. Functional impact assessment of gene fusions. (A) Identified breakpoints in the fusions involving KMT2A (left panel) and ETV6 (right panel).
Along the genomic locus (x-axis), we indicate the detected breakpoint’s position, defined by an exonic position if the breakpoint occurred inside an exon,
or by the last base of the last exon included in the fusion otherwise. The plot also shows the span of the functional domains in genomic coordinates. (B)
Domains kept (orange) and lost (red) through gene fusions (x-axis) labeled according to gene ontologies (GO) (y-axis): biological process (BP), cellular
compartment (CC) and molecular function (MF). The specific functional domains kept or lost in these fusions are given in Supplementary Figure S8.

tially expressed genes identified (FDR < 0.01 and |log FC|
> 1) (Figure 3A) (Data file 5) revealed two main pathways,
one associated with immune response and another related
to MYC, translation regulation, and ribosome biogenesis
(Figure 3B). As RNA processing is tightly controlled dur-
ing normal hematopoiesis and is commonly dysregulated in
hematological malignancies (52–54), we hypothesized that
genes related to these pathways may separate patients ac-
cording to their risk of relapse. Feature selection was con-
ducted to extract a list of 39 genes from the target path-
ways showing overexpression in KMT2A-r. RBM24 and
RNU6-1 were discarded from these genes as they showed
high variability across the studied cohorts, resulting in a
final signature of 37 genes (Figure 3C) (Supplementary
Figure S15).

We trained and tested a predictive model for risk using
the 133 patients from TARGET, a high-risk cohort with
clinical follow-up information (Data file 1), using as end-
point the event-free survival and as the prognostic event
the first relapse. Using a random forest leave-one-out cross-
validation combined with a cox-regression, we obtained a
significant separation of patients according to the risk of
relapse (log-rank test P-value < 0.0001) (Figure 3D) and
overall accuracy of 0.72, measured as the area under the re-
ceiver operating characteristic (ROC) curve (AUC) (Figure
3E). Importantly, even though the genes in our model were
selected from the comparison of KMT2A-r and ETV6-r pa-
tients, only 11% of the 133 patients had KMT2A-r or ETV-6
fusions. Based on the observed values of sensitivity, speci-
ficity, and accuracy (Supplementary Figure S16a), we chose
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Figure 3. Gene expression signature of high risk. (A) Differential gene expression between a subset of patients with only KMT2A-r or only ETV6-r.
The volcano plot shows for each gene the log2(fold-change) (x-axis) and the -log10(corrected p-value) (y-axis). We indicate the genes involved in RNA
processing, RNA translation, and Ribosome biogenesis. (B) Enriched Cancer Hallmarks and Biological Process Gene Ontologies (GO:BP) of the genes
significantly up or down-regulated in the comparison in (a). (C) Ranking of the 37 genes of the predictive model of high risk according to their relevance
in the leave-one-out test (x-axis). Relevance is defined as the median of the accuracy per gene. (D) Kaplan–Meyer plot of the patients separated as high
risk (red) (risk score ≥ 0.7) or low risk (grey) (risk score < 0.7) in a leave-one-out test. (E) Average receiving operating characteristic (ROC) curve and area
under the ROC curve (AUC) from the leave-one-out test for classifying patients into low and high risk. The ROC curve shows the specificity (x-axis) and
sensitivity (y-axis) for the entire range of possible model score threshold values. Sensitivity is defined as the proportion of high-risk cases that are correctly
predicted. In contrast, specificity is defined as the proportion of low-risk cases correctly predicted as low risk. (F) Risk score distribution for various sample
groups: diagnostic samples predicted as high risk, diagnostic samples predicted as low risk, samples obtained at relapse, and blood and spleen samples
from GTEX. (G) Classification of all the B-ALL diagnostic samples from each fusion subgroup (y-axis) into high (left) or low (right) risk according to our
risk score. Patients with a clinical record indicating that they had relapsed are indicated in orange, whereas patients annotated with no relapse are indicated
in green (event free). Patients with no clinical information are indicated in grey (unknown).



10 NAR Cancer, 2022, Vol. 4, No. 4

the decision boundary at a score 0.7 (≥0.7 for high risk and
<0.7 for low risk). However, the same accuracy values were
maintained with score thresholds between 0.5 and 0.7 (Sup-
plementary Figure S16a).

