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ABSTRACT
Many critical life processes are regulated by input from 24-hour external light/dark 
cycles, such as metabolism, cellular homeostasis, and detoxification. The circadian clock, 
which helps coordinate the response to these diurnal light/dark cycles, remains rhythmic 
across lifespan; however, rhythmic transcript expression is altered during normal aging. 
To better understand how aging impacts diurnal expression, we present an improved 
Fourier-based method for detecting and visualizing rhythmicity that is based on the 
relative power of the 24-hour period compared to other periods (RP24). We apply RP24 
to transcript-level expression profiles from the heads of young (5-day) and old (55-day) 
Drosophila melanogaster, and reveal novel age-dependent rhythmicity changes that 
may be masked at the gene level. We show that core clock transcripts phase advance 
during aging, while most rhythmic transcripts phase delay. Transcripts rhythmic only in 
young flies tend to peak before lights on, while transcripts only rhythmic in old peak after 
lights on. We show that several pathways, including glutathione metabolism, gain or lose 
coordinated rhythmic expression with age, providing insight into possible mechanisms 
of age-onset neurodegeneration. Remarkably, we find that many pathways show very 
robust coordinated rhythms across lifespan, highlighting their putative roles in promoting 
neural health. We investigate statistically enriched transcription factor binding site motifs 
that may be involved in these rhythmicity changes.
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INTRODUCTION

Numerous cellular processes, including energy metabolism, 
homeostasis and detoxification, are coordinated according 
to 24-hour cycles due to input from external light/dark 
cycles and regulation by the internal circadian system. 
Circadian control of many diurnally-expressed genes 
imposes temporal coordination on signaling and enzymatic 
pathways leading to optimal organismal functions. 
Maintenance of circadian control prevents metabolic 
dysregulation [1] and appears critical for healthy neuronal 
aging and longevity; both flies and mice with disrupted 
circadian clocks are prone to accelerating aging and are 
more susceptible to neurodegeneration and oxidative stress 
[2–5]. Most core clock genes are rhythmically expressed in 
young animals and these rhythms may be altered with age 
in a tissue dependent manner; however, molecular clock 
oscillations continue in old organisms, indicating that clocks 
are functional [6–8]. Aging organisms may show diurnal 
gene expression in response to light which is perceived 
as stress, especially in the blue part of the spectrum [9]. 
Blue light exposure induces oxidative stress, which results 
in gene expression changes including the upregulation 
of stress-response genes [10]. Studies of blue-light-
exposure in aging flies reveal the induction of age-specific 
stress response genes, increased neurodegeneration, and 
reduced lifespan [11].

While the clock remains functional across lifespan, 
recent studies have revealed age-dependent changes in the 
expression patterns of clock-controlled genes, which act 
downstream from the clock to regulate cellular processes. 
Analysis of human postmortem brain samples revealed 
substantial differences in age-associated rhythmic gene 
expression, including genes that gained rhythmicity with 
age [12]. Similarly, increased rhythmicity was reported in 
studies comparing age-related changes in gene expression 
in several mouse tissues [6, 7]. We sequenced and analyzed 
around-the-clock RNA from 5-day (young) and 55-day 
(old) white Drosophila melanogaster heads and found that 
aging fly tissues express a new set of genes in a circadian 
or diurnal manner, which we named late life cyclers 
(LLCs) [8]. While these reports focused on surprising age-
induced gene oscillations, pathways that lose or maintain 
rhythmicity with age did not receive adequate attention.

To address these complex age-related changes in 
transcript expression, we developed a systems-level 
characterization of the diurnal transcriptome to identify 
rhythmic pathways that change with age and those 
that remain intact across lifespan. Current methods 
for detecting rhythmically expressed transcripts rely 
on computational techniques that identify expression 
profiles resembling a sinusoid or a similar pattern, such as 

Fourier analysis [13], goodness of fit to a sine wave [12], 
non-parametric statistical tests [14, 15], and harmonic 
regression [16]. Here, we created and utilized a simple 
yet robust signal-to-noise ratio, relative power of the 
24-hour period (RP24), that builds upon previous Fourier-
based approaches [13] to identify transcripts with the 
most robust rhythms and to characterize their rhythmicity 
changes during aging. We identified large-scale changes 
in transcriptomic rhythmicity and phase in aged flies, 
investigated functional enrichment and explored 
candidate regulators of these groups.

RESULTS

DETECTING OSCILLATORY TRANSCRIPTOMIC 
PATTERNS
Virtually all expression profiles can be described as the 
superposition (sum) of sine waves of different frequencies/
periods. The degree to which the predominant sine-wave 
has a period of 24-hours can indicate a biological 24-
hour rhythm. Fourier-based approaches to detect diurnal 
expression patterns decompose the expression profile using 
a discrete Fourier power spectrum, which breaks down 
time series information into Fourier periods. For transcript 
expression at N discretely sampled time points over a 
duration T, the power spectrum P(Tk) quantifies the strength 
of the periods T

k kT =  for k = 1, …, N – 1. In our data, T = 48 
hours, and we sampled every 4 hours for a total of N = 12 
time points. A common approach for identifying rhythmic 
expression profiles from the Fourier power spectrum is to 
examine the F24: the power of the 24-hour Fourier period 
relative to the average value for random permutations of 
the transcript expression time series [13, 17].
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Because biological data are inherently noisy, expression 
profiles with a strong 24-hour component often have 
deviations from a smooth oscillation that result in strong 
components for non-24-hour Fourier periods. Therefore, 
we devised a score that accounts for this by computing the 
relative power of the 24-hour period compared to all other 
periods (RP24). The expression profile for any transcript E(t)
can be decomposed into a 24-hour component and noise 
terms, such that:

( ) ( ) ( )24 noiseE t E t E t= +

We assume the noise term Enoise(t) is only composed of 
non-24-hour periodicity because any 24-hour periodic 
oscillations in the noise would be absorbed into E24(t), the 
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24-hour component. We then consider the ratio of the total 
power of E24(t) and the total power of Enoise(t), which is the 
signal-to-noise ratio:
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In this expression, P(Tk) is the discrete Fourier power 
spectrum E(t) of and 48/kT k=  are the periods of the 
Fourier decomposition. The only non-zero term of the 
power spectrum of E24(t) is the 24-hour component, and 
the Enoise(t) only has non-24-hour components of the 
power spectrum. The RP24 is a score that quantifies the 
24-hour signal in a transcript expression profile relative to 
noise; therefore, changes in the RP24 value for a group of 
transcripts should indicate a change in the fidelity of 24-
hour signals in the associated expression profiles.

