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Abbreviations used

APS-1: Autoimmune polyendocrine syndrome type 1

COVID-19: Coronavirus disease 2019

IVIG: intravenous immunoglobulin

MIS-C: Multisystem inflammatory syndrome in children

PBMC: Peripheral blood mononuclear cell

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2
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Background: Autoantibodies against type I IFNs occur in
approximately 10% of adults with life-threatening coronavirus
disease 2019 (COVID-19). The frequency of anti-IFN
autoantibodies in children with severe sequelae of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is
unknown.
Objective: We quantified anti–type I IFN autoantibodies in a
multicenter cohort of children with severe COVID-19,
multisystem inflammatory syndrome in children (MIS-C), and
mild SARS-CoV-2 infections.
Methods: Circulating anti–IFN-a2 antibodies were measured
by a radioligand binding assay. Whole-exome sequencing, RNA
sequencing, and functional studies of peripheral blood
mononuclear cells were used to study any patients with levels of
anti–IFN-a2 autoantibodies exceeding the assay’s positive
control.
Results: Among 168 patients with severe COVID-19, 199 with
MIS-C, and 45 with mild SARS-CoV-2 infections, only 1 had
high levels of anti–IFN-a2 antibodies. Anti–IFN-a2
autoantibodies were not detected in patients treated with
intravenous immunoglobulin before sample collection. Whole-
exome sequencing identified a missense variant in the ankyrin
domain of NFKB2, encoding the p100 subunit of nuclear factor
kappa–light-chain enhancer of activated B cells, aka NF-kB,
essential for noncanonical NF-kB signaling. The patient’s
peripheral blood mononuclear cells exhibited impaired cleavage
of p100 characteristic of NFKB2 haploinsufficiency, an inborn
error of immunity with a high prevalence of autoimmunity.
Conclusions: High levels of anti–IFN-a2 autoantibodies in
children and adolescents with MIS-C, severe COVID-19, and
mild SARS-CoV-2 infections are rare but can occur in patients
with inborn errors of immunity. (J Allergy Clin Immunol
2023;151:926-30.)

Key words: Anti-interferon autoantibody, COVID-19, MIS-C,
NFKB2, inborn errors of immunity
INTRODUCTION
Neutralizing autoantibodies against type I IFNs occur in

approximately 10% of adults with life-threatening coronavirus
disease 2019 (COVID-19).1,2 Less is known about levels of anti-
IFN antibodies in pediatric populations. Small studies of 7 to 59
children identified autoantibodies to several tissue antigens in pa-
tients with multisystem inflammatory syndrome in children
(MIS-C), a postinfectious inflammatory disorder typically occur-
ring within 2 to 6 weeks of severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2) infection.3-6 Although inborn errors
of immunity can be associated with autoantibodies,7 it is un-
known if anti-IFN autoantibodies are associated with severe
COVID-19 or MIS-C in the general pediatric population. Treat-
ment of patients with MIS-C with intravenous immunoglobulin
(IVIG), which can contain autoantibodies to tissue antigens,
may confound the measurement of endogenous autoantibodies.8

Here we present results from a multicenter study investigating
anti–IFN-a2 autoantibodies in a large cohort of children and ad-
olescents with MIS-C, severe COVID-19, or mild SARS-CoV-2
infections.
RESULTS AND DISCUSSION
This study included 412 patients: 199 patients withMIS-C, 168

patients hospitalized for COVID-19 in an intensive care or step-
down unit (henceforth referred to as severe COVID-19), and 45
with SARS-CoV-2 infections managed as outpatients. All but 2
patients were under 21 years of age (Table I). IVIG was adminis-
tered to 137 patients (68.8%) with MIS-C and to 9 patients (5%)
with severe COVID-19 before specimen collection. Critical care
was required for 85.4% of patients with MIS-C and 69.6% of pa-
tients with severe COVID-19 (Table I). Five patients (3%) who
were hospitalized for COVID-19 died; all with MIS-C survived.