To further evaluate our predictive signature, we trained a
single model with all the 133 TARGET samples (Supple-
mentary Figure S16b). We applied this model to normal
blood and spleen samples from GTEX, all other B-ALL
samples, and to 82 additional samples obtained at relapse,
none of which were included in any of the analyses above.
Remarkably, samples obtained at relapse showed a distri-
bution similar to the high-risk samples and higher than
the normal samples (Figure 3F). Furthermore, this model
separated TARGET patients with and without relapse and
detected other high-risk patients from the other cohorts
(Figure 3G) (Supplementary Figure S16c). Our predictions
showed that patients with fusions KMT2A-AFF1, AFF1-
KMT2A and TCF3-PBX1 were more frequently in the
high-risk group. In contrast, patients with ETV6-RUNX1,
RUNX1-ETV6 and ABL1-BCR were more often classified
as low risk, including the ability to stratify patients with
higher risk inside every group of fusion (Figure 3G) (Sup-
plementary Figure S16c) (Data file 6).

We further applied our model to an independent cohort
of 188 B-ALL patients (21). Since the gene expression val-
ues for this dataset were only available in terms of regular-
ized log (rlog) values, we rebuilt our model using the rlog
expression values calculated from the TARGET samples.
Using a leave-one-out cross-validation, this model main-
tained the same classification power as the previous model
built with logCPM values (Supplementary Figure S17a),
and the scores given by both models showed a high corre-
lation (R = 1, P-value < 2.2e–16) (Supplementary Figure
S17b). To test our predictions, we used the clinical classifi-
cation of patients published by the independent study into
three different risk groups (high, standard, and low) (21).
Our model separated these three groups into significantly
different score distributions, with the high-risk group show-
ing the highest scores and the low-risk group showing the
lowest signature scores (Supplementary Figure S17c). These
analyses provide strong support for the ability of our model
to predict the potential for relapse in B-ALL independently
of the gene-fusion background. To make this model readily
available to evaluate the risk on new sets of patients from ex-
pression data and to explore the features of the TARGET
cohort, we integrated the predictive model into an interac-
tive web resource available at https://github.com/comprna/
risk model app.

SRRM1 as a candidate driver of progression and poor prog-
nosis in B-ALL

One of the genes with the highest predictive value in our
risk-prediction signature was SRRM1, which showed the
highest correlation with the risk score (Pearson r = 0.51,
P-value = 8.18e–30) (Data file 6) and has been associated
before with poor prognosis in prostate cancer (55). Con-
firming this predictive power, patient samples classified as
high-risk and relapse samples showed higher SRRM1 ex-
pression than low-risk samples and normal samples from
spleen and blood (Figure 4A). To further understand the

functional transformations associated with SRRM1 expres-
sion, we analyzed multiple samples from progenitor and
mature B-cells. SRRM1 was significantly downregulated in
mature B-cells compared with B-cells progenitors (Figure
4B). Consistent with this, the risk score was significantly
higher (0.50–0.73) in undifferentiated B-cells compared to
differentiated B-cells (0.38–0.46; P-value < 0.001; Supple-
mentary Figure S18; Data file 7). These results suggest a
relevant role for SRRM1 driving a highly proliferative phe-
notype.

SRRM1 has been described as an essential gene, but a
knockdown is known to produce a reduction of the cell vi-
ability without killing the cell (Supplementary Figure S19),
opening the door to SRRM1 expression modulation as a
potential strategy to reduce the aggressive phenotype of
leukemia cells. To test this strategy, we determined prolifera-
tion, apoptosis, and invasion rate, after silencing SRRM1 in
six human B-ALL leukemia cell line models bearing distinct
functional and phenotypic features: SEM, MHH-CALL-3,
KOPN-8, NALM-19, REH and SUP-B15. The silencing of
SRRM1 expression was successful in all cell models (Fig-
ure 4C) and resulted in a significant decrease in prolifera-
tion rate in a time-dependent and cell line-dependent man-
ner (Figure 4D). Furthermore, using the capase3/7 assay re-
vealed that SRRM1 silencing significantly induced apopto-
sis in all human leukemia cells (Figure 4E). Moreover, using
a trans-well assay to evaluate the invasion capacity revealed
that SRRM1 silencing could potentially impair the capacity
of these cells to invade surrounding tissues in all cell lines
tested (Figure 4F). SRRM1 expression analysis revealed
that the cell lines had different basal expression patterns
(from high to low levels: KOPN-8>SEM>REH>MHH-
CALL-3>NALM-19>SUP-B15) and presented differences
in the basal proliferation (Supplementary Figure S20). Fur-
thermore, the proliferation rate with the siRNA at 48h was
inversely correlated with the SRRM1 basal expression and
the silencing effectiveness (Supplementary Figure S20), sup-
porting a tight association of SRRM1 expression with this
essential cellular function.