We compared the RP24 to the F24 for each transcript in 
young flies (Figure 1A). While these scores are correlated, 
the upward curvature of the scatter plot demonstrates the 
ability of the RP24 to separate highly rhythmic transcripts 
compared to the F24. For example, the two most rhythmic 
expression profiles observed in young flies are the 
completely uncharacterized transcripts CG16798-RA and 
CG44195-RA (Figure 1B). The power spectrum for each 
transcript exists only as a 24-hour component (Figure 1C), 
but while the F24 value for these two transcripts is similar 
to many other transcripts, the RP24 better highlights them 
as highly-rhythmic genes. In contrast, the transcripts pain-
RA and Nup54-RA were selected as examples that are not 
rhythmic according to RP24, but have large F24 values. 
(Figure 1D and 1E). The transcript pain-RA has an F24 of 
3.5, but moderate 16- and 12-hour components result in 
a much lower RP24 of 1.7. The transcript Nup54-RA has an 
F24 greater than 2, while the strong 9.6-hour component 
results in an RP24 of 0.54. The presence of non-24-
hour components in the expression profiles of these two 
transcripts cause a less-precise rhythm that deviates more 
dramatically from a smooth sinusoidal curve, reflected in 
the lower RP24 score compared to the F24. RP24 is better 
for highlighting very strong rhythms; however, p-values 
computed from randomized expression profiles for each 
transcript are the same for both RP24 and F24.

WIDESPREAD TRANSCRIPT-SPECIFIC 
ALTERATIONS OF RHYTHMIC EXPRESSION 
PATTERNS ASSOCIATED WITH AGING
Using the RP24, we evaluated changes in rhythmicity for 
each transcript in young and old flies. We compared the 
distribution of RP24 values over all transcripts between 
young and old (Figure 2A) and found a statistically 
significant (p-value = 3.4e–9) increase in net rhythmicity in 
old flies using a Kolmogorov-Smirnov test [18].

The difference in the RP24 distributions between young 
and old fly transcriptomes is explained by numerous individual 
transcripts that gain or lose rhythmicity with age. To identify 
statistical changes in rhythmicity at the transcript level, we 
computed a p-value for each transcript by comparing its 
RP24 value to the distribution of RP24 values generated by 
randomly shuffling the time points of its expression profile. We 
performed a Benjamini-Hochberg multiple test correction on 
the resulting p-values to define q-values for each transcript.

To observe age-associated trends, we divided the 
rhythmicity continuum into discrete rhythmicity states 
defined by q-value range. Transcripts were considered 
rhythmic if they had a statistically significant RP24 value 
(q-value ≤ 0.05) and arrhythmic if they had a q-value ≥ 
0.075. Indeterminant transcripts (0.05 < q-value < 0.075) 
were filtered out of our analysis. We also filtered transcripts 
with periodic spikes of expression because these could not 
be validated experimentally (see Methods). We defined 
“detectable” rhythmic transcripts as those having at 
least 1.5-fold change between maximum and minimum 
expression (max/min fold change) and a median expression 
level of at least 1 FPKM [8, 19, 20]. Using these criteria, we 
identified 1560 detectable rhythmic transcripts in young 
flies and 1798 detectable rhythmic transcripts in old flies. 
The overlap between young and old (577 transcripts) are 
transcripts rhythmic in both young and old flies (Figure 2B).

We used these parameters to define broad groups of 
age-dependent transcript expression changes, similar to 
our previous work [8]. We identified 742 early life cyclers 
(ELCs), which are transcripts that show statistically significant 
rhythmicity in young flies but are arrhythmic in old flies. We 
observed 1024 late life cyclers (LLCs), which are rhythmic 
in old flies but arrhythmic in young flies. To account for 
borderline cases of transcripts that are rhythmic in both 
ages, we require robust life cyclers (RLCs) to be detectable 
in one age, but allow a lower max/min fold change of 1.4 
in the other, which results in 628 RLCs. Among the RLCs we 
found the core clock transcripts, Clk-RA, tim-RB, tim-RM, tim-
RO, per-RA, Pdp1-RJ, Pdp1-RD, Pdp1-RP, vri-RA and vri-RE, 
indicating that the circadian clock remains rhythmic with age. 
Unexpectedly, we also detected rhythmicity in the cycle gene 
(cyc-RA), which has been considered the only clock gene with 
no discernable cycling [21, 22]. In addition to clock transcripts, 
RLCs contained transcripts derived from 105 genes that were 
previously identified as clock-controlled in heads of young flies 
[17], supporting the notion that the circadian clock remains 
functional with age. Complete lists of all transcripts in each 
group are provided in Supporting Table S1. Figure 2C compares 
RP24 in young (x-axis) and old (y-axis) flies. Each transcript 
is represented by a dot with a color corresponding to the 
rhythmicity group, and with “not rhythmic” (NR) indicating 
transcripts not in the ELC, RLC or LLC groups.
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Figure 1 Comparison of RP24 score to F24 score. A. Scatterplot comparing the RP24 score to F24, defined as the fold change of the power 
of the 24-hour component of the expression profile over random permutations. B. The expression profiles of the two most rhythmic 
transcripts, CG16798-RA and CG44195-RA in our young (5-day) flies. C. The Fourier power spectrum of the two most rhythmic transcripts 
in young flies. D. The expression profiles in young flies of the two least rhythmic transcripts based on the RP24 q-value, pain-RA and 
Nup54-RA, that have a F24 score greater than 3. E. The Fourier power spectrum of pain-RA and Nup54-RA in young flies.
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Figure 2 Rhythmicity changes with age. A. The total amount of rhythmicity, as defined by the distribution of RP24 over all transcripts, changes 
slightly toward greater rhythmicity after aging. B. Euler diagram shows that the specific transcripts with statistically significant RP24 values is 
substantially different between young and old flies. C. A scatterplot where each transcript is represented by a dot. The x-axis value is the log-
transformed RP24 value in young flies, and the y-axis position is the log-transformed RP24 value in old flies. Red dots correspond to transcripts that 
are significantly rhythmic (FDR ≤ 0.05) in young flies and not in old, blue dots correspond to transcripts that are significantly rhythmic in old flies 
and not young, and purple dots correspond to transcripts that are rhythmic in both young and old flies. D. Histogram shows the RP24 distribution 
for ELC compared to RLC transcripts in young flies. E. Histogram shows the RP24 distribution of RLC compared to LLC transcripts in old flies.
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We next used RP24 distributions to compare the level of 
rhythmicity for the ELCs, RLCs and LLCs. We found that in 
young flies, the RLCs have on average greater rhythmicity 
than ELCs (Figure 2D). In old flies, RLCs have on average 
greater rhythmicity than LLCs (Figure 2E). In both cases, the 
RLC RP24 histograms have a longer tail, and the difference 
of the two distributions is statistically significant by a 
Kolmogorov-Smirnov-test.

In addition to the RP24 score to detect rhythmic 
transcripts with a 24-hour period, we defined a similar score 
to identify transcripts oscillating with other periods T. We 
found that ELCs in old had an increase in 12-hour periods 
(Supporting Figure S1, Supporting Table S2). Similarly, we 
found an increase in 9.6-hour periods for LLCs in young flies 
(Supporting Figure S1, Supporting Table S2).