Anti–IFN-a2 autoantibodies were measured using an estab-
lished radioligand binding assay (see the Methods in this article’s
Online Repository at www.jacionline.org). The antibody index
indicates the ratio of IFN-a2 protein precipitated by patient
plasma normalized to the assay’s positive control.2 Plasma from
8 healthy adults served as negative controls (mean antibody index
of 0.011). Positive disease controls included 6 individuals with
anti–IFN-a2 autoantibodies due to autoimmune polyglandular
syndrome type 1 (APS-1), a disease known to cause neutralizing
anti–type I IFN autoantibodies.9,10 In our cohort, only 1 patient
had an antibody index (3.73) exceeding that of the assay’s posi-
tive control and the levels previously found in adults with severe
COVID-19 due to neutralizing anti–IFN-a2 antibodies2 (Fig 1).
This patient’s sample was obtained before treatment with IVIG.
Additionally, none of the other 137 patients who received IVIG
before specimen collection had high levels of anti–IFN-a2 auto-
antibody, thus excluding IVIG as a confounding source of autoan-
tibodies. Our study was not designed to quantify the incidence of
anti–IFN-a2 autoantibodies in children with COVID-19 or MIS-
C, as not all eligible children consented to enrollment. However,
the largest study of anti-IFN autoantibodies in adults identified
anti–IFN-a2 autoantibodies in 88 (8.9%) of 987 patients with se-
vere COVID-19,1 which is higher than the 0.5% (n5 1) with au-
toantibodies and severe COVID-19 in our cohort.

The patient with high levels of anti–IFN-a2 autoantibodies was
an adolescent female subject with acute hypoxemic respiratory
failure due to severe COVID-19. Neutralizing antibodies to
SARS-CoV-2 were not detected until the fifth day of hospitaliza-
tion, rising to levels comparable to that of other patients with se-
vere COVID-19 by day 12.11 Her respiratory failure resolved after
2 weeks of hospitalization, but she subsequently developed left
ventricular dysfunction, which was treated with milrinone in
the setting of persistently elevated inflammatory markers,
prompting diagnostic consideration ofMIS-C. Compared to other
patients similarly treated for MIS-C, the patient’s peripheral
blood mononuclear cells (PBMCs) exhibited reduced expression
of differentially expressed genes in pathways of neutrophil
degranulation, innate immune signaling, SARS-CoV-2 IFN-stim-
ulated genes, and oncostatin M, an enhancer of type I IFN

http://www.jacionline.org


TABLE I. Patient characteristics of children with MIS-C, severe COVID-19 requiring intensive care unit or step-down unit hospital

care, and outpatients with mild SARS-CoV-2 infections evaluated for anti–IFN-a2 autoantibodies

Characteristic MIS-C (n 5 199) Severe COVID-19 (n 5 168) Mild SARS-CoV-2 infection (n 5 45)

Male sex 118 (59.3) 83 (49.4) 24 (53.3)

Age (years), median (interquartile range) 10.9 (7.5-14.7) 13.6 (6.3-17.2) 5.5 (2.2-11.1)

Race/ethnicity

White, non-Hispanic 63 (31.7) 62 (36.9) 14 (31.1)

Black, non-Hispanic 74 (37.2) 41 (24.4) 5 (11.1)

Hispanic or Latino 47 (23.6) 46 (27.4) 15 (33.3)

Other race, non-Hispanic 8 (4.0) 14 (8.3) 2 (4.4)

Unknown 7 (3.5) 5 (3.0) 9 (20.0)

Previously healthy 134 (67.3) 48 (28.6) 42 (93)*

Preexisting condition

Obesity� 29 (14.6) 50 (29.8) 8 (17.8)

Asthma 22 (11.1) 34 (20.2) 1 (2.2)

Cardiovascular 4 (2.0)� 15 (8.9)§ 0

Interventions

Intensive care unit admission 170 (85.4) 117 (69.6) 0

Shock requiring vasopressors 90 (45.2) 16 (9.5) 0

Mechanical ventilation 38 (19.1) 60 (35.7) 0

Data are presented as nos. (%) unless otherwise indicated.

*Among outpatients, 1 had asthma requiring inhaled steroids, 1 had sickle cell trait, and 1 had a seizure disorder.

�Because height was not available for many outpatients, weight for age of >95% percentile for age was used as a proxy to assign potential obesity status in lieu of body mass index.

�Congenital heart disease (n 5 4).

§Congenital heart disease (n 5 7), systemic hypertension (n 5 6), acquired heart disease (n 5 2).
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FIG 1. High levels of anti–IFN-a2 autoantibodies in children and adolescents

with MIS-C, severe COVID-19, and mild SARS-CoV-2 infections are rare.

Levels of anti–IFN-a2 were measured by radioligand binding assay. The

dotted line represents the antibody index of the anti-Myc assay–positive con-

trol. P denotes the patient with high levels of anti–IFN-a2 autoantibodies.

APS-1was used as positive disease control.Medians and interquartile ranges

are shown for the control (n 5 8) and APS-1 (n 5 6) cohorts.
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signaling (Fig 2, A). Reduced IFN signaling is found in adults
with acute COVID-19, particularly those with anti–type I IFN au-
toantibodies.1,2 However, the reduced neutrophil degranulation
and innate immune signaling in our patient contrasts with that
of neutrophil and monocyte activation found in adults with severe
COVID-196,12,13 and children with MIS-C,4,14 suggesting that
additional factors beyond anti–IFN-a2 autoantibodies contrib-
uted to her immune dysregulation.