A candidate SRRM1-dependent splicing program associated
with high-risk B-ALL

SRRM1 is a serine-arginine rich factor that is associated
with splicing complexes and affects splicing through inter-
actions with SR proteins (56) (Figure 5A). We thus decided
to study the alternative splicing events potentially linked
with SRRM1 and their association with poor prognosis.
Analysis of differential RNA processing events between pa-
tients predicted as high and low risk identified a total of
422 events, with 342 of them affecting coding transcripts
and showing enrichment of alternative first (AF) and skip-
ping exons (SE) (Figure 5B; Data file 8). Those 342 events
occurred in 271 genes, none of which were differentially
expressed between the same conditions. expressed genes.
Moreover, out of the 342 events with differential splicing,
only 27 (7.8%) showed a correlation higher than 0.5 (Pear-
son R) between their PSI and the expression level of the
host gene across the samples. This indicates that the splicing
modulation identified is largely independent of the expres-
sion changes. Moreover, these significant events separated

https://github.com/comprna/risk_model_app
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Figure 4. SRRM1 as a potential major driver of high-risk B-ALL. (A) Distribution of expression values for SRRM1 in log10 counts per million (logCPM)
units (y-axis) in various sample groups: B-ALL diagnostic samples predicted to be high risk (score > 0.7), B-ALL diagnostic samples predicted to be low
risk (score < 0.7), B-ALL relapse samples, and blood and spleen samples from GTEX (t-test applied to compare all the groups versus the high-risk group,
**** for P < 2.2e–16, * for P = 0.023). (B) Normalized log2CPM expression of SRRM1 in B-ALL cell lines from the cancer cell line encyclopedia (CCLE),
B-cell progenitors, and a set of GM12878 biological replicates. P-values were obtained from a t-test mean comparison. (C) Validation of SRRM1 silencing
(y-axis) in cells (x-axis) by qPCR (n = 3). (D) Proliferation rate (y-axis) in response to SRRM1 silencing in leukemia cell lines at different time points
(x-axis) (n = 3 per time point). (E) Apoptosis rate (x-axis) in response to SRRM1 silencing in leukemia cell lines (y-axis) (n = 3). (F) Invasion rate (x-axis)
in response to SRRM1 silencing in human leukemia cell lines (y-axis). The dotted lines represent the control condition (scramble transfected) 100%. Data
is presented using the mean ± standard error of the mean. Significant differences from control conditions were indicated as * for P-value < 0.05, ** for
P-value < 0.01, *** for P-value <0.001.

high and low risk patients independently of the cohort (Fig-
ure 5B) (Supplementary Figure S21). Furthermore, events
that differentiate the high and low-risk patients, as well as
the genes where they occur, had a small overlap with those
that differentiate between KMT2A-r and ETV6-r patients
(Supplementary Figure S22; Data file 9). This suggests that
similar to the expression signature described above, there
may be a splicing signature associated with risk that is inde-
pendent of the fusion background.