COMPARISON WITH DD DATA IN YOUNG FLIES
To gain further insight into which transcripts may be light-
activated or clock-controlled, we used the RP24 method 
to analyze an around-the-clock RNA-seq dataset of young 
wildtype and circadian mutant (per0) flies entrained to an 
LD cycle and collected after 24 hours in constant darkness 
(DD) [23]. We considered transcripts with a q-value ≤ 0.15 to 
be rhythmic, based on the threshold used by Hughes et al., 
and on the q-values of core clock transcripts in this dataset 
(Clk-RA, q-value = 0.1475; tim-RO, q-value = 0.1475).

We compared RP24 scores for wildtype and per0 flies in 
Supporting Figure S2A. We found that 1331 transcripts were 
rhythmic in wildtype but not rhythmic in per0 flies. Because 
light-activated transcripts are likely no longer rhythmic on 
days two and three of DD conditions, we expect that these 
transcripts are regulated by the circadian clock.

We next compared this set of putative clock-controlled 
transcripts with our sets of ELCs and RLCs (Supporting Figure 
S2B). We note that there are several differences between our 
data and the data from Hughes et al., including the genotype 
of the flies and the statistical threshold used to determine 
rhythmicity. Despite these differences, we found that 79 ELC 
transcripts and 80 RLC transcripts were identified as rhythmic 
in wildtype flies collected in DD in the Hughes et al. dataset. 
We performed functional enrichment analysis using DAVID 
functional annotation webtool [24] on these overlapping 
sets (Supporting Figure S2B). We found that putative 
circadian ELCs were enriched for transcripts involved in 
insulin signaling, while putative circadian RLCs were enriched 
for transcripts involved in circadian rhythms, glycolysis, and 
encoded proteins containing CHK kinase-like domains.

PHASE CHANGES AFTER AGING
Transcript expression profiles with the most significant RP24 
values will have well-defined, precise rhythms for which phase 
can be reliably calculated. We generated simulated transcript 

expression profiles to test accuracy of phase calculations, and 
found that the phase calculations are accurate, and most 
accurate for larger RP24 values (Supporting Figure S3A–B). 
We calculated the phase for each transcript for both young 
and old expression profiles (see Methods) and observed 
age-related phase changes in rhythmic expression. We used 
circular histograms plotted over a 24-hour clock to visualize 
the phase distributions for young and old expression profiles 
for the RLCs (Figure 3A). The general trend is toward a phase 
delay after aging, with peak expression time shifting from 
before lights-on (ZT0) to after lights-on. We also compared 
the phases of ELCs in young flies to the phases of LLCs in old 
flies (Figure 3B). We observed a substantial difference in the 
two distributions that was consistent with the trend for the 
RLCs: a phase shift from before to after lights-on. The median 
phase for the ELCs in young was ZT23.31 (0.69 hours before 
lights on), while the median phase for the LLCs in old was 
ZT2.4 (2.4 hours after lights-on).

We created “dot-and-arrow” scatterplots to visualize 
age-associated changes in rhythmicity that shows changes 
in phase as well as RP24. The state of rhythmicity of each 
transcript is represented by the angle with the positive y-axis 
(ZT0) in the same 24-hour clock as 3A-B, and the distance 
from the origin describes the RP24. Figure 3C shows the 
phase-advanced diurnal expression of each RLC transcript 
in young represented by a dot; the arrow points to the state 
of rhythmicity of each transcript in old flies. Figure 3D shows 
phase-delayed diurnal expression of RLC transcripts. The 
comparison of Figure 3C and 3D shows that there are more 
age-dependent phase delays for individual transcripts, as 
seen by the denser cluster in 3D. Notably, and in contrast to 
the global trends, the core clock transcripts predominantly 
exhibit phase advances, with the phase shifting to earlier 
in the 24-hour cycle (Figure 3C). These differences between 
subsets of rhythmic transcripts prompted us to further 
explore alterations in specific subsets during aging.

PATHWAY ANALYSIS OF TRANSCRIPT GROUPS
We assessed whether transcripts in each rhythmicity 
category were enriched for specific biological pathways 
using DAVID Functional Annotation Tool [25, 26]. The full 
list of pathway analysis results is available in Supporting 
Table S3. Figure 4A shows the enriched pathways identified 
separately for ELCs, RLCs and LLCs, with color indicating the 
enrichment score, and the size of each dot corresponding 
to the number of transcripts in that cluster. The most 
significant RLC pathways included phototransduction 
(rhabdomere), mitochondrial translation, locomotor 
rhythm, choline kinase, and glycolysis. The ELCs showed 
enrichment of transcripts involved in glutathione 
metabolism, protein kinase activity, and mitochondrion/
transit peptide. The LLC group was enriched for transcripts 
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encoding proteins containing the Pleckstrin homology-like 
domain (PHD), ATP-binding, and transmembrane domains.

We further investigated several pathways in each 
group using our visualization strategies. The ELC pathway 
that includes glutathione metabolism transcripts shows 
a clear loss of coordinated expression (Figure 4B). In 
young, the glutathione-metabolism-associated transcripts 
can be grouped into two primary phases, but in old the 
coordinated phases are unrecognizable. The dot-and-
arrow scatterplots show that glutathione S-transferases 
start with a phase between ZT2 and ZT6 in young, but 
collectively exhibit a phase delay and loss of rhythmicity 
(Figure 4B). The RLC pathway that includes mitochondrial 
translation transcripts shows consistent phases between 
ZT18 and ZT22 in each age, and a very small phase delay 

with aging (Figure 4C). Lastly, the group of LLC transcripts 
encoding several enzymes with dehydrogenase activity 
gained rhythmicity with phases predominately from ZT2 
to ZT6 (Figure 4D). This group, which was also annotated 
with the KEGG pathway term “Biosynthesis of amino 
acids”, included Alcohol dehydrogenase (Adh-RI), Aldehyde 
dehydrogenase (Aldh-RI), Glutamate dehydrogenase (Gdh-
RB), Succinate dehydrogenase subunit A (SdhA-RA), and 
Lactate dehydrogenase (Ldh-RA).

Another group of strikingly rhythmic transcripts is 
involved in vision, phototransduction, and rhabdomere. We 
observed that while some transcripts that encode vision-
related proteins lose rhythmicity with age (Figure 5A), 
many others continue to show strong rhythmicity across 
lifespan (Figure 5C). In addition to this loss of coordination 

