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Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders of childhood, and is
often characterized by altered executive functioning. Executive function has been found to be supported by flexibility in dynamic
brain reconfiguration. Thus, we applied multilayer community detection to resting-state fMRI data in 180 children with ADHD and
180 typically developing children (TDC) to identify alterations in dynamic brain reconfiguration in children with ADHD. We
specifically evaluated MR derived neural flexibility, which is thought to underlie cognitive flexibility, or the ability to selectively
switch between mental processes. Significantly decreased neural flexibility was observed in the ADHD group at both the whole
brain (raw p= 0.0005) and sub-network levels (p < 0.05, FDR corrected), particularly for the default mode network, attention-related
networks, executive function-related networks, and primary networks. Furthermore, the subjects with ADHD who received
medication exhibited significantly increased neural flexibility (p= 0.025, FDR corrected) when compared to subjects with ADHD
who were medication naïve, and their neural flexibility was not statistically different from the TDC group (p= 0.74, FDR corrected).
Finally, regional neural flexibility was capable of differentiating ADHD from TDC (Accuracy: 77% for tenfold cross-validation, 74.46%
for independent test) and of predicting ADHD severity using clinical measures of symptom severity (R2: 0.2794 for tenfold cross-
validation, 0.156 for independent test). In conclusion, the present study found that neural flexibility is altered in children with ADHD
and demonstrated the potential clinical utility of neural flexibility to identify children with ADHD, as well as to monitor treatment
responses and disease severity.

Molecular Psychiatry (2022) 27:4673–4679; https://doi.org/10.1038/s41380-022-01706-4

INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is one of the most
prevalent psychiatric disorders in children, affecting 3–5% of
children worldwide [1, 2]. ADHD is characterized by developmentally
inappropriate symptoms of inattention, impulsivity, and hyperactiv-
ity. Children with ADHD exhibit difficulties controlling their
behaviors and attention, which affects their academic performance
and social functioning [3]. Importantly, these symptoms often
persist into adulthood [4]. Current ADHD diagnosis relies largely on
behavioral assessments after symptoms onset. In addition, clinical
diagnostic approaches could be subjective and thus may influence
diagnostic accuracy. Thus, approaches capable of early and
objective diagnosis of ADHD may provide an opportunity of early
intervention to potentially minimize its long-term sequelae [5–7].
The development of machine learning methods has provided the
opportunity to solve these concerns. By integrating neuroimaging
data and machine learning methods, it is possible to differentiate
subjects with ADHD from typically developing children (TDC) and,
critically, to predict clinical outcomes [8].
A large number of neuroimaging studies have observed that

symptoms of ADHD are driven by atypical brain network

organization and impaired functional connectivity (FC) [9–12].
Disrupted whole brain and sub-network FC [9, 13], altered small-
world topology, higher local and lower global efficiency [14], and,
finally, reduced segregation between default mode network
(DMN) and task-relevant networks [15, 16] have been reported
in ADHD. However, one of the common assumptions of the
aforementioned studies was that the brain is temporally stable
during the entire imaging acquisition period (5–8min). Recent
evidence indicates that subjects are likely to engage in several
types of mental activities during a resting period of imaging
acquisition [17, 18], which could result in altered functional brain
network organization throughout the course of the scan [19, 20].
More importantly, several lines of evidence have reported that
brain dynamics are relevant for complex cognitive processes
[21–23] and are related to psychiatric and neurologic disease
[24, 25]. Thus, measuring “dynamic” brain features through
estimation of time-related variations across multiple short time
windows has gained substantial interest [24]. Notably, altered
dynamic brain states, distorted quasi-periodic patterns of brain
activity, and changes in temporal variability of FC have been
observed in ADHD [26–30].
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Cognitive flexibility is a critical aspect of human cognition [31]
and has been reported to be a biomarker for brain disorders
[32–35]. Children with ADHD have reduced cognitive flexibility as
compared to TDC (higher switch costs and slower reaction time)
[36–38]. Recent studies have suggested that brain dynamics are
important features underlying cognitive flexibility [21, 23, 39–41].
Specifically, neural flexibility, calculated as the frequency at which
brain regions change their allegiance from one functional module
to another during fMRI acquisition, has recently been proposed
[42, 43]. Neural flexibility not only potentially links to cognitive
flexibility, but also has been reported to predict learning outcomes
and executive functions in healthy subjects [42, 44]. Therefore,
neural flexibility might be a useful metric to reflect impaired
cognitive flexibility in ADHD subjects.
In this study, we aimed to determine whether neural flexibility

can serve as a biomarker to differentiate children with ADHD from
TDC and whether it is associated with ADHD severity. Specifically,
we implemented machine learning methods on neural flexibility
estimates to: (1) distinguish children with ADHD from TDC; and (2)
to assess symptom severity in children with ADHD. We
hypothesized that children with ADHD would exhibit lower neural
flexibility than that of TDC and that it would successfully
differentiate groups and predict symptom severity. Furthermore,
although pharmacological treatments can ameliorate the core
symptoms of ADHD and improve subjects’ future functional
outcomes [45], only a few studies have investigated how
medication use impacts functional network organization in ADHD
[46]. Therefore, we additionally hypothesized that children with
ADHD who were on medication would show a “recovery” of neural
flexibility toward that observed in TDC.

