Skip to main content
. Author manuscript; available in PMC: 2023 Apr 1.
Published in final edited form as: Dev Psychol. 2022 Apr;58(4):607–630. doi: 10.1037/dev0001291

Table 4.

LMER results for related trials*.

A) All participants (N=61) **
Estimate Std. Error t-value p-value
(Intercept) 0.746 0.205 3.646 0.0003
Vocabulary −0.032 0.152 −0.210 0.834
Semantic category density 0.316 0.143 2.214 0.027
Word Degree 0.277 0.271 1.024 0.306
Global Cluster Coefficient 0.034 0.091 0.370 0.711
Age 0.707 0.252 2.806 0.005
Vocab. x Sem. Category Density −0.167 0.139 −1.202 0.230
Vocab. x Word Degree −0.140 0.174 −0.805 0.421
Vocab. x GCC −0.003 0.085 −0.031 0.975
Age x Vocab. −0.183 0.219 −0.836 0.403
Age x Sem. Category Density 0.398 0.199 1.996 0.046
Age x Word Degree −0.324 0.276 −1.172 0.241
Age x GCC 0.677 0.337 2.008 0.045
Cat. Density x Age x Vocab. 0.128 0.200 0.638 0.524
Degree x Age x Vocab. 0.153 0.186 0.820 0.412
GCC x Age x Vocab. 0.401 0.346 1.161 0.246
B) Higher vocabulary group (N=30)

Estimate Std. Error t-value p-value
(Intercept) 0.823 0.154 5.343 <0.0001
Semantic category density 0.368 0.186 1.979 0.048
Word Degree 0.016 0.135 0.117 0.907
Global Cluster Coefficient 0.398 0.227 1.750 0.081
Age Group 1.152 0.337 3.416 0.0007
Age Grp x Sem. Category Density 0.535 0.265 2.024 0.043
Age Grp x Word Degree −0.123 0.151 −0.813 0.416
Age Grp x GCC 1.997 0.745 2.681 0.008

C) Lower vocabulary group (N=31)

Estimate Std. Error t-value p-value
(Intercept) 0.907 0.562 1.615 0.107
Semantic category density −0.148 0.200 −0.742 0.458
Word Degree 0.691 0.776 0.891 0.374
Global Cluster Coefficient 0.031 0.066 0.475 0.635
Age Group −0.664 0.587 −1.131 0.258
Age Grp x Sem. Category Density 0.171 0.287 0.594 0.553
Age Grp x Word Degree −0.634 0.787 −0.805 0.421
Age Grp x GCC 0.271 0.291 0.931 0.352

Panel A illustrates results for all participants, and panels B and C include model outcomes for higher and lower vocabulary groups, respectively. Significant effects are highlighted in bold, marginal effects (.05<p<.1) in italics. Covariance matrices are posted with the analytic code on osf.io/kt9gs.

*

Exploratory analyses also found that category pairings did not contribute to the model, and that removing potential late-talkers below the 10th percentile on MBCDI did not influence the results, these analyses can be viewed on osf.io

**

Models were also repeated using robust regression, which controls for potential influence of outliers. Statistical patterns are identical and reported on osf.io