Figure 3 Phase changes with age. A. Circular histogram depicts the phase of RLC transcripts in young compared to the distribution of 
the phase of the same transcripts in old. The light-dark cycles is represented on the histogram as a 24-hour clock, with lights-on (ZT0) 
at the top and lights-off (ZT12) at the bottom. Phases are binned into increments of 30 minutes. B. Circular histogram similar to panel C 
compares the phase distribution of ELC transcripts in young to LLC transcripts in old. C. Dot-and-arrow scatterplot shows phase advance 
for RLC transcripts. Distance from the origin is to the dot is RP24 in young, scaled between 0 and 1 with a logistic function, and the phase is 
shown as the angle from the positive y-axis (ZT0) to the phase of that gene on the same 24-hour clock as panels C and D. Each transcript 
is represented moving from a phase/rhythmicity in young (scatter point) to a phase/rhythmicity in old (tip of arrow). Transcripts belonging 
to the core clock mechanism are shown in orange and labeled. D. Dot-and-arrow scatterplot shows phase delay for RLC transcripts.
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in rhythmic expression, this group of rhythmic transcripts 
shows varied phase changes with age. Dot-and-arrow 
scatterplots in Figure 5B and 5D show that approximately 
equal numbers of transcripts in these groups display phase 
advance or phase delay during aging. In some cases, 
different splice variants of the same vision-associated gene 
can fall into different rhythmicity groups. For example, the 
gene transient receptor potential like (trpl), which encodes 
a plasma membrane cation channel that is enriched 
in photoreceptors, has an isoform trpl-RA that shows 
rhythmicity in both ages, while trpl-RB is only rhythmic in 
young (Figure 5B, phase delay). Similarly, the gene neither 
inactivation nor afterpotential C (ninaC), encodes a protein 

with serine/threonine kinase and myosine activity that is 
required for photoreceptor function. Transcripts for ninaC 
show divergent age-related rhythmicity, with ninaC-RA 
rhythmic in only young and ninaC-RD rhythmic in both 
young and old. The protein encoded by ninaC also forms a 
complex with rtp, which shows a similar phase delay in old 
while maintaining rhythmicity. This cluster also included 
sensory transduction transcripts that show different 
patterns of age-dependent rhythmicity. For example, 
odorant-binding protein 99a (Obp99a) has an LLC transcript, 
Obp99a-RA, while the transcript for the homologous gene 
Obp99b, Obp99b-RA is an ELC. Similarly, Rh5-RA has LLC 
expression, while Rh3-RA and Rh4-RA are ELCs.

Figure 4 Pathway analysis of rhythmic transcript groups. A. Scatterplot representing differentially rhythmic pathways. The x- and y-axes 
represent the average rhythmicity in young and old, respectively, for DAVID clusters computed from ELC, RLC, and LLC transcripts. The 
color map represents the DAVID enrichment score, and the size of each dot is proportional to the number of transcripts in that cluster. 
B. The ELC transcripts with thioredoxin-like fold and glutathione metabolism related function show increased expression on average, but 
with reduced rhythmicity in young compared to old flies. Phase/rhythmicity dot-and-arrow scatterplots (as in Figure 3E–F) are shown for 
transcripts from this pathway exhibiting phase advance and phase delay. Color map defines a unique color for each transcript based on 
phase ordering. C. The RLC transcripts with mitochondrial translation function show consistent rhythmicity in young and old with little 
change in phase. D. Rhythmicity and phase changes of LLC transcripts with function related to amino acid synthesis.
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Figure 5 Vision and rhabdomere related transcripts show diverse changes in rhythmicity. A. The expression profiles of ELC transcripts 
related to vision comparing the same transcripts in young and old flies. The color of each curve corresponds to phase ordering in young. B. 
Dot-and-arrow scatterplots show the change in phase and RP24. As with Figure 3E–F, the phase is shown as the angle from the positive 
y-axis (ZT0) on a 24-hour clock. The color corresponds to the same phase ordering for the same transcripts as panel A. C. The expression 
profiles for RLC transcripts related to vision, comparing young and old. D. Dot-and-arrow scatterplots show the change in phase and RP24, 
similarly as panel B, for the same transcripts in panel C. The color map corresponds to phase ordering in young for both panel C and D.
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PATHWAY ANALYSIS OF DIFFERENTIALLY 
EXPRESSED TRANSCRIPT GROUPS
We performed differential expression analysis to identify 
transcripts which are significantly up- or down-regulated 
with age independent of time of day (q-value ≤ 0.05). Of the 
3421 differentially expressed transcripts we identified, 647 
(18.9 %) belonged to one of the rhythmicity groups defined 
above. Among the transcripts significantly upregulated in 
old flies compared to young, we found 101 ELCs, 86 RLCs, 
and 134 LLCs. We found 88 ELCs, 119 RLCs and 119 LLCs 
to be significantly downregulated with age. The full lists of 
up- and down-regulated transcripts for each rhythmicity 
category are listed in Supporting Table S4.

To understand how up- and down-regulated rhythmic 
transcripts are involved in aging, we performed pathway 
analysis on each group of differentially expressed transcripts 
belonging to ELC, RLC and LLC groups. These results are 
shown in Figure 6, where the log fold change in transcript 
expression and the RP24 are averaged over the transcripts 

in each cluster. A more positive log fold change corresponds 
to transcripts upregulated in old flies, while a negative log 
fold change indicates downregulation in old flies.

The only significant pathway in the upregulated 
ELC transcripts was glutathione metabolism, including 
eight transcripts encoding glutathione-S-transferases; 
however, there are other noteworthy upregulated ELCs. 
Functional clustering identified twelve ELC transcripts 
involved in cellular response to DNA damage, including 
Pepck-RA, Trxr-1-RB and Trx-2-RA. Consistent with this 
result, we found among upregulated ELCs three isoforms 
of Xrp1 (Xrp1-RG, Xrp1-RC and Xrp1-RD), which is critical 
for DNA breakage repair [27], and has been shown to 
be upregulated in response to blue light [10]. The top 
pathways for upregulated RLCs were flavonoid biosynthetic 
process and oxidoreductase, the latter of which included 
the transcript Eip71CD-RG, which extends lifespan when 
overexpressed [28] (Supporting Table S5). We found five 
enriched pathways for upregulated LLC transcripts, with the 

Figure 6 Results of pathway analysis of differentially expressed rhythmic transcript groups. The y-axis of each point corresponds to the 
log fold change of average expression in old over young for all transcripts in each cluster; the x-axis shows the RP24 averaged over all 
transcripts in each cluster. Hue denotes DAVID enrichment score, and the size of each point corresponds to the number of transcripts in 
the cluster. Labeled clusters have at least 5 transcripts, an absolute value log fold change ≥ 0.75, and an enrichment score ≥ 1.3.

1 2

2

1

0

1

2

C
lu

st
er

 A
ve

ra
ge

 L
og

 F
ol

d 
C
ha

ng
e

glutathione
metabolic process

alternative splicing

membrane

circadian
rhythm

1 2
Cluster Average RP24

leucine-rich
repeat

ion
transport

transmembrane
helix vision

myoblast
fusion

1 2

calcium transport

transmembrane
helix

splice variant

synaptic vesicle
exocytosis

membrane

imaginal
disc-derived
wing vein
specification

removed by a
dipeptidylpeptidase

0

1

2

3

4

5

ELCs RLCs LLCs

D
A
V
ID

 Enrichm
ent S

core



11Sebastian and Fey et al. Journal of Circadian Rhythms DOI: 10.5334/jcr.218

most enriched containing transcripts encoding membrane 
proteins. Upregulated LLCs included Ldh-RA and Hsp26-RA, 
both of which are involved in lifespan determination [29, 
30].