To evaluate the SFs/RBPs potentially associated with
these RNA processing changes, we performed a motif
enrichment analysis. Specifically, we identified motifs for
RBPs that were part of our high-risk signature: SAMD4A
in A3 and AL events, RBM24 in all the different types
of events, PCBP3 in AL and SE events, PABPC4 in AL,
and MBNL1 in A3, AL, RI and SE events. We also recov-
ered motifs for other RBPs, including the SR protein genes
SRSF1, SRSF2, SRSF7 and SRSF9. Interestingly, these
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Figure 5. Splicing signature associated with high-risk. (A) SRRM1 is a known interactor of multiple splicing factors and RNA binding proteins (RBPs).
(B) Identified significant splicing changes between high and low-risk patients. The counts are separated according to whether the splicing change impacts
a coding region (black) or not (grey), and by event type: alternative 3′ (A3) and 5′ (A5) splice site, alternative first (AF), and alternative last (AL) exon,
mutually exclusive exons (MX), retained intron (RI) and skipping exon (SE). (C) Multidimensional scaling (MDS) plot of the analyzed samples using only
the significant SE events. The color indicates the patient cohort, and the full (empty) circle indicates if the sample is predicted to be of high (low) risk.
Other event types are shown in Supplementary Figure S22. (D) Enrichment (z-score > 1.5) of binding motifs for RNA binding proteins (RBP) (y-axis) in
each event type (x-axis). The plot indicates whether the RBP is part of the high-risk signature (red) or whether it has a reported protein-protein interaction
(PPI) with a gene from the signature (orange). Event types not showing on the figure means that there are no binding motifs of RBP associated with the
events. (E) Protein-protein interaction networks for the RBPs in the predictive signature and/or with binding motifs enriched in the events differentially
spliced between high and low-risk patients. The color indicates whether the RBP motif was enriched (orange), whether the RBP was part of the high-risk
signature (gray), or both (red). (F) RBPs and splicing factors with associated motifs enriched in events differentially spliced between mature B-cells and
B-cell progenitors. (G) Upper panel shows cancer hallmarks associated with genes with differentially spliced events that co-occur with high risk in at least
one fusion group, colored by its recurrence. In grey, the middle panel indicates the presence of binding motifs for any of the RBPs that interact with
SRRM1. Lower panel highlights in blue the fusion groups in which the differentially spliced events co-occur with high risk.
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and other SFs/RBPs with motifs enriched in events showed
protein-protein interactions with our risk signature mem-
bers (Figure 5D) (Supplementary Figure S23). We identi-
fied an enrichment in motifs for RBM28, an interactor of
5 of the proteins encoded by genes of our high-risk signa-
ture: RRP8, RRP15, UTP20, BOP1, and DHX37 (Figure
5D). Similarly, we found an enrichment of motifs for RB-
FOX1, which interacts with RBM24, also part of the sig-
nature (Figure 5E). Remarkably, there were 9 RBPs with
motif enrichment in the events changing with the risk that
had protein-protein interactions with the splicing factor
SRRM1 (Figure 5E). Moreover, SRRM1 expression cor-
related with the inclusion of events differentially spliced be-
tween high and low-risk patients, for events harboring bind-
ing motifs for RBPs with evidence of protein-protein inter-
action with SRRM1 (Supplementary Figure S24). Such cor-
relation was not always observed for RBPs with enriched
motifs and interacting with SRRM1. Moreover, SRRM1
was not among the splicing factors with the highest num-
ber of potential interactors (Supplementary Figure S25).
These analyses suggest that a high-risk phenotype may be
associated with a change in the expression of multiple SFs
and RBPs that impact RNA processing, with a potentially
prominent role for SRRM1.

We observed before that SRRM1 expression as well as
our risk signature score were higher in B-cells progenitors
compared with mature B-cells. We thus next tested whether
SRRM1 could play a role in the splicing changes across B-
cell differentiation, we calculated the differentially spliced
events and performed motif enrichment between progeni-
tors and mature B-cells. Importantly, differentially spliced
events between progenitors and mature B-cells contained
motifs for the same SRRM1-interacting RBPs and splic-
ing factors that we observed for leukemia patients (Fig-
ure 5F). Additionally, the genes with differentially spliced
events were enriched in the same pathways obtained in the
comparison between high and low risk patients, which were
different from the pathways enriched in genes with splicing
differences between KMT2A-r and ETV6-r (Supplementary
Figure S26) (Data file 10). Interestingly, the expression level
of the KMT2A-AFF1 and ETV6-RUNX1 fusions, the most
abundantly observed in the KMT2A-r and ETV6-r groups,
did not show any correlation with the risk score or with the
SRRM1 expression levels (Supplementary Figure S27).

To further investigate the possible mechanisms linking
SRRM1 with high risk, we calculated the subset of splic-
ing events associated with risk that was also significantly
associated with risk within each fusion group. Most of these
events co-occurred with patients with KMT2A-r, ETV6-
r, TCF3-r, as well as patients with no fusions (Figure
5G, lower panel) (Supplementary Figure S28); and pre-
sented binding motifs for RBPs interacting with SRRM1
(Figure 5G, middle panel). Moreover, the genes harbor-
ing those events were significantly associated with cancer-
related pathways, such as MYC targets, DNA repair and
the p53 pathway (Figure 5g, upper panel). One of these
genes was EIF4H, a translation initiation factor that is
key for translational control. Overexpression of EIF4H has
been associated before with cell proliferation and increased
chemoresistance in lung cancer (57). Our analyses indicated
that one of the EIF4H isoforms (ENST00000265753.12) de-

creased expression in the low-risk group, while a second iso-
form (ENST000000353999.6) had stable expression across
all patients (Supplementary Figure S29).