In addition to prolonged hospitalization for COVID-19 followed
by MIS-C, this patient had a history of influenza A pandemic
H1N1/09 viral pneumonia requiring noninvasive ventilation.
Immunologic evaluation after recovery from that hospitalization
was notable only for reduced levels of IgG and IgA, although titers
to tetanus and pneumococcus were normal (see Table E1 in the On-
line Repository available at www.jacionline.org). Genetic testing
and immunoglobulin replacement were not initiated then, as she
had no prior significant infections. Immunologic evaluation after
recovery from COVID-19 and MIS-C in 2020 revealed panhypo-
gammaglobulinemia, with reduced titers to pneumococcal sub-
types. Whole-exome sequencing identified a heterozygous variant
in the ankyrin domain of NFKB2 (p.Thr684Pro), encoding the
p100 subunit of nuclear factor kappa–light-chain enhancer of acti-
vated B cells (aka NF-kB) essential for noncanonical NF-kB
signaling. This variant is absent from the gnomAD database
(gnomad.broadinstitute.org) and is predicted to be pathogenic,
with a CADD score of 27.6. Structural modeling indicates that
the Thr684Pro variant causes steric clash (Fig 2, B). After stimula-
tion with anti-CD3, the patient’s PBMCs exhibited increased p100
levels and reduced p52 levels, indicative of impaired cleavage of
p100 into its active form (Fig 2, C). This finding is consistent
with the importance of the ankyrin domain for p100 ubiquitinyla-
tion and cleavage.15 All previously published missense mutations
affect the protein’s C-terminal degron domain essential for p100
processing.16,17 The patient’s pan-hypogammaglobulinemia,
anti–IFN-a2 autoantibodies, and susceptibility to severe viral infec-
tions indicate the deleterious effect of her NFKB2Thr683Pro variant.
Her residual levels of p52 likely contributed to the sporadic nature
of her infections, which emerged only when exposed to newly
emerged pathogens during 2 pandemics. Similarly, all 3 previously
reported patients with NFKB2 haploinsufficiency and COVID-19
required critical care.7,18,19

Autoimmunity, including anticytokine antibodies, occurs in up
to 80% of patients with NFKB2 haploinsufficiency.17 Although
we did not measure the neutralizing capacity of our patient’s
anti–IFN-a2 autoantibodies, her antibody index exceeds that of
autoantibodies with neutralizing capacity in published studies us-
ing the same assay in independent cohorts.2,20 Additionally,
differentially expressed genes from her whole-blood transcrip-
tome were reduced in pathways downstream of type I IFN
signaling compared to other patients with MIS-C, further

http://www.jacionline.org
http://gnomad.broadinstitute.org


B

C

A

FIG 2. A, Differentially expressed genes (>_2-fold change, false discovery rate < 0.05) determined via bulk

RNA sequencing of whole blood from the single patient with increased levels of anti–IFN-a2 autoantibodies,

compared to 5 disease controls (patients with MIS-C of comparable age, disease severity, and treatment).

The patient and one of the disease controls (labeled 2) had 2 samples available at the midpoint of their hos-

pitalizations. B, Top, Schematic of NFKB2 with the patient’s variant indicated with a red triangle in ankyrin

repeat domain 6 (ANK6). DD, Death domain, with the degron domain needed for p100 processing noted in

orange; RHD, Rel homology domain. Bottom, Steric clash (red disks) is predicted to arise from the patient’s

substitution of a bulky proline residue for threonine 684. C, Representative immunoblot of full-length p100

and processed p52 in PBMCs from the patient (P) and 2 healthy controls (C1 and C2) with and without anti-

CD3 stimulation for 2 days. Bar graphs show densitometric quantitation of indicated proteins pooled from

2 experiments in PBMCs from the patient and 5 controls, with and without 2 days of anti-CD3 stimulation.

*P < .05, **P < .01 by Student t test.
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supporting a neutralizing effect of her anti–IFN-a2 autoanti-
bodies. At the time of this study, she had no clinical evidence of
autoimmunity beyond the anti–IFN-a2 autoantibodies. Because
our study is limited by the identification of only a single patient
withNFKB2 haploinsufficiency, future studies with larger cohorts
are needed to determine the prevalence and levels of anti-IFN au-
toantibodies in patients with this disease.