Downregulated ELC transcripts were enriched in 
transcripts involved in alternative splicing and transcripts 
encoding membrane proteins. Also enriched were 
transcripts playing roles in metabolism, including Ilp2-
RA, the only isoform of the gene encoding the Drosophila 
Insulin-like peptide 2, knock-out of which has been 
shown to extend lifespan [31]. Nine significantly enriched 
pathways for downregulated RLCs included transcripts 
encoding proteins containing a leucine-rich repeat, and 
transcripts involved in vision, including Cpn-RB, which 
plays a role in protecting photoreceptor cells from light-
induced degeneration [32]. Downregulated LLCs were 
enriched for splice variant, synaptic vesicle exocytosis, and 
calcium transport pathways, and transcripts containing 
a transmembrane helix. The full list of pathway analysis 
results is available in Supporting Table S5.

While most previous studies of rhythmicity were 
done at the gene level, our approach shows the utility 
of analyzing at the transcript level. Indeed, we detected 
multiple instances where specific transcripts for the same 
gene showed different age-dependent rhythmicity, which 
could be masked at the gene-level. For example, trpl, an 
eye-enriched gene involved in photoreceptor response 
to light, is an RLC at the gene level; however, it has three 
significantly downregulated isoforms each belonging to a 
different rhythmicity group (Supporting Figure S4). Another 
example is the gene PyK, encoding pyruvate kinase and 
involved in glycolysis and glucose metabolism, which has 
two RLC isoforms, one of which is downregulated with 
age (PyK-RA) and one of which is upregulated with age 
(Pyk-RB) (Supporting Figure S5). We found an even more 
extreme example in Gpdh1, the gene coding for glyercol-
3-phosphate dehydrogenase that is involved in triglyceride 
metabolism. Gpdh1-RC is a downregulated LLC and Gpdh1-
RF is a downregulated ELC; however, at the gene level this 
expression profile is arrhythmic (Supporting Figure S6). 
These findings highlight the importance of performing 
these analyses at the transcript level.

MOTIF ENRICHMENT ANALYSIS
To identify putative regulators of the pathway-level 
rhythmicity changes that we observe with age for all ELCs, 
RLCs and LLCs, we performed a motif enrichment analysis. 
Briefly, we defined the promoter region of each transcript 
as the 6000 nt upstream of the annotated transcription 
start site, plus the first intron. Next, we scanned promoter 
regions of all transcripts in the transcriptome for known 
motif instances using the motif scanning tool Find Individual 

Motif Occurrences (FIMO) [33], and used a hypergeometric 
test to determine the level of enrichment of each instance 
among transcripts in DAVID pathway clusters (Figure 7A, 
workflow diagram). The results of the motif analysis are 
shown in the heatmap and bar plot in Figure 7A. Plotted 
clusters are significant (q-value ≤ 0.05) after performing 
a Benjamini-Hochberg multiple test correction, contain at 
least ten transcripts, and have a DAVID pathway enrichment 
score of 1.3 or higher (the full table of motif analysis results 
is available in Supporting Table S9).

Top results include the enrichment of RLC transcripts 
belonging to the pathway “propeptide: removed in mature 
form”, for motif instances of the transcription factor AEF-
1. These transcripts all share a non-standard processing 
pipeline in which a small piece of the protein (the 
propeptide) is removed during maturation or activation 
(https://www.uniprot.org/help/propep). RLC transcripts 
involved in locomotor rhythm were enriched for motif 
instances for two heterochromatin silencers, l(3)neo38 
and CROL [34]. We also found that RLC transcripts involved 
in locomotor rhythm were significantly enriched for motif 
instances for the CLK/Met heterodimer (19 out of 35 
promoters, p-value = 0.0037, q-value = 0.044). Met and 
CYC are homologs, and the motif instances for CLK/Met and 
CLK/CYC both appear to be a canonical E-box motifs [35]; 
however, these transcripts are not enriched for CLK/CYC 
motifs (13 out of 35 promoters, p-value = 0.096, q-value = 
0.26). We hypothesize that differences in the flanking bases 
between the two motifs may result in the different levels 
of statistical significance, and both heterodimers may be  
biologically active at these promoters (Supporting Figure S7). 
Ten of these locomotor rhythm transcripts belong to genes 
which have previously been shown to be bound by CLK 
[36], including the core clock genes per, tim, vri, and Pdp1. 
We note that clockwork orange (cwo), a basic helix-loop-
helix transcription factor involved in regulating rhythmic 
gene expression within the transcriptional feedback loop 
that keeps circadian time, was also identified as regulating 
membrane associated proteins.

Transcripts from multiple pathways were enriched 
in motif instances for Irbp18 heterodimers. Irbp18 is a 
transcription factor containing a basic leucine zipper domain 
(BZIP) which is involved in repairing double-stranded DNA 
breaks induced by transposase enzymes at P-element sites 
[27] that has been shown to respond to blue light [10]. We 
found enrichment of heterodimers formed by Irbp18 and 
two other BZIP transcription factors, CRC and Xrp1. Five of 
the seven Xrp1 isoforms are significantly upregulated in 
our dataset, including the two most highly expressed in 
old flies (Xrp1-RD and Xrp1-RE). One of the Irbp18 isoforms 
(Irbp18-RA) also shows a significant increase in expression 
level with age (Supporting Figure S8).

https://www.uniprot.org/help/propep
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LLC transcripts involved in dehydrogenase activity and 
the biosynthesis of amino acids were enriched for CRC/
Irbp18 heterodimer motif instances. Other LLCs, encoding 
proteins containing Plekstrin homology-like domains and 
transmembrane domains, were enriched for Xrp1/Irbp18 
motifs. RLC transcripts involved in lipid metabolism were 
also enriched for Xrp1/Irbp18 motifs. In addition, although 
not significant after multiple test correction (p-value = 
0.0057, q-value = 0.14), ELC transcripts in the glutathione 
metabolism pathway also contained motif instances for 
the Xrp1/Irbp18 heterodimer.

To explore the effect of putative regulators on expression 
level and rhythmicity, we tested all significant clusters for 
differential expression and differential rhythmicity between 
transcripts with and without significant motif instances 
using a Welch’s T-test. We found a significant upregulation 
of rhythmicity in LLC transcripts involved in calcium ion 
transmembrane transport with the motif instance for the 
transcription factor So (sine oculis) compared to transcripts 
in this pathway without the motif instance (Figure 7B). 
Expression data from our experiment shows that the gene 
encoding this transcription factor, so, is also rhythmic in old 
flies (Figure 7C). We visualized the location of the So motif in 
the 9 out of 16 (56.25%) transcript promoters in this LLC cluster 
with the motif instance, and note that several transcripts 
derive from the same gene product, although they have 
different promoters (SERCA-RE and SERCA-RI, Ca-alpha1D-RD 
and Ca-alpha1D-RH) (Figure 7D). We also found a significant 
reduction of rhythmicity (p-value = 0.042) in RLC transcripts 
involved in locomotor rhythm with a motif instance for the 
transcription factor Ttk (tramtrack) compared to transcripts 
in this pathway lacking the motif instance (Supporting Figure 
S9A). This pathway includes twelve transcripts derived from 
all the core clock genes; seven of these contain an instance 
of the Ttk motif (Supporting Figure S9B). Ttk has been linked 
to the circadian clock as a putative regulator of pdf, the main 
circadian neuropeptide in Drosophila [37].