Taken together, our results provide suggestive evidence
that there is a molecular signature of expression and splicing
changes, possibly driven by SRRM1 that is predictive of bad
prognosis in B-ALL and that is independent of the fusion
background.

DISCUSSION

In this study, we performed a multicohort age-agnostic
analysis of B-ALL cases focused on the differences of risk
outcome independent of the fusion background. We iden-
tified an expression pattern involving MYC targets, trans-
lational regulators, and splicing factors associated with an
increased probability of relapse. This is consistent with pre-
vious results showing that translation is tightly controlled
during normal hematopoiesis (52) and is commonly dereg-
ulated in cancers, including hematological malignancies
(58,59). Overexpression of MYC promotes expression of
the translational machinery, increasing ribosome produc-
tion and activity, leading to increased cell growth (53). Ad-
ditionally, MYC overexpression plays a role in the dysreg-
ulation of the splicing machinery during lymphomagenesis
(54). Our findings suggest that alterations in RNA process-
ing could be involved in driving tumor progression and re-
sistance to current therapies in B-ALL. This is consistent
with recent work showing that aberrant splicing is directly
implicated in the development of therapy resistance in B-
ALL (60–63).

We summarized our findings in a 37-gene signature that
showed prognostic value on B-ALL patients samples. Our
signature classified patients in high and low risk with high
accuracy and independently of the fusion background. The
same signature separated high-risk patients from normal
blood and spleen samples, and B-ALL cell lines and B-cell
progenitors from mature B-cells. These results provide ev-
idence that high-risk B-ALL cases recapitulate a gene ex-
pression pattern independently of the gene fusion back-
ground. In further support of our findings, analysis of an in-
dependent cohort (21) showed that our signature provided
a significant separation of patients according to their re-
lapse (log-rank test P-value 0.00041; Supplementary Figure
S30a).

Our findings suggest that gene fusions operate mainly
as initiating events, and an independent convergent mech-
anism defines high risk in B-ALL. This would agree with
results using current murine and humanized models of
KMT2A-r B-ALL (64) showing that they do not faithfully
recapitulate the disease pathogenesis and suggesting that
KMT2A-r alone is insufficient to sustain leukemia (65,66).
Our derived gene expression signature could complement
current clinical assessment methods of B-ALL patients.
Our signature would be beneficial as a strategy to iden-
tify patients with a high risk of relapse when no fusions
are detected, or when the presented fusion is of unknown
prognosis. Moreover, it is conceivable that a deeper un-
derstanding of these genes may provide further mechanis-
tic insight into the common functional underpinnings un-
derlying B-ALL and thus reveal potential novel therapeu-
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tic avenues. Our high-risk signature included several splic-
ing factors (SFs) and genes encoding for RNA binding
proteins (RBPs), such as SRRM1, IGF2BP2 and MBNL1,
which suggested a pattern of differential RNA processing
linked to high risk. MBNL1 is a protein involved in alter-
native splicing, predominantly regulates intron exclusion,
and has been found consistently overexpressed in KMT2A-
rearranged leukemia. Although inhibition of MBNL1 is
linked with selective leukemic cell death, this effect seems
to be KMT2A-r specific (67). Furthermore, the relative risk
predictive power of MBNL1 in our signature is low, possibly
due to our cohorts having many patients with no KMT2A
fusions, further supporting the specificity of MBNL1 to
KMT2A-r cases.

Among the genes in our risk signature involved in RNA
processing, SRRM1 showed one of the strongest predictive
powers and had the strongest correlation with the risk sig-
nature score. Samples at diagnosis from high-risk patients,
before treatment, presented the highest SRRM1 expres-
sion, similarly to samples obtained at relapse, and higher
than normal blood/spleen samples. Moreover, SRRM1 was
highly expressed in B-ALL cell lines and B-cell progeni-
tors compared to mature B-cells, further linking SRRM1
to a potential proliferative cellular state. Our analysis also
showed that most of the splicing events changing between
high and low-risk patients showed a correlation of their in-
clusion levels with SRRM1 expression and contained bind-
ing motifs for SFs/RBPs that have evidence of protein-
protein interactions with SRRM1. Moreover, these events
occurred in genes involved in cancer pathways. Importantly,
analysis of an independent cohort (21) provided additional
validation of the potential association of SRRM1 and its
interactors with these splicing changes. Indeed, the splicing
events changing between high and low-risk patients showed
the same correlation patterns with SRRM1 and its RBP in-
teractors in this new independent cohort (Supplementary
Figure S30b).