Our study underscores the rarity of high levels of anti–IFN-a2
antibodies in most children. While the majority of adults with
severe COVID-19 and autoantibodies to type 1 IFNs have anti–
IFN-a2 autoantibodies, Bastard et al1 have shown that a subset
of individuals have only anti–IFN-v antibodies, for which we
did not screen. In samples collected before the COVID-19
pandemic, neutralizing autoantibodies to IFN-a were identified
in less than 0.3% of individuals younger than 69 years,1,21

compared to 1.1% of adults aged 70 through 79 years and 3.4%
in those over 80 years.21 Neutralizing autoantibodies to IFN
occurred in 10% of individuals with severe COVID-19, themajor-
ity of whom were over 75 years of age. Other than APS-1, no
inborn errors of immunity, including defects in the NFKB2
pathway, have been reported in adults with severe COVID-19
and autoantibodies to type I IFNs.

Autoantibodies occur more frequently in the elderly as a result
of progressive B-cell dysfunction, differentiation of age-
associated B cells into autoantibody-producing plasma cells,
and the release of self-antigens from tissue damage. In children,
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anti-IFN autoantibodies may instead reflect early onset B-cell
dysfunction with underlying immune dysfunction. In support of
this, a study of 31 individuals with known inborn errors of
immunity identified neutralizing autoantibodies against IFN-a2
and IFN-v in one child with a combined immunodeficiency and
another with immune dysregulation.7 This previously published
cohort had 3 additional pediatric patients with antinuclear anti-
bodies, reflecting the spectrum of autoantibodies in patients
with inborn errors of immunity. Thus, diagnostic studies for ge-
netic causes of immune dysregulation are merited in children
with anticytokine antibodies.
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Clinical implications: Anti–IFN-a2 autoantibodies should
prompt diagnostic evaluation for inborn errors of immunity if
identified in children or adolescents.
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METHODS

Study design and subjects
Patients were recruited through the prospectively enrolling multicenter

Overcoming COVID-19 study in the United States.E1,E2 A total of 412 pa-

tients were enrolled onto 1 of the following independent cohorts: 199 pa-

tients hospitalized with MIS-C, 168 patients hospitalized for COVID-19

in either an intensive care or step-down unit (referred to as severe

COVID-19 in this study), and 45 outpatients with SARS-CoV-2 infections

associated with mild or no symptoms. The demographic and clinical data

are summarized in Table I. US Centers for Disease Control and Prevention

case definitions were used to define MIS-CE3; those with acute COVID-19

had a positive antigen test or nucleic acid amplification test.E4 All patients

with MIS-C had positive SARS-CoV-2 serology results and/or positive

SARS-CoV-2 test results by reverse transcriptase quantitative PCR. All pa-

tients with severe COVID-19 or outpatient SARS-CoV-2 infections tested

positive for SARS-CoV-2. For outpatients, samples were collected from

36 to 190 days after the positive test (median, 70 days after positive test; in-

terquartile range, 56-81 days).

To maintain deidentification of clinical data from the patient with the

NFKB2Thr684Pro variant, approximate age, rather than exact age, is pro-

vided. Informed consent was provided by participants or legal guardians.

All protocols were approved by the institutional review board at Boston

Children’s Hospital, which served as the single IRB for the study (IRB-

P00033157). Data of APS-1–positive control samples were previously pub-

lished and collected as described in Ferre et al.E5 All patients with APS-1

were enrolled onto research study protocols approved by the US National

Institute of Allergy and Infectious Diseases, National Institutes of Health

Clinical Center, and National Cancer Institute institutional review board

committees, and all provided written informed consent for study participa-

tion. All patients recruited at the National Institutes of Health gave passive

consent for use of their medical record for research purposes, thus allowing

eligible participants to opt out of study inclusion (protocol 11-I-0187).

Healthy, pre–COVID-19 control plasma samples were obtained from the

NewYork Blood Center, where they were collected under informed consent,

including use for research.

Anti–IFN-a2 antibody radioligand binding assay
A sequence-verified plasmid encoding the IFN-A2 cDNA sequence with

a Flag-Myc tag (OriGene Technologies, Rockville, Md; catalog RC221091)

was used as template in T7-promoter-based in vitro transcription/translation

reactions (Promega, Madison, Wis; L1170) with 35S-methionine (Perki-

nElmer, Waltham, Mass; NEG709A). IFNA2 protein was purified via

Nap-5 columns (GE Healthcare, Chicago, Ill; 17-0853-01) incubated with

2.5mL of study participant plasma or 1mL of anti–myc-positive control anti-

body (Cell Signaling Technology, Danvers, Mass; 2272), followed by immu-

noprecipitation with Sephadex protein A/G beads (Sigma-Aldrich, St Louis,

Mo; GE17-5280-02 and GE17-0618-05, 4:1 ratio) in 96-well polyvinylidene

difluoride filtration plates (Corning, Corning, NY; EK-680860).

