Skip to main content
. Author manuscript; available in PMC: 2023 Apr 1.
Published in final edited form as: Dev Psychol. 2022 Apr;58(4):607–630. doi: 10.1037/dev0001291

Table 5.

Linear models for 36 month language outcomes.

A) Model 1: Predicting continuous language outcome (CELF-P2 score)
Estimate Std. Error t-value p-value
(Intercept) 140.4 21.7 6.48 <.0001
Vocabulary Percentile – 18 months −0.045 0.115 −0.394 0.695
Vocabulary Percentile – 24 months 0.023 0.097 0.243 0.809
GCC – 18 months 17.358 8.523 2.037 0.048
GCC – 24 months −94.815 37.841 −2.506 0.016
LogGaze – 18 months – SemRel 3.510 3.665 0.958 0.343
LogGaze – 18 months - SemUnrel 7.371 4.332 1.702 0.096
LogGaze – 24 months - SemRel 3.245 4.031 0.805 0.425
LogGaze – 18 months – SemRel 1.348 4.827 0.279 0.781
B) Model 2: Predicting categorical language delay outcome (CELF-P2 < 85 SS)
Estimate Std. Error t-value p-value
(Intercept) 9.789 6.686 1.464 0.143
Vocabulary Percentile – 18 months −0.041 0.048 −0.855 0.393
Vocabulary Percentile – 24 months 0.023 0.038 0.609 0.543
GCC – 18 months 5.915 2.869 2.061 0.039
GCC – 24 months −18.345 11.504 −1.595 0.111
LogGaze – 18 months – SemRel 0.695 1.539 0.452 0.652
LogGaze – 18 months - SemUnrel 3.767 1.850 2.036 0.042
Log Gaze – 24 months - SemRel 1.267 1.346 0.941 0.347
Log Gaze – 24 months - SemUnrel −0.783 1.729 −0.453 0.651

Significant effects are highlighted in bold.