We also performed (as above) motif enrichment 
analysis on LLC transcripts with phases between ZT2 and 
ZT6 (full list in Supporting Table S6). The only statistically 
significant result was for the BZIP heterodimer Xrp1/
Irbp18 (Supporting Figure S10). Pathway analysis revealed 
that LLC transcripts enriched for this motif are involved in 
alternative splicing, imaginal disc-derived processes (leg 
morphogenesis and wing vein specification), peripheral 
nervous system development, and the cell cortex, as well 
as transcripts encoding proteins containing membrane 
and IPT (Immunoglobulin-like, Plexins, and Transcription 
factors) domains. The full list transcripts enriched for Xrp1/
Irbp18 motif instances is available in Supporting Table S7, 
and the full list of pathway analysis results is available in 
Supporting Table S8.

DISCUSSION

We performed a systems-level study of age-related 
diurnal expression in the Drosophila transcriptome that 
revealed important changes in rhythmicity in old flies 
as well as functionally-related transcripts that remain 
robustly rhythmic after aging. We characterized diurnally 
regulated transcripts, which may be either circadian or 
light-activated, and used a previously published dataset 
[23] to identify putative circadian-regulated transcripts 
rhythmic in young flies. We developed the RP24 as a useful 
and interpretable score that better highlights highly-
precise rhythms and changes in rhythmicity than previous 
Fourier-based methods. We show the value in focusing on 
transcripts as opposed to genes, and note an example that 
is rhythmic at the transcript level, but not at the gene level.

An important message from our study is that a 
substantial portion of transcripts rhythmic in young 
maintain a cycling pattern in old (RLCs), consistent with 
the persistence of a functional circadian clock. A portion 
of these transcripts are bound by CLK in young flies [36], 
including core clock transcripts and norpA, which is required 
for phototransduction [38]. We found RLCs to be enriched 
for light- and circadian-associated transcripts, as well as 
for transcripts encoding mitochondrial ribosomal proteins. 
Previous studies have shown that mitochondrial proteins 
accumulate rhythmically and at the same time, including 
several metabolic genes, but comparisons of RNA and 
protein expression did not show correlation [39]. The  
strong in-phase rhythmicity of transcripts involved in  
mitochondrial translation throughout lifespan suggests a 
mechanism for coordination of these mitochondrial proteins. 
Although many transcripts related to mitochondrial function 
remain rhythmic after aging, others lose rhythmicity in 
old flies (Figure 4). We show that a similar pattern occurs 
with transcripts involved in phototransduction (Figure 5). 
The observed loss of pathway coordination after aging 
suggests that subsets of transcripts within a pathway 
(e.g. mitochondrial function) have different or additional 
regulatory inputs that determine whether they remain 
rhythmic after aging. Changes in expression of regulatory 
factors after aging may contribute to transcript expression 
changes that result in pathway dysregulation and 
consequently some observed detrimental age-related loss 
of rhythmicity. We show that the core clock transcripts 
remain rhythmic, but have reduced RP24 scores in old 
flies when binding site motifs for the transcription factor 
encoded by the age-upregulated ttk gene are present in 
their promoters. This is perhaps one example of the age-
onset “rewiring” of the diurnal regulatory network.

Our study detected age-related changes in phase of 
oscillatory genes. While transcripts belonging to the core  
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Figure 7 Transcription factor binding site motif analysis of promoter regions. A. Heatmap shows enrichment of transcription factor 
binding site motifs in promoters of transcripts belonging to DAVID clusters. DAVID clusters are on the y-axis, and transcription factors 
corresponding to binding site motifs are on the x-axis. DAVID clusters shown have at least 10 transcripts, and transcription factors pass 
an expression threshold of 5 FPKM in young or old flies based on our experimental data. Hue represents q-value on a logarithmic scale. 
Asterisks mark results with q-value ≤ 0.05. Bar plot shares an x-axis with the heatmap, and shows young (red) and old (blue) expression 
of each transcription factor. Dimer partners are separated with a forward slash (/); the expression of the dimer partner with the lowest 
expression (bolded) is represented in the bar plot. Duplicate transcription factor symbols have different motif position weight matrices, and 
are distinguished by inclusion of sequencing platform information. Diagram of workflow is show in the upper left-hand corner of panel A. B. 
Boxplot compares RP24 (in old flies) for LLC transcripts involved in calcium ion transmembrane transport, with and without significant So 
transcription factor binding site motifs. C. Gene expression profile of so in young (red) and old (blue) flies. Lights-on is Zeitgeber Time (ZT) 0, 
and lights-off is ZT12. D. Binding site motif locations for So in promoters of LLC transcripts involved in calcium ion transmembrane transport. 
Motif locations are denoted by a downward-pointing (forward strand) or upward-pointing (reverse strand) green triangle. Promoters are 
ordered by length of first intron (grey bar following rightward pointing arrow) within subgroups containing or lacking motif instances for So.
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circadian clock machinery remain rhythmic in old flies, 
they undergo phase advances with age. Studies in 
human subjects have also observed phase advances 
in older individuals, while the circadian period remains 
unchanged [40]. In contrast to clock genes, we show 
a global transcriptomic trend toward a phase delay. 
Transcripts rhythmic in young flies (ELCs and RLCs in young) 
predominantly peak before lights on, while transcripts 
rhythmic in old flies (LLCs and RLCs in old) tend to peak  
after lights on (ZT2 to ZT6 for LLCs). The predominant 
phase of LLCs being 2–6 hours after lights on suggests the 
possibility of a light-activated mechanism.

We show that the promoter regions of LLCs with a 
phase from ZT2 to ZT6 are significantly enriched for motif 
instances of the transcription factor heterodimer Xrp1/
Irbp18. Xrp1 and Irbp18 are BZIP transcription factors 
that heterodimerize to repair DNA double-stranded breaks 
caused by transposases near P-element sites [27], and 
transcripts for both genes are upregulated in old flies in our 
dataset. Both of these genes have previously been shown 
to be upregulated in response to blue light [10], which 
induces expression of stress-response genes [9–11]. We 
suggest a program by which flies respond to accumulated 
light-induced stress with increased expression of DNA 
damage repair regulators Xrp1 and Irbp18, which regulate 
the expression of LLCs peaking from ZT2 to ZT6. Irbp18 is 
orthologous to CCAAT-enhancer binding protein gamma 
[27], one of the human CCAAT-Enhancer Binding Proteins (C/
EBP). Xrp1 also has high sequence similarity to mammalian 
C/EBP transcription factors [41], making the study of the 
putative regulation of light-activated transcripts by this 
heterodimer an important topic for future study.

Our results showing gain of transcript rhythmicity with 
aging are consistent with other studies [7, 8, 12]. We 
analyzed promoters of LLC transcripts grouped by function 
for transcription factor binding site motifs and identified 
sine oculis as a putative regulator of the 16 transcripts 
annotated as involved in calcium ion transmembrane 
transport. The gene encoding this transcription factor (so) is 
rhythmic in old flies in our dataset, consistent with a recent 
single-cell transcriptomics study which found so to be 
rhythmic in a subset of Drosophila circadian clock neurons 
[42]. This suggests that sine oculis may be a regulator of 
age-dependent rhythmicity in these LLC transcripts.