Overexpression of SRRM1 has been associated previ-
ously with poor prognosis in prostate cancer (55) and si-
lencing of SRRM1 was shown to reduce cell prolifera-
tion through a reduction of AKT phosphorylation levels
and an increased expression of PTEN, a well-known tu-
mor suppressor (55). Previous studies have also shown that
SRRM1 overexpression leads to the expression of a CD44
isoform that acts as a RAS-signaling activator and induces
metastatic potential in non-metastatic cells (68). Further-
more, SRRM1 has been identified as part of a chromatin
protein complex that drives B-cell differentiation (69). We
showed that silencing of SRRM1 in B-ALL cell models
leads to a significant decrease in proliferation and invasion
rates and a significant increase in apoptosis capacity. The ef-
fect in response to SRRM1 silencing was different in all cell
lines tested, especially in the decrease in proliferation rate.
This appeared to be associated with the variable SRRM1 ex-
pression found in these cell lines rather than with the basal
proliferation rate of each cell model. This would indicate
that tumors with higher SRRM1 expression would depend
more on SRRM1 for proliferation. In contrast, tumors with
lower SRRM1 expression would rely on other proliferation
mechanisms. Importantly, we analysed data from a recent
pan-cancer protein map atlas based on 946 human cancer

cell lines (70), and found that SRRM1 presents the highest
protein levels in hematological tumors (Supplementary Fig-
ure S31). This provides an additional layer of evidence for
the potential role of SRRM1 in the progression of leukemia
and, in particular, B-ALL.

In conclusion, we have presented a gene expression sig-
nature that predicts poor outcomes in samples at diagnosis
independently of the fusion background. This signature is
associated with SRRM1 overexpression and with splicing
changes potentially partly driven by SRRM1 interactions
with other splicing factors. This leads us to propose that
SRRM1 overexpression may contribute to sustaining tumor
malignancy and lead to poor prognosis in B-ALL. Further-
more, SRRM1 could function as a novel prognostic marker
of high-risk B-ALL, and its depletion could be used in com-
bination with standard therapies to achieve more effective
treatments in high-risk cases.
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18. Ghandi,M., Huang,F.W., Jané-Valbuena,J., Kryukov,G.V, Lo,C.C.,
McDonald,E.R., Barretina,J., Gelfand,E.T., Bielski,C.M., Li,H. et al.
(2019) Next-generation characterization of the Cancer Cell Line
Encyclopedia. Nature, 569, 503–508.

19. Carithers,L.J., Ardlie,K., Barcus,M., Branton,P.A., Britton,A.,
Buia,S.A., Compton,C.C., DeLuca,D.S., Peter-Demchok,J.,
Gelfand,E.T. et al. (2015) a Novel Approach to High-Quality
Postmortem Tissue Procurement: the GTEx Project. Biopreserv.
Biobank., 13, 311–319.

20. Yang,S.Y., Hayer,K.E., Fazelinia,H., Spruce,L.A., Asnani,M.,
Black,K.L., Naqvi,A.S., Pillai,V., Barash,Y.,
Elenitoba-Johnson,K.S.J. et al. (2022) FBXW7� isoform drives
transcriptional activation of the proinflammatory TNF cluster in
human pro-B cells. Blood Adv.,
https://doi.org/10.1182/bloodadvances.2022007910.

21. Jeha,S., Choi,J., Roberts,K.G., Pei,D., Coustan-Smith,E., Inaba,H.,
Rubnitz,J.E., Ribeiro,R.C., Gruber,T.A., Raimondi,S.C. et al. (2021)
Clinical significance of novel subtypes of acute lymphoblastic
leukemia in the context of minimal residual disease-directed therapy.
Blood Cancer Discov., 2, 326–337.

