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INTRODUCTION
We have all spent the last two years on the SARS-Cov-2 
(COVID-19) rollercoaster, but it is not over. As the WHO 
weekly reports show, the global rate of new infections has 
been increasing since their 63rd weekly update two months 
ago,1 prioritizing patients and resources remains a relevant 
topic.

Many prognostic models have been applied to 
COVID-19 patients.2 For example, NEWS2,3 the 
Brescia-COVID Respiratory Severity Scale,4 and 
qSOFA5 models are easy to use clinically, because they 

use only clinical data. When imaging data is used, it 
is often solely image findings such as the presence of 
opacities, pneumonia, pulmonary edema, and vascular 
enlargement.6–8 These binary representations some-
times lose information which is difficult to quantify and 
thus have only modest improvement against simpler 
models.6,8 To merge image and clinical data into a 
model was the next logical step, however, models which 
have been developed using both clinical and image 
data often use weighted sums from separate models, 
rather than creating a single model.9 With respiratory 
diseases, radiographical information is as important as 
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Objectives: The purpose of this study was to develop 
an artificial intelligence-based model to prognosticate 
COVID-19 patients at admission by combining clinical 
data and chest radiographs.
Methods: This retrospective study used the Stony Brook 
University COVID-19 dataset of 1384 inpatients. After 
exclusions, 1356 patients were randomly divided into 
training (1083) and test datasets (273). We implemented 
three artificial intelligence models, which classified 
mortality, ICU admission, or ventilation risk. Each model 
had three submodels with different inputs: clinical data, 
chest radiographs, and both. We showed the importance 
of the variables using SHapley Additive exPlanations 
(SHAP) values.
Results: The mortality prediction model was best 
overall with area under the curve, sensitivity, specificity, 
and accuracy of 0.79 (0.72–0.86), 0.74 (0.68–0.79), 
0.77 (0.61–0.88), and 0.74 (0.69–0.79) for the clinical 

data-based model; 0.77 (0.69–0.85), 0.67 (0.61–0.73), 
0.81 (0.67–0.92), 0.70 (0.64–0.75) for the image-based 
model, and 0.86 (0.81–0.91), 0.76 (0.70–0.81), 0.77 (0.61–
0.88), 0.76 (0.70–0.81) for the mixed model. The mixed 
model had the best performance (p value < 0.05). The 
radiographs ranked fourth for prognostication overall, 
and first of the inpatient tests assessed.
Conclusions: These results suggest that prog-
nosis models become more accurate if AI-derived 
chest radiograph features and clinical data are used 
together.
Advances in knowledge: This AI model evaluates 
chest radiographs together with clinical data in order 
to classify patients as having high or low mortality 
risk. This work shows that chest radiographs taken 
at admission have significant COVID-19 prognostic 
information compared to clinical data other than age 
and sex.
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clinical information. So, images should be incorporated into 
future prognosis estimation and medical resource allocation 
models.10,11

One way to incorporate images into prognostic models is to 
apply artificial intelligence (AI), specifically convolutional neural 
networks (CNNs). These can handle whole images as input and 
have recently found applications in medicine.12 The potential 
of AI to evaluate COVID-19 on chest radiograph or CT images 
was explored with great success.13–15 Results of these models 
indicate that image-based AI models can support radiologists 
in clinical practice.14 Still, several questions about the power 
these models provide to support physicians remain unanswered. 
Specifically, are images or clinical data more useful and, to what 
extent are these dozens of variables effective for prognosti-
cating COVID-19 severity? Finding the most effective variable 
combinations may increase model development efficiency. In 
this work, we will develop new models and evaluate the effect of 
each variable—including images—on the severity prognosis of 
COVID-19 patients.

METHODS AND MATERIALS
Study design
We conducted a retrospective model development and testing 
study of three AI-based prognostic models for COVID-19 
mortality, ICU admission, and ventilation. We prepared three 
submodels for each model which used clinical data, imaging 
features, or a mixture of the two. Using the mixed clinical and 
imaging data models, we determined the relative importance of 
each of the variables included in the models. All models were 
developed and tested using a publicly available dataset. This work 
was prepared in accordance with the CLAIM checklist.16 The 
need for review and approval from the ethics board was waived 
due to the open source nature of the dataset.

