Table 4.
A) All participants (N=61)
** | ||||
---|---|---|---|---|
Estimate | Std. Error | t-value | p-value | |
(Intercept) | 0.746 | 0.205 | 3.646 | 0.0003 |
Vocabulary | −0.032 | 0.152 | −0.210 | 0.834 |
Semantic category density | −0.316 | 0.143 | −2.214 | 0.027 |
Word Degree | 0.277 | 0.271 | 1.024 | 0.306 |
Global Cluster Coefficient | 0.034 | 0.091 | 0.370 | 0.711 |
Age | −0.707 | 0.252 | −2.806 | 0.005 |
Vocab. x Sem. Category Density | −0.167 | 0.139 | −1.202 | 0.230 |
Vocab. x Word Degree | −0.140 | 0.174 | −0.805 | 0.421 |
Vocab. x GCC | −0.003 | 0.085 | −0.031 | 0.975 |
Age x Vocab. | −0.183 | 0.219 | −0.836 | 0.403 |
Age x Sem. Category Density | 0.398 | 0.199 | 1.996 | 0.046 |
Age x Word Degree | −0.324 | 0.276 | −1.172 | 0.241 |
Age x GCC | 0.677 | 0.337 | 2.008 | 0.045 |
Cat. Density x Age x Vocab. | 0.128 | 0.200 | 0.638 | 0.524 |
Degree x Age x Vocab. | 0.153 | 0.186 | 0.820 | 0.412 |
GCC x Age x Vocab. | 0.401 | 0.346 | 1.161 | 0.246 |
B) Higher vocabulary group (N=30) | ||||
| ||||
Estimate | Std. Error | t-value | p-value | |
(Intercept) | 0.823 | 0.154 | 5.343 | <0.0001 |
Semantic category density | −0.368 | 0.186 | −1.979 | 0.048 |
Word Degree | 0.016 | 0.135 | 0.117 | 0.907 |
Global Cluster Coefficient | −0.398 | 0.227 | −1.750 | 0.081 |
Age Group | −1.152 | 0.337 | −3.416 | 0.0007 |
Age Grp x Sem. Category Density | 0.535 | 0.265 | 2.024 | 0.043 |
Age Grp x Word Degree | −0.123 | 0.151 | −0.813 | 0.416 |
Age Grp x GCC | 1.997 | 0.745 | 2.681 | 0.008 |
| ||||
C) Lower vocabulary group (N=31) | ||||
| ||||
Estimate | Std. Error | t-value | p-value | |
(Intercept) | 0.907 | 0.562 | 1.615 | 0.107 |
Semantic category density | −0.148 | 0.200 | −0.742 | 0.458 |
Word Degree | 0.691 | 0.776 | 0.891 | 0.374 |
Global Cluster Coefficient | 0.031 | 0.066 | 0.475 | 0.635 |
Age Group | −0.664 | 0.587 | −1.131 | 0.258 |
Age Grp x Sem. Category Density | 0.171 | 0.287 | 0.594 | 0.553 |
Age Grp x Word Degree | −0.634 | 0.787 | −0.805 | 0.421 |
Age Grp x GCC | 0.271 | 0.291 | 0.931 | 0.352 |
Panel A illustrates results for all participants, and panels B and C include model outcomes for higher and lower vocabulary groups, respectively. Significant effects are highlighted in bold, marginal effects (.05<p<.1) in italics. Covariance matrices are posted with the analytic code on osf.io/kt9gs.
Exploratory analyses also found that category pairings did not contribute to the model, and that removing potential late-talkers below the 10th percentile on MBCDI did not influence the results, these analyses can be viewed on osf.io
Models were also repeated using robust regression, which controls for potential influence of outliers. Statistical patterns are identical and reported on osf.io