Table 5.
A) Model 1: Predicting continuous language outcome (CELF-P2 score) | ||||
---|---|---|---|---|
Estimate | Std. Error | t-value | p-value | |
(Intercept) | 140.4 | 21.7 | 6.48 | <.0001 |
Vocabulary Percentile – 18 months | −0.045 | 0.115 | −0.394 | 0.695 |
Vocabulary Percentile – 24 months | 0.023 | 0.097 | 0.243 | 0.809 |
GCC – 18 months | 17.358 | 8.523 | 2.037 | 0.048 |
GCC – 24 months | −94.815 | 37.841 | −2.506 | 0.016 |
LogGaze – 18 months – SemRel | 3.510 | 3.665 | 0.958 | 0.343 |
LogGaze – 18 months - SemUnrel | 7.371 | 4.332 | 1.702 | 0.096 |
LogGaze – 24 months - SemRel | 3.245 | 4.031 | 0.805 | 0.425 |
LogGaze – 18 months – SemRel | 1.348 | 4.827 | 0.279 | 0.781 |
B) Model 2: Predicting categorical language delay outcome (CELF-P2 < 85 SS) | ||||
Estimate | Std. Error | t-value | p-value | |
(Intercept) | 9.789 | 6.686 | 1.464 | 0.143 |
Vocabulary Percentile – 18 months | −0.041 | 0.048 | −0.855 | 0.393 |
Vocabulary Percentile – 24 months | 0.023 | 0.038 | 0.609 | 0.543 |
GCC – 18 months | 5.915 | 2.869 | 2.061 | 0.039 |
GCC – 24 months | −18.345 | 11.504 | −1.595 | 0.111 |
LogGaze – 18 months – SemRel | 0.695 | 1.539 | 0.452 | 0.652 |
LogGaze – 18 months - SemUnrel | 3.767 | 1.850 | 2.036 | 0.042 |
Log Gaze – 24 months - SemRel | 1.267 | 1.346 | 0.941 | 0.347 |
Log Gaze – 24 months - SemUnrel | −0.783 | 1.729 | −0.453 | 0.651 |
Significant effects are highlighted in bold.