Patient data
The publicly available Stony Brook University COVID-19 Posi-
tive Cases dataset17 from The Cancer Imaging Archive18 was 
used to develop the models. A total of 1356 patients were used 
for this study after excluding 28 patients who did not have a 
chest radiograph at admission. (Figure  1) Clinical data and 
chest radiographs at admission were extracted as explanatory 
variables for the model output. Patient outcomes (death, ICU 
admission, and ventilation requirement) were extracted as the 
ground truths. One chest radiograph taken closest to the date of 
admission was collected for each patient. All radiographs were 
taken in the anteroposterior view. We chose 25 variables which 
have been shown to be the risk factors for severe COVID-19.19,20 
Clinical data include gender, age, smoking history, BMI, and 
medical history (hypertension, diabetes, chronic heart disease, 
chronic renal failure, chronic lung disease, and malignancy), 
vital signs (heart rate, systolic blood pressure, respiratory rate, 
and blood oxygen saturation), and laboratory data (white blood 
cell, sodium, potassium, C-reactive protein, aspartate amino-
transferase, alanine aminotransferase, urea nitrogen, creatinine, 
lactate, brain natriuretic peptide, and d-dimer). Detailed demo-
graphics are shown in Table 1.

Data partition
Patients were randomly divided into training and test datasets at a 
ratio of 4:1. (Figure 1) There was no overlap of patients among the 
respective datasets. Details are available in Supplementary Material 1.

Image processing
All chest radiographs were downscaled to PNG files while main-
taining the aspect ratio. The shorter side was filled with black 
for images which were not originally square. All images were 
augmented using random rotation from –0.1 radians to 0.1 radians, 

Figure 1. Eligibility flowchart.
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with a random shift of 10%, a brightness range of 10%, and reflected 
horizontally. Further details are available in Supplementary Mate-
rial 1.

Model development and evaluation
The clinical data-based AI models were developed using a multi-
layer perceptron (MLP), which was composed of three fully 
connected layers. There were 25 variables as input.

The image-based models were developed using InceptionV3,21 
ResNet50,22 and DenseNet12123 as the basic architectures which 
passed to a single fully connected layer, then connected to an 
MLP with three fully connected layers. The best performing 
basic architecture was retained.

The mixed models were implemented using MLP with CNN. 
The images were input into the CNN as above, then this output 
was concatenated with clinical variables, and these continued 
together to an MLP with three fully connected layers. The CNN 
architecture was prepared with the same basic architectures as 
the image-based model. (Figure 2).

All models were developed using the PyTorch framework.24 
Each model was trained and tuned from scratch with the 
training dataset using five-fold cross-validation. Each 
output from the clinical data-based models, the image-
based models, and the mixed models was obtained using 
cross-entropy loss. The output for all models classified if 
the patient was expected to experience the severe outcome 
targeted by that model. The performance of each model was 
assessed using the independent test dataset. Further model 
development details are available in Supplementary methods 
b and Supplementary Material 1.

Importance values and saliency maps
The importance of each explainable variable in the mixed model, 
including chest radiographs, was determined by SHapley Addi-
tive exPlanations (SHAP) values.25 Each SHAP value was calcu-
lated 10,000 times.

A saliency map was generated for each chest radiograph 
evaluated by the mixed model to visualize the model’s focus 
as it classified patient mortality prognosis.26 A detailed 
explanation of the saliency map generation model is shown 
in Supplementary Material 1, and the source code, including 
our training and testing python codes as well as our final 
hyperparameter selections, is available online (https://​
github.com/covid-cnn-mlp/).

Statistical analysis
To evaluate the models, sensitivity, specificity, accuracy, the 
receiver operating characteristic curve (ROC), and the area 
under the curve (AUC) were assessed. We used the Youden index 
to determine thresholds.27 Different prediction models were 
compared using a binomial test to show differences in perfor-
mance. The Kaplan–Meier method was used to further stratify 
patients into high-risk and low-risk subgroups according to the 
median of values from the mortality model prediction. The strat-
ification performance was evaluated using a log-rank test based 
on the predicted risk scores of the stratified subgroups. Statis-
tical inferences were performed with a two-sided 5% significance 
level. All analyses were performed using R, version 3.6.028 and 
Python 3.8.1.