We found a cluster of 32 LLC transcripts with annotations 
related to metabolism, including the KEGG pathway 
“Biosynthesis of amino acids” and several genes encoding 
dehydrogenase enzymes (Gdh, Ldh, Aldh, Adh, SdhA). It is 
tempting to speculate that increased rhythmic expression 
is protective. However, functional analysis of one of the 
most robustly rhythmic LLCs, lactate dehydrogenase 
(Ldh, formerly ImpL3), determined that its high gene 

expression accelerates the aging process, while reduced 
expression delays aging [29]. Ldh expression increases in 
old flies during the light phase but remains low in constant 
darkness, which also extends fly lifespan [11]. Taken 
together, these results show that conclusions regarding 
protective or detrimental effects of elevated expression of 
a given gene require experimental verification.

The use of whole fly heads is a limitation of our study, 
and heterogeneous loss of tissue after aging may result 
in varying gene expression. The diverse tissue and cell 
types that comprise whole fly heads, including eye, brain 
and muscle, limit conclusions about tissue- or cell-specific 
expression patterns. Co-expression of transcripts and 
putative regulators would need to be verified before follow-
up experiments are performed to validate regulators 
of age-associated rhythmicity changes. An additional 
limitation is that our method would not work for expression 
data collected in constant darkness (DD) because the 
decaying oscillations would manifest as changes in peak 
height due to long-period sine waves, resulting in a lower 
RP24. Therefore, we limited our study to LD samples. We 
are unable to distinguish light-activated from circadian-
regulated transcripts using wild-type LD data alone, and 
therefore, integrated a previously-published clock-mutant 
dataset to identify putative circadian-regulated transcripts. 
Future analyses may pursue similar comparisons to identify 
light-activated and other clock-controlled transcripts in our 
dataset. We recommend that RP24 be calculated from data 
collected at 4-hour intervals or lower to have sufficient 
data for computing p-values from shuffling.

We detected a prominent shift in glutathione-related 
metabolism with age, including a loss of rhythmicity and an 
upregulation in transcripts encoding several glutathione-
S-transferases, and a gain of rhythmicity in transcripts 
encoding the modifier subunit (Gclm-RA and Gclm-RB) and 
catalytic subunit (Gclc-RB) of glutamate cysteine ligase 
(GCL), the rate-limiting enzyme in glutathione biosynthesis. 
This is consistent with our previous studies reporting 
circadian oscillations in Gclc gene expression in young flies 
and associated rhythmic GCL protein level and enzymatic 
activity [43]. However, in old flies these rhythms were 
abolished and both Gclc expression and GCL activity were 
at constantly high levels [44]. This suggests that in addition 
to CLK/CYC, other transcription factors contribute to the 
regulation of these genes in old flies. Our motif analysis 
revealed an enrichment for Xrp1/Irbp18 heterodimer 
binding site motifs in promoters of glutathione metabolism 
transcripts, suggesting a potential alternate regulator of 
this pathway during aging. Xrp1 has recently been shown 
to induce glutathione-S-transferases as part of the PERK-
mediated unfolded protein response [45], corroborating 
our motif analysis results.
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While there are physiological differences that would 
limit inferring conclusions about age-dependent changes 
in rhythmicity in humans, flies are a useful model because 
they have a detailed genome annotation and short 
lifespans, are not difficult to raise, and, like humans, are a 
diurnal species. Humans are exposed to increased artificial 
light, both in duration and intensity, from screens and other 
LED lights, which raises the question of how this increased 
light exposure alters gene expression throughout lifespan. 
This study uses flies as a model to understand diurnal 
changes at the transcriptome level during natural aging 
under 24-hour light-dark cycles, and form a basis for future 
studies in mammalian systems.

METHODS

READ ALIGNMENT AND QUANTIFICATION
Raw RNA-seq reads from head samples of white flies 
collected at 4 hour intervals around the clock were 
sequenced and preprocessed as previously described 
[8]. Data are accessible at the GEO accession GSE81100. 
Quality filtered and trimmed reads were aligned to the 
Drosophila melanogaster genome (BDGP release 6.21/
dm6) using hisat2 version 2.1.0 [46] using the parameters 
“—max-intronlen 10000 —rna-strandness F”. Cuffdiff [47] 
was used to quantify transcript abundance in Fragments 
per Kilobase per Million mapped reads (FPKM). Only protein-
coding transcripts were included in downstream analyses.

DETECTION OF TRANSCRIPT RHYTHMICITY 
WITH RP24
Our analysis of transcript expression profiles considers 
expression as a function of time as E(t) sampled discretely 
at N time points in increments of Dt such that tn = nDt over a 
span of T hours. In our data, T = 48 hours, and we sampled 
every 4 hours for a total of N = 12 time points. We can then 
define a discrete series of expression values at these times 
as En = E(tn). The Fourier transform for the expression time 
series is computed from

1
/

0

ˆ
N

ikn N
k n

n

E E e t
-

-

=

=å
where τ = 2π. The Fourier transform decomposes the 
expression profile into sinusoidal waves with a period T

k kT =
. It is useful to consider the power spectrum P(Tk) that 
defines the strength of contribution of a particular period 
Tk.
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To detect the period of 24 hours (T2 = 24) that are relevant 
for circadian rhythms, we define RP24 as the relative 
power of the 24-hour period compared to other periods to 
quantify rhythmicity:
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CALCULATION OF OTHER RPTK VALUES
The RP24 is generalized in Supporting Figure S1 to other 
Fourier periods T

k kT =  using the discrete Fourier power 
spectrum. These non-24-hour periods can be measured 
analogously to the RP24 score where a different period is 
deemed the signal rather than the noise.
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This includes periods corresponding to frequencies up to 
and including the Nyquist frequency, or half the sampling 
rate. In our case, with 12 time points over 48 hours, 
the Nyquist frequency is 6. Thus, dividing 48 hours by 
frequencies of 1–6 yields the valid periods for which an RP 
score can be measured: 48, 24, 16, 12, 9.6, and 8.

SIMULATED EXPRESSION PROFILES
We simulated some expression profiles for Supporting 
Figure S3. These expression profiles were based on the 
sinusoidal equation,

( ) ( )* cosE t A t Bw j e= + + +

where E(t) is expression of simulated transcript, and t is 
time of day. The time values were set at intervals every 
4 hours between 0 and 24 (0, 4, 8, 12, 16, 20, 24) similar 
to the RNA expression data we collected. Amplitude was 
held constant at 1, with omega fixed at 2

24
p  corresponding 

to 24-hour periods, ϕ uniformly ranged from 0 to 2π, and B 
ranged from 0 to 300. To generate the simulated transcript 
expression data, a level of noise ε ~ N(0, σ2) was added to 
the expression. Simulated transcripts were set with a signal 
to noise ratio (SNR) ranging between 0.01 and 15. The 
SNR value of each transcript was applied to set the level 
of noise (σ), through the following equation 1

2

. A

SNR

s=  The 

level of noise added to each calculated expression value 
was randomly sampled from a normal distribution.