METHODS
We used two sites from a publicly available, multi-site ADHD dataset, the
ADHD-200 study [47]: Peking University (PKU) and New York University
(NYU), with 236 and 192 subjects, respectively. The experimental protocols
were approved by the local Internal Review Board. Written informed
consent was obtained from all participants. The PKU and NYU study
cohorts are the two largest samples and have balanced numbers of ADHD
and TDC subjects. The ADHD Rating Scale IV [48] and Conner’s Parent
Rating Scale-Revised, Long version (CPRS-LV) [49] were used by PKU and
NYU respectively to clinically assess the severity of ADHD. Exclusion criteria
included left-handedness, IQ below 80, no ADHD rating scale, loss of
consciousness due to head trauma, neurological illness, schizophrenia,
affective disorder, pervasive development disorder, or substance abuse. In
addition, subjects who failed to pass quality control of image preproces-
sing were also excluded from the analysis, including no full brain coverage,
failed tissue segmentation, failed image registration, and excess motion
(mean FD > 0.3 mm, maximal head motion of more than 5mm or 5
degrees). Children with ADHD were included whether or not they were
currently taking stimulant medication. In main analyses, all children with
ADHD were included in a single group. We additionally investigated the
effect of stimulant medication use on neural flexibility by separating
children with ADHD into medicated and unmedicated groups. For
medicated group, psychostimulant medications were withheld 24–48 h
prior to scanning.
RsfMRI data were preprocessed using FSL [50], which included

discarding the first 10 volumes, slice-timing correction, motion correction
with the mcflirt function of FSL [50], spatial smoothing (6 mm full-width at
half-maximum), bandpass filtering (0.01 Hz–0.08 Hz), global mean/white
matter/cerebrospinal fluid (CSF) signal regression, 24 head motion
parameters regression and wavelet denoising [51, 52]. The time series
lengths varied among subjects and imaging sites. To minimize biases
contributed by the varying lenghts of time series data, the total time series
length was kept at 225 for PKU subjects and 165 for NYU subjects. For each
subject, T1-weighted images were first segmented into three tissue types,
including gray and white matter and CSF. The tissue segmentation images
were then normalized to a standard template using the advanced
normalization tools (ANTs) [53].
After preprocessing, a 5 mm sphere around the coordinates defined by

Power264 atlas [54], was deformed back to the rsfMRI space to extract the

mean time series of each region of interest (ROI). Specifically, Power264
atlas parcellates the brain into 264 regions and 14 functional systems,
including sensorimotor hand (SH), sensorimotor mouth (SM), auditory
(AUD), visual (VIS), cingulo-opercular (CO), frontoparietal (FP), default
model (DMN), memory retrieval (MEM), salience (SAL), subcortical (SUB),
ventral attention (VA), dorsal attention (DA), cerebellar (CB), as well as an
uncertain system (UC). A sliding window approach with a window width of
30 volumes and an increment of 1 volume was employed for the time
series data. Pearson’s correlations were calculated for each pair of the 264
ROIs in each window, a p value for each correlation coefficient was
estimated using the MATLAB function corrcoef, and only connections
significantly different from zero were retained (p < 0.05, FDR corrected for
all 34,716 connections).
A multilayer network was constructed by connecting each node to itself

in adjacent time windows (Fig. 1). Dynamic community detection based on
multilayer modularity was performed on the weighted multilayer network
using the Generalized Louvain method [55, 56]. The Generalized Louvain
algorithm outputs a community assignment for each node in each time
window. Using the community assignment results, neural flexibility was
calculated [42, 57] as:

fi ¼ ni
N

where N is the total number of possible community changes and ni is the
number of times node i changes its community label. To account for
pseudo-randomness of the community detection algorithm, the General-
ized Louvain method was repeated 100 times and mean values of all
community-based measures were taken. Whole brain and network-level
neural flexibility were calculated as the mean neural flexibility of all nodes
of the entire brain and within a predefined canonical network from the
Power264 atlas, respectively.
Linear regression was applied to evaluate statistical differences between