A Microbeta Trilux liquid scintillation plate reader (PerkinElmer) was

used to measure the radioactive counts (cpm) of immunoprecipitated protein

samples. The antibody index was calculated as follows: (sample cpm

value 2 mean blank cpm value)/(positive control antibody cpm value 2
mean blank cpm value).

Whole-exome sequencing
Whole-exome sequencing and candidate variant analysis was performed as

previously described.E6

Bulk RNA sequencing
Whole blood was collected in PAXgene tubes (Qiagen, Germantown, Md).

Messenger RNAwas extracted using the PAXgene blood RNA Kit (Qiagen),

followed by globin messenger RNA depletion and polyA capture. Barcoded

nondirectional libraries were sequenced using the Illumina NovaSeq platform

(Illumina, San Diego, Calif), generating paired-end 150 bp reads. Differential

gene expression analysis was performed by Partek Flow software (Partek,

Chesterfield, Mo).

Assessment of NFKB2 activation
A total of 13 106 PBMCs, corresponding to 120 mg of protein, were stim-

ulatedwith anti-CD3 (cloneOKT3, ThermoFisher Scientific,Waltham,Mass)

for 2 days, then lysed, transferred to nitrocellulose membranes, and immuno-

blotted with antibodies against p100/p52 (Cell Signaling Technology; 4882)

and b-actin (clone 13E5, Cell Signaling Technology), both used at 1:1000

dilution in 5% BSA. Images were acquired by an iBright Imager device

(Thermo Fisher Scientific) and quantified by ImageJ2 software (imagej.net/

software/imagej2/).E7

Statistical analysis
Pathway analysis was performed by Ingenuity Pathway Analysis (Qiagen)

on differentially expressed genes with a fold change of at least 2-fold and a

false discovery rate of <0.05.
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TABLE E1. Immunologic evaluations in the patient with NFKB2Thr684Pro

Characteristic

Patient’s approximate age group at laboratory testing

Young childhood after recovery from influenza

A(H1N1)pdm09 virus pneumonia (reference range)

Older adolescence after recovery from severe

COVID-19 (reference range)

Hemogram

White blood cells, 103 cells/mL 11.28 (5.41-9.7) 7.78 (5.52-9.29)

Neutrophils, 103 cells/mL 5.31 (2.58-5.95) 3.51 (3.04-6.06)

Lymphocytes, 103 cells/mL 4.92 (1.23-2.76) 3.09 (1.17-3.10)

Platelets, 103 cells/mL 406 (187-376) 384 (189-342)

Lymphocyte subsets*

CD31, 103 cells/mL 3879 (1000-2600) 3166 (1000-2600)

CD31CD41, 103 cells/mL 2070 (225-1100) 1649 (530-1500)

CD31CD81, 103 cells/mL 1616 (3330-1100) 1367 (330-1100)

CD191, 103 cells/mL 705 (270-860) 251 (110-570)

Naive, % CD191 74.0 (48.4-79.7) 72.3 (48.4-79.7)

Unswitched memory, % CD191 10.4 (7.0-23.8) 6.6 (7.0-23.8)�
Switched memory, % CD191 12.4 (8.30-27.8) 16.7 (8.30-27.8)

Plasmablasts Not done 0.3 (0.1-2.4)

Marginal zone–like B cells, % CD191 Not done 19.6 (11.8-59.7)

CD32CD561, 103 cells/mL 591 (70-480) 62 (70-480)�
Immunoglobulins

IgG, mg/dL 501 (639-1434)� 369 (639-1344)�
IgM, mg/dL 182 (40-240) 28 (40-240)�
IgA, mg/dL 61 (70-312)� 24 (70-312)�

Vaccine titers

Positive titers to pneumococcal subtypes 13/14 (>7) 5/23 (>14)

Tetanus >7.0 (>0.15) 0.44 (>0.15)

This patient had 2 immunologic evaluations: after recovery from influenza A(H1N1)pdm09 virus pneumonia in early childhood, and after recovery from SARS-CoV-2 during

adolescence. The parenthetical reference ranges are matched to the patient’s age group and are derived from healthy controls, as determined by the clinical immunology laboratory

at Boston Children’s Hospital (Boston, Mass).

*Naive, CD191CD272IgD1, unswitched memory CD191CD271IgD1, switched memory CD191CD271IgD2, plasmablast CD191CD24loCD38hi.

�Clinically relevant values outside the parenthetical reference ranges.
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