ANALYSIS OF PHASE CHANGES
While we describe the expression of the 24-hour component 
as ( ) ( )( )24 cos 2 / 24E t A hr tp j= + , the phase is defined as 
the time of peak expression corresponding to the input to 
the cosine function to be 0, so that:
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12 /Phase j p=-

This quantity can be calculated for each transcript from 
the 24-hour Fourier coefficient regardless of rhythmicity 
category, but is confidently accurate for transcripts with 
significant RP24 values.

DOT AND ARROW PLOTS
The dot and arrow plots describe the change in the state of 
rhythmicity of a collection of genes or transcripts. The state 
of rhythmicity refers to the combination of RP24 and the 
Phase. The distance from the origin is computed as RP24 
with a sigmoidal scaling that maps to a number between 
zero and one:

( ) 24
24  

1 24
RP

RP
RP

s =
+

For the S = log2(RP24), this transformation is represented as 
a base-2 logistic function

( ) 2
24  

1 2

S

SRPs =
+

The phase is shown as the angle relative to the positive 
y-axis, corresponding to ZT0 on a 24-hour clock. To achieve 
this, we plot a complex number in polar coordinates, 
and Phase is mapped back to radians, and rotated 90° or 

2
p  radians by adding 

2
p . This corresponds to the fact that 

normally an angle of 0° corresponds to the positive x-axis.

 
2 12

Phasep p
q

⋅
= -

Both the dot and the location of the arrow are then defined 
as a point on the complex plane computed from

( )24 iz RP e qs=

using the RP24 and θ from young for the dot, and from old 
for the location to which the arrow points.

PATHWAY ANALYSIS
We performed pathway analysis on ELCs, RLCs, and LLCs 
using the DAVID Functional Annotation Tool version 6.8 [25]. 
DAVID produces clusters of transcripts with an enrichment 
score S, defined as the –log10() of the geometric mean of 
the q-values for each cluster annotation. We required an 
enrichment score threshold of at least 1 and at least 10 
transcripts per cluster for inclusion in the plot in Figure 4A.

DIFFERENTIAL EXPRESSION ANALYSIS
We used Cuffdiff [47] to test for differential expression of 
transcripts between young and old flies independent of 
time of day. All samples corresponding to young flies (all 

replicates, all time points) were used as the first condition, 
and all samples corresponding to old flies were used as the 
second condition. We considered transcripts significantly 
differentially expressed which passed a q-value threshold 
of 0.05.

MOTIF ANALYSIS
We analyzed data from the Drosophila transcriptional 
regulatory element database (RedFly) to determine an 
appropriate window size for the promoter region upstream 
of the transcription start site for each transcript [48] 
(Supporting Figure S11). Based on our analysis and previous 
reports in the literature, we defined promoter regions as the 
6000-bp region upstream of the annotated transcription 
start site for each transcript, plus the first intron. These 
two regions were concatenated with a 20 base pair linker 
of Ns to prevent false identification of motifs spanning the 
junction between regions.

We compiled a list of transcription factor binding 
site motifs from two publicly available databases: 
FlyFactorSurvey [49] and JASPAR [50]. In addition, we 
used MEME-ChIP [51] for de novo identification of cnc 
binding motifs from four ChIP-seq results files [52], using 
the parameters “-meme-mod zoops” for each file. The six 
significant (E-value < 1) motifs we identified were included 
in the motif analysis. To filter out low-quality motifs and 
to restrict our analysis to transcription factors expressed in 
our dataset, we required all motif instances to pass p-value 
threshold of 0.00005, and the corresponding transcription 
factors a median FPKM threshold of 1. We tested for 
enrichment in the number of promoters with occurrences of 
the resulting 629 known transcription factor binding motifs 
in the promoters of transcript groups of interest. FIMO [33] 
was used to scan for motifs in the promoter regions of all 
transcripts in the transcriptome using the parameters “—
no-qvalue —thresh 1e–4”.

We required a DAVID cluster enrichment score of  
–log10(0.05) ≈ 1.3 to correspond to a geometric mean of 
multiple-test corrected p-values of 0.05. We also required at 
least ten transcripts per cluster. We used a hypergeometric 
test to determine the enrichment of the motifs in promoter 
regions of transcripts belonging to each these DAVID clusters 
compared to the rate of motif occurrence in the global set 
of promoters for all transcripts in the transcriptome. We 
applied a Benjamini-Hochberg FDR multiple test correction 
to the resulting p-values for each cluster.

FILTERING OUT TRANSCRIPTS WITH 
EXPRESSION “SPIKES”
We detected several transcripts that exhibited sharp spikes 
of expression at regular intervals. Although these spikes 
occur at regular intervals, they were not detected by other 
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Fourier-based approaches. It is well known that “spiky” 
expression patterns are not easily detected by these 
methods [15]. Because we were unable to validate these 
transcript expression profiles with qPCR (data not shown), 
we filtered them out of our analysis.

To detect expression profiles that spike up periodically at 
one measured time point, we define a baseline expression 
level E0, plus a burst of expression DE at a particular time 
point ϕ, which is analogous to the phase:
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The Fourier transform for these transcripts does not show 
a large RP24 or low p-value from our methods. Because we 
could not validate their expression, we developed methods 
for detecting these transcripts, and removed transcripts 
with these rhythms from our groups of rhythmicity 
changes. We refer to these rhythmic bursts of expression 
as “staccato”.

The Fourier transform for these transcripts can be 
computed as follows:
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Expanding this sum gives
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Grouping terms gives the expression
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Which can be reduced to
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Therefore, the Fourier coefficients reduce to the following 
three cases:
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Therefore, idealized staccato rhythms should have non-
zero, even-numbered Fourier coefficients. Real data can be 
variable, which led us to define a score called the “spectral 

parity,” quantifying the extent to which the Fourier 
coefficients are biased toward even-numbered values.

( )

( )
2,4,6

1,3,5

log  
k

k

k
k

P T
SP

P T
=

=

æ ö÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷÷ç ÷çè ø

å
å

We also observed that the argument of the even-numbered 
Fourier coefficients, )( )( ˆ

karg E f , which corresponds to the 
phase of the sinusoidal wave, should be equal. This led 
us to define a score called the “phase variance of even 
coefficients,” defining the degree of dispersion of the 
phases of the even-numbered Fourier coefficients.

( )( )( )   :ˆ   kPVEC var arg E kevenf=

When the PVEC is low, the even terms are coordinated and 
reinforce the spiked expression pattern.

CODE AVAILABILITY

Code for this project is available at https://github.com/rfey/
RP24.

ADDITIONAL FILES

The additional files for this article can be found as follows:

•	 Supporting Figures. Supporting Figures S1–S11. DOI: 
https://doi.org/10.5334/jcr.218.s1

•	 Supporting Tables. Supporting Tables S1–S9. DOI: 
https://doi.org/10.5334/jcr.218.s2
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