groups (e.g., ADHD vs TDC, unmedicated ADHD vs medicated ADHD,
unmedicated ADHD vs TDC, medicated ADHD vs TDC). Age, sex, mean FD,
and imaging site were included as covariates. Statistical significance was
considered as p< 0.05. False discovery rate (FDR) correction was performed for
multiple comparisons. The extreme gradient boosting (XGBoost) algorithm was
used to develop two models: a classification model to differentiate subjects
with ADHD from TDC, and a regression model to predict ADHD severity of
individuals. Optimally predictive combinations of region-wise neural flexibility
were identified based on their ranked nodal importance for the classification
and regression models, respectively. Specifically, we evaluated the model
performance of the top N (N 2 ½1; 264�) regions based on their importance
scores using tenfold cross-validation (CV), which we conducted ten times.
Through this process a set of brain regions yielding the best performance of
accuracy for the classification model and R2 for the regression model was
determined. Tuning parameters of the final models were provided in Table S2.
Additional details and analyses are provided in Supplementary

Information.

Fig. 1 Illustration of a multilayer network. Top panel: in the
multilayer network representation of temporal data, each node is
connected to itself in adjacent contiguous windows. Next, each
node is assigned to a functional community, represented by
different colors. Bottom panel: representative correlation matrices
of each sliding window.
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RESULTS
After data preprocessing and quality control, a total of 180 ADHD
subjects and 180 TDC were included in the statistical analyses.
Demographic and clinical information, as well as motion
parameter estimates, are summarized in Table 1.

Neural flexibility
Significantly decreased whole brain neural flexibility was
observed in subjects with ADHD as compared to TDC (raw
p ¼ 0:0005; Fig. 2a). Consistent with this finding, we observed
that modules were significantly more stable in subjects with
ADHD (Fig. S1). To further examine if the observed decrease in
neural flexibility in ADHD was driven by specific functional brain
systems or a was general feature of the whole brain, network-
level neural flexibility was compared between ADHD and TDC
subjects (Fig. 2b). Compared to TDC, subjects with ADHD
exhibited significantly decreased neural flexibility in all but the
CO and CB networks (p values < 0.05, FDR corrected for 14
networks). Additional region-level analysis revealed similar
patterns (Fig. S2). Together, these results indicate that subjects
with ADHD exhibited reduced neural flexibility spanning across
multiple functional networks encompassing both higher order
and basic cognitive systems.

Medication influence
A total of 46 subjects with ADHD received medication. Thus, we
evaluated the influence of medication on neural flexibility in the
ADHD group (Fig. 3). We found that whole brain neural flexibility
was significantly higher in the medicated ADHD group than the
unmedicated group (p ¼ 0:025, FDR corrected for three compar-
isons). Meanwhile, no statistical differences were observed
between the medicated ADHD group and the TDC group (
p ¼ 0:74, FDR corrected for three comparisons). Moreover, ADHD
subjects in the unmedicated group exhibited significantly
decreased neural flexibility when compared to TDC (p ¼ 0:012,
FDR corrected for three comparisons). Network-level and region-
level analyses demonstrate these findings are largely consistent
across brain networks and regions (Fig. S4, Table S6). Together,
these results indicate treatment with medication has significant
impact on the “recovery” of neural flexibility toward that observed
in TDC subjects.

Differentiating ADHD from TDC
We hypothesized that neural flexibility could serve as a biomarker
to differentiate children with ADHD from TDC. Due to the smaller
number of female subjects with ADHD, the observed sex
differences in neural flexibility (Fig. S5), and the observed
“recovery” of neural flexibility for subjects with ADHD on
medication, we excluded both female and medicated ADHD
subjects from training of the machine learning model. We
performed ten-times tenfold CV, on the PKU dataset (TDC/ADHD:
65/51). The final model was then applied to the NYU dataset (TDC/
ADHD: 31/16) as an independent test.
When including the neural flexibility of all 264 brain regions,

an accuracy of 54.98% (sensitivity: 42.43%; specificity: 64.66%;
and AUC: 56.46%) was achieved using the PKU dataset (Fig. 4a).
Using the ranked importance scores, an optimal set of brain
regions whose neural flexibility could better differentiate
subjects with ADHD from TDC was identified (Fig. 4b and
Fig. S6). When limiting the model to brain regions with the
highest 24 importance scores, an accuracy of 77% (sensitivity:
72.13%; specificity: 80.78%; and AUC: 84.32%) was achieved
(Fig. 4a, b). These 24 regions spanned 8 functional systems (VIS:
6 nodes; UC: 5 nodes; DMN and FPN: 4 nodes each; SAL and SH:
2 nodes each; SUB: 1 node) (Table S3). Lastly, we applied the PKU
trained classification model with the 24 most predictive brain
regions to the NYU dataset, and achieved an accuracy of 74.46%
(sensitivity= 62.5%, specificity= 80.64% and AUC= 67.94%), Ta
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demonstrating the robustness of the proposed approaches for
differentiating ADHD from TDC.