22. Andrews,S. (2010) FastQC: a quality control tool for high throughput
sequence data.
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

23. Haas,B.J., Dobin,A., Li,B., Stransky,N., Pochet,N. and Regev,A.
(2019) Accuracy assessment of fusion transcript detection via
read-mapping and de novo fusion transcript assembly-based
methods. Genome Biol., 20, 213.

24. Hsieh,G., Bierman,R., Szabo,L., Lee,A.G., Freeman,D.E.,
Watson,N., Sweet-Cordero,E.A. and Salzman,J. (2017) Statistical
algorithms improve accuracy of gene fusion detection. Nucleic Acids
Res., 45, e126.

25. Babiceanu,M., Qin,F., Xie,Z., Jia,Y., Lopez,K., Janus,N.,
Facemire,L., Kumar,S., Pang,Y., Qi,Y. et al. (2016) Recurrent
chimeric fusion RNAs in non-cancer tissues and cells. Nucleic Acids
Res., 44, 2859–2872.

26. Gao,Q., Liang,W.-W., Foltz,S.M., Mutharasu,G., Jayasinghe,R.G.,
Cao,S., Liao,W.-W., Reynolds,S.M., Wyczalkowski,M.A., Yao,L.
et al. (2018) Driver fusions and their implications in the development
and treatment of human cancers. Cell Rep., 23, 227–238.

27. Quek,L., Otto,G.W., Garnett,C., Lhermitte,L., Karamitros,D.,
Stoilova,B., Lau,I.-J., Doondeea,J., Usukhbayar,B., Kennedy,A. et al.
(2016) Genetically distinct leukemic stem cells in human CD34- acute
myeloid leukemia are arrested at a hemopoietic precursor-like stage.
J. Exp. Med., 213, 1513–1535.

28. Tate,J.G., Bamford,S., Jubb,H.C., Sondka,Z., Beare,D.M., Bindal,N.,
Boutselakis,H., Cole,C.G., Creatore,C., Dawson,E. et al. (2019)
COSMIC: the Catalogue of Somatic Mutations in Cancer. Nucleic
Acids Res., 47, D941–D947.

29. Mitelman,F., Johansson,B. and Mertens,F. (2020) Mitelman database
of chromosome aberrations and gene fusions in cancer.
https://mitelmandatabase.isb-cgc.org.

30. Constantinescu,S., Szczurek,E., Mohammadi,P., Rahnenführer,J. and
Beerenwinkel,N. (2016) TiMEx: a waiting time model for mutually
exclusive cancer alterations. Bioinformatics, 32, 968–975.

31. Smedley,D., Haider,S., Durinck,S., Pandini,L., Provero,P., Allen,J.,
Arnaiz,O., Awedh,M.H., Baldock,R., Barbiera,G. et al. (2015) the
BioMart community portal: an innovative alternative to large,
centralized data repositories. Nucleic Acids Res., 43, W589–W598.

32. Frankish,A., Diekhans,M., Ferreira,A.-M., Johnson,R., Jungreis,I.,
Loveland,J., Mudge,J.M., Sisu,C., Wright,J., Armstrong,J. et al.
(2019) GENCODE reference annotation for the human and mouse
genomes. Nucleic Acids Res., 47, D766–D773.

33. Patro,R., Duggal,G., Love,M.I., Irizarry,R.A. and Kingsford,C.
(2017) Salmon provides fast and bias-aware quantification of
transcript expression. Nat. Methods, 14, 417–419.

34. Soneson,C., Love,M.I. and Robinson,M.D. (2015) Differential
analyses for RNA-seq: transcript-level estimates improve gene-level
inferences. F1000Research, 4, 1521.

35. Robinson,M.D., McCarthy,D.J. and Smyth,G.K. (2010) edgeR: a
Bioconductor package for differential expression analysis of digital
gene expression data. Bioinformatics, 26, 139–140.

36. Ritchie,M.E., Phipson,B., Wu,D., Hu,Y., Law,C.W., Shi,W. and
Smyth,G.K. (2015) limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47.

37. Subramanian,A., Tamayo,P., Mootha,V.K., Mukherjee,S.,
Ebert,B.L., Gillette,M.A., Paulovich,A., Pomeroy,S.L., Golub,T.R.,
Lander,E.S. et al. (2005) Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression
profiles. Proc. Natl. Acad. Sci. U. S. A., 102, 15545–15550.

38. Sebestyén,E., Singh,B., Miñana,B., Pagès,A., Mateo,F.,
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