Skip to main content
. Author manuscript; available in PMC: 2023 Apr 1.
Published in final edited form as: Dev Psychol. 2022 Apr;58(4):607–630. doi: 10.1037/dev0001291

Table 3.

LMER results for unrelated trials*.

A) All participants (N=61) **
Estimate Std. Error t-value p-value
(Intercept) 0.371 0.220 1.684 0.095
Vocabulary 0.023 0.147 0.157 0.875
Semantic category density 0.344 0.138 2.487 0.013
Word Degree 0.298 0.267 1.118 0.264
Global Cluster Coefficient −0.099 0.088 −1.122 0.262
Age 0.015 0.244 0.061 0.951
Vocab. x Sem. Category Density −0.154 0.136 −1.136 0.256
Vocab. x Word Degree −0.210 0.168 −1.253 0.211
Vocab. x GCC 0.026 0.082 0.320 0.749
Vocab. x Age −0.014 0.210 −0.068 0.946
Age x Sem. Category Density −0.245 0.192 −1.277 0.202
Age x Word Degree −0.314 0.267 −1.175 0.240
Age x GCC 0.366 0.322 1.139 0.255
Cat. Density x Age x Vocab. 0.063 0.194 0.325 0.745
Degree x Age x Vocab. 0.150 0.180 0.833 0.405
GCC x Age x Vocab. 0.146 0.333 0.437 0.662

B) Higher vocabulary group (N=30)
Estimate Std. Error t-value p-value
(Intercept) 0.473 0.159 2.974 0.004
Semantic category density 0.079 0.182 0.432 0.666
Word Degree 0.235 0.137 1.718 0.087
Global Cluster Coefficient −0.214 0.219 −0.979 0.328
Age −0.431 0.325 −1.325 0.186
Age x Sem. Category Density −0.038 0.254 −0.150 0.881
Age x Word Degree −0.201 0.147 −1.370 0.171
Age x GCC 1.175 0.708 1.661 0.097

C) Lower vocabulary group (N=31)
Estimate Std. Error t-value p-value
(Intercept) 0.393 0.542 0.724 0.469
Semantic category density 0.567 0.192 2.953 0.003
Word Degree 0.603 0.735 0.820 0.412
Global Cluster Coefficient 0.114 0.064 1.785 0.075
Age Group 0.092 0.555 0.166 0.868
Age Grp x Sem. Category Density 0.508 0.278 1.825 0.068
Age Grp x Word Degree −0.499 0.741 −0.673 0.501
Age Grp x GCC 0.162 0.284 0.569 0.570

Panel A illustrates results for all participants, and panels B and C report model outcomes for higher and lower vocabulary groups, respectively. Significant effects are highlighted in bold, marginal effects in italics. Covariance matrices are appear with the analytic code on osf.io/kt9gs

*

Exploratory analyses also found that category pairings did not contribute to the model, and that removing potential late-talkers below the 10th percentile on MBCDI did not influence the results, these analyses can be viewed on osf.io

**

Models were also repeated using robust regression, which controls for potential influence of outliers. Statistical patterns are identical and reported on osf.io