RESULTS
Model development
The models were each independently developed using the 
training dataset with five-fold cross-validation applied for 
100 training epochs, then the loss value on a separate vali-
dation dataset determined the performance of the model. 
The final optimizer for all models was Adam (learning ratio 
= 0.001) with a batch size of 64. In both image-based and 
mixed models, the best performing models were obtained 
with an image size of 256 pixels; DenseNet was the best 
performing CNN architecture.

Model evaluation
The AUC for predicting mortality was highest overall with 0.86 
(0.81–0.91) for the mixed clinical and imaging data model, 0.79 
(0.72–0.86) for the clinical data model, and 0.77 (0.69–0.85) for 

Table 1. Demographics

Training / 
validation dataset Test dataset

Total no. of patients 1083 273

 � Male 627 (57.8%) 153 (56%)

 � Female 456 (42.1%) 120 (43.9%)

Age

 � 18–59 595 (54.9%) 156 (57.1%)

 � 59–74 279 (25.7%) 67 (24.5%)

 � 74–90 209 (19.2%) 50 (18.3%)

 � Smoking history 232 (21.4%) 50 (18.3%)

 � Body mass index, 
mean ± std

29.3 ± 5.8 29.4 ± 6.0

Disease history

 � Hypertension 386 (35.6%) 103 (37.7%)

 � Diabetes 216 (19.9%) 58 (21.2%)

 � Chronic heart 
disease

148 (13.6%) 45 (16.4%)

 � Chronic kidney 
disease

66 (6%) 15 (5.4%)

 � Chronic lung 
disease

158 (14.5%) 46 (16.8%)

 � Malignancy 77 (7.1%) 16 (5.8%)

Outcomes

 � Death 137 (12.6%) 43 (15.7%)

 � Discharge 946 (87.3%) 230 (84.2%)

 � ICU admission 166 (15.3%) 47 (17.2%)

 � Ventilation 200 (18.4%) 60 (21.9%)

http://birpublications.org/bjr
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the imaging data model. The sensitivity, specificity, and accu-
racy, respectively, for mortality prognosis were 0.74 (0.68–0.79), 
0.77 (0.61–0.88), and 0.74 (0.69–0.79) for the clinical data-based 
model, 0.67 (0.61–0.73), 0.81 (0.67–0.92), 0.70 (0.64–0.75) for 

the image-based model, and 0.76 (0.70–0.81), 0.77 (0.61–0.88), 
0.76 (0.70–0.81) for the mixed model. Results for the mixed 
input models were consistently higher than either clinical data 

Figure 2. Overview of the classification and prognostic models. The chest radiographs were input as PNG images, and the clinical 
data were in a CSV file. Three sets of models were created; one each with the output arranged to show if the COVID-19 patient 
was expected to die, require mechanical ventilation, or require ICU admission. FC = Fully connected layers

Table 2. Model results

Area under the 
curve (95% CI) Accuracy (95% CI)

Sensitivity (95% 
CI)

Specificity (95% 
CI) P value

Death

Image-based model 0.77 (0.69–0.85) 0.70 (0.64–0.75) 0.67 (0.61–0.73) 0.81 (0.67–0.92) 0.037

Clinical data-based 
model

0.79 (0.72–0.86) 0.74 (0.69–0.79) 0.74 (0.68–0.79) 0.77 (0.61–0.88) <0.001

Mixed model 0.86 (0.81–0.91) 0.76 (0.70–0.81) 0.76 (0.70–0.81) 0.77 (0.61–0.88) ref

Ventilation

Image-based model 0.68 (0.60–0.77) 0.65 (0.59–0.70) 0.65 (0.58–0.71) 0.66 (0.51–0.79) 0.047

Clinical data-based 
model

0.70 (0.62–0.77) 0.67 (0.61–0.72) 0.67 (0.60–0.73) 0.66 (0.51–0.79) 0.053

Mixed model 0.76 (0.69–0.83) 0.72 (0.66–0.77) 0.72 (0.65–0.77) 0.72 (0.57–0.84) ref

ICU admission

Image-based model 0.70 (0.62–0.77) 0.66 (0.60–0.72) 0.66 (0.59–0.72) 0.67 (0.53–0.78) 0.029

Clinical data-based 
model

0.68 (0.61–0.75) 0.65 (0.59–0.70) 0.65 (0.58–0.71) 0.65 (0.52–0.77) <0.001

Mixed model 0.78 (0.72–0.84) 0.71 (0.66–0.77) 0.71 (0.65–0.77) 0.72 (0.59–0.83) ref

http://birpublications.org/bjr
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alone or imaging data alone for the other severity outcomes as 
well. (Table 2 and Figure 3)

The discrimination power of the mixed model for mortality prog-
nosis was significantly higher than that of the clinical data model 
(p = 0.001) and the imaging data model (p = 0.037). (Table 2) All 
three mortality models successfully stratified patients according 
to the median model score into high and low mortality risk with 
p values below 0.05 for each model. The accuracy of this strat-
ification is shown by Kaplan–Meier plot. (Figure 4) Confusion 
matrices for the three mixed models are available in Supplemen-
tary Material 1, Figure 3.

Importance values and saliency maps
Each variable was ranked by their impact on the mixed clinical and 
imaging data model output using mean SHAP values. Age and sex 
had the largest impact on model output, followed by chest radio-
graphs, which had the fourth highest impact. A visual representation 
of the impact of each variable on the model output for each severity 
outcome can be seen in the beeswarm plot. (Figure 5)

Saliency maps were produced for the chest radiographs to provide a 
visual representation of the focus of the model as it classified COVID-19 
mortality. (Figure 6) The focus was typically on a single point on the 
lungs, rather than diffuse. This single point covered an area of infiltration.

Figure 3. Receiver operating characteristic curves. Each panel represents different outcome targets for the models. (a) Risk of 
death. The clinical data-based model had an AUC of 0.79 (0.72–0.86), the image-based model had an AUC of 0.77 (0.69–0.85), 
and the mixed model had an AUC of 0.86 (0.81–0.91). (b) Risk of mechanical ventilation. The clinical data-based model had an 
AUC of 0.70 (0.62–0.77), the image-based model had an AUC of 0.68 (0.60–0.77), and the mixed model had an AUC of 0.76 
(0.69–0.83). (c) Risk of ICU admission. The clinical data-based model had an AUC of 0.68 (0.61–0.75), the image-based model had 
an AUC of 0.70 (0.62–0.77), and the mixed model had an AUC of 0.78 (0.72–0.84).

AUC = area under the curve

Figure 4. Kaplan–Meier survival plots for each model. The high-risk and low-risk patients from each mortality model were divided 
based on the median model output value. This plot shows the ground truth survival of these patients and the shaded area repre-
sents the accuracy of the prediction.

http://birpublications.org/bjr
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DISCUSSION
In this study, we developed and compared AI-based models which 
predict three measures of severity of patients hospitalized with 

COVID-19 using clinical data, AI-derived image features, and both. 
The models using both performed better than models we developed 
using only clinical data or only image data (p value < 0.05). The area 

Figure 5. SHAP values for each variable. Beeswarm plots of the SHAP value for each patient for the top ten variables. The plots 
relate to risk of death (a), risk of mechanical ventilation (b), and risk of ICU admission (c). Each dot represents one patient. The 
location of the dot represents if changing the value for that patient would have a positive (less likely to predict outcome) or nega-
tive (more likely to predict outcome) effect on the model, and to what extent. The color represents the value range of the variable 
from lowest (blue) to highest (red). Some variables only have binomial representations; for sex, red represents male. For age, red 
represents an age above the cutoff. When there are many patients with very similar SHAP values, the swarm expands vertically.

Figure 6. Representative saliency maps. These are chest radiographs and the saliency map overlay of two patients (labeled a and 
b) from the Stony Brook Hospital dataset. The mortality prediction model was used. In these images, the model focus was on an 
area of infiltration.

http://birpublications.org/bjr


7 of 9 birpublications.org/bjr Br J Radiol;95:20220058

BJRAI for COVID-19 inpatient prognosis with clinical data and x-ray

under the curve, sensitivity, specificity, and accuracy of the mortality 
prognosis mixed model were 0.86 (0.81–0.91), 0.76 (0.70–0.81), 0.77 
(0.61–0.88), and 0.76 (0.70–0.81), respectively. We also ranked the 
value of image information compared to clinical data in these AI 
models using SHAP values. These showed that chest radiographs had 
the fourth largest impact on the model output, behind only age and 
sex in COVID-19 mortality prognosis.

AI models perform a huge number of simple calculations when 
extracting features from data. While it is easy to understand each 
calculation, the sheer volume of them makes it difficult to understand 
how the model made the final decision; thus, it is referred to as a black 
box.29 One way to see the relative importance of each variable is by 
their SHAP values.25 From previous work, we expected age, sex, and 
oxygen saturation to rank highly, and as radiologists, we expected the 
addition of images to also have a strong impact.19,20,30 Still, we were 
surprised by how strongly images impacted the model. Future AI 
models intended for medical use can benefit from a similar quantifi-
cation of variable importance in cases where it is unclear which data 
are valuable. The features which correlated with poor prognosis were 
visualized using saliency maps. The saliency maps focused on loca-
tions in the lung field showing disease features such as infiltration.

Although prognosis models using both clinical and imaging data 
have been reported, this technique is less common for communicable 
or acute diseases. Prior AI-based COVID-19 prognostication studies 
have shown the value of both clinical data and images separately in AI 
models.14,31–36 Jiao, et al combined image data and clinical data into 
one model and showed the power of including chest radiographs for 
AI-determined prognosis.9 Our work differs in both model design 
and that we evaluated the value of the image data compared to other 
variables in the severity classification. Gupta et al applied several 
models to their own dataset and found the best performance with 
the NEWS2 score,3 even compared with models using imaging find-
ings.37 The AUC of our model surpasses that of all models evaluated 
in their study. Many COVID-19 prognosis studies chose various 
degrees of severity as the turning point, including oxygen supple-
mentation,38 mechanical ventilation,9,39–44 ICU admission,39,44,45 or 
mortality.14,39,42,44,46–49 Unlike these studies, the focus of our work was 
not only prognosis, but also to estimate the value of using both clin-
ical data and chest radiographs. Our model had an AUC comparable 
to models developed using CT but with generally higher sensitivity. 
CT-based models largely focused on prognosticating ICU admission 
or ventilation15,36,40,50 rather than mortality. Although CT is known 
to be more accurate than radiographs, it has several limitations for 
early COVID-19 prognosis including the time required for imaging, 
the availability of CT-equipped facilities, and ease of cleaning between 

potentially contagious patients.51 While we cannot directly compare 
our model to previous works because the datasets are different, it is 
likely that our larger cohort size and the combination of images and 
clinical data are reasons for our increase in AUC.

The method presented here has implications for other diseases which 
also currently rely on tabular clinical data to determine patient prog-
nosis. For example, cancer staging is based on the longest diameter 
of the tumor(s).52,53 This method reduces the information available 
from the image to a single number, while the lesion is not necessarily 
spherical. The inclusion of the image into a prognostic model could 
allow more precise information to be considered for prognosis deter-
mination. Our model can be used in a federated learning approach at 
centers with appropriate infrastructure.54

There were limitations to this work. This was a single center, retro-
spective study and should be tested prospectively. We excluded 28 
patients who were missing chest radiographs, which may have led 
to selection bias where patients with detailed data were those who 
had been determined to be at high risk at triage. Information related 
to the radiologist’s reports was not available in this dataset. Further 
study is required to determine the effect of DL-extracted information 
compared with using binomial scoring of image features. Although 
deep learning-based AI models can easily be fine-tuned to perform 
similar tasks, future research is needed to determine how well this 
technique generalizes to future COVID-19 and other respiratory 
disease outbreaks.

In summary, we developed and validated an AI model to determine 
the prognosis of patients with COVID-19 which uses both chest 
radiographs and clinical data. Additionally, we used an explainable 
AI approach to establish the value of imaging data compared to clin-
ical data as well as to indicate the focus of the model per image. Our 
work is open source, and the code is available online. We hope our 
work leads to more accurate prognosis of the still-growing number 
of patients with COVID-19, as well as further research into the use of 
images for the prognosis of other diseases.
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