Neural flexibility-based ADHD score
We next evaluated the performance of the regression model by
comparing the neural flexibility-based ADHD severity score and
the clinically obtained ADHD severity score. Using neural flexibility
of all 264 brain regions and the PKU dataset, the average R2 score
from tenfold CV with ten repetitions was 0.079. In contrast, an
average R2 of 0.2794 was achieved using the features selected
from the brain regions with the highest 28 importance scores
(Fig. 4c, d and Fig. S7). These 28 regions spanned 11 functional
systems (VIS: 8 nodes; DMN: 4 nodes; FPN: 3 nodes; SH, SAL, SUB,
DA and CB: 2 nodes each; VA, CO and UC: 1 node each). The spatial
distribution of these regions is provided in Fig. 4e and details of
these regions are summarized in Table S4. Applying this
regression model and the selected 28 regions to the NYU dataset
yielded an R2 of 0.156.

DISCUSSION
Extending research in ADHD indicating disruptions in dynamic FC
[26–30], here we examined the alterations of neural flexibility in
children with ADHD by employing a sliding window approach to
estimate multilayer networks. Overall, we found that subjects with
ADHD exhibited significantly decreased neural flexibility and
altered dynamic modular structure (Fig. S1). These findings
suggest that functional modules are less segregated in subjects
with ADHD than in TDC, consistent with the previously reported
impaired segregation of the default network and task-positive
networks in ADHD [15]. Since neural flexibility has been associated
with learning and executive functions [42, 44, 57], this decreased
neural flexibility may underlie the compromised performance in
the domain of executive function observed in ADHD.

ADHD leads to a system-wise neural flexibility reconfiguration
Decreased neural flexibility was observed in both higher order
networks and primary networks. Our results suggest a system-
wide dynamic reconfiguration in ADHD rather than a disruption
limited to specific sub-systems. Indeed, recent neurobiological
models of ADHD have favored multi-network explanations, and
the observed differences in functional organization as compared
to TDC are widely distributed [13, 15, 58]. Furthermore, though
dynamic network reconfiguration has been less investigated in
ADHD, existing research is consistent with our observation of a
system-wise reduction in neural flexibility. For instance, Rolls et al
reported decreased temporal variability of the FC [30]. Another
study reported that children with ADHD spent more time in a
hyperconnected state as compared to TDC [26]. Duffy et al. further
demonstrated that ADHD children with reduced temporal
variability is related to higher commission errors using a go/no-
go task, indicating the impaired executive functions of ADHD
subjects [16]. Meanwhile, hyperconnectivity patterns were also
widely reported in ADHD subjects [30, 58, 59], which would
potentially “lock” regions together, constrain regional module
transition frequency, and reduce neural flexibility.
Nevertheless, recent adult studies using the multilayer frame-

work reported that adults with ADHD had higher flexibility and
lower integration coefficient than of control subjects [60, 61],
opposite to our findings. While several potential factors may
explain the observed discrepancies, one of the most plausible
reasons may be the difference in age across the studies (current
cohort: mean age 11.65 years; adult cohorts: mean age 32 years). It
has been widely documented that higher-order brain functions
follow a protracted developmental timeline, well into adolescence
or early adulthood [21, 62, 63]. Therefore, the observed
discrepancies may reflect the complex developmental processes
associated with ADHD. Future studies executing a direct
comparison between different age groups and/or utilizing a
longitudinal design are warranted.

Medication effects
In this study, a total of 46 subjects were treated with stimulant
medication. By comparing them to the unmedicated ADHD
children, we found that medication use led to increased neural
flexibility that was no longer significantly different from that
observed in TDC. Since psychostimulant medications were
withheld 24–48 h prior to scanning, the observed “recovery” of
neural flexibility in the medication group may reflect the long-
term benefit of stimulant medication to brain function.
Consistent with our findings, previous structural and functional
MR imaging studies also suggested that ADHD subjects who
received stimulant treatment were more similar to TDC than
unmedicated subjects with ADHD [46, 64]. These results suggest
that neural flexibility is a sensitive metric revealing the
alterations of intrinsic brain function in response to stimulant
medication.

Fig. 2 Alteration of neural flexibility in ADHD. a A boxplot shows
significantly decreased whole brain neural flexibility in subjects with
ADHD as compared to TDC. b Comparisons of neural flexibility of
different functional networks. Black asterisks indicate significant
differences after FDR correction. SH sensorimotor hand, SM
sensorimotor mouth, CO cingulo-opercular, AUD auditory, DMN
default mode, MEM memory retrieval, VIS visual, FP frontoparietal,
SAL salience, SUB subcortical, VA ventral attention, DA dorsal
attention, CB cerebellar, UC uncertain system. Statistical significance
levels: *p < 0.05, **p < 0.01, ***p < 0.001.

Fig. 3 Influence of medication on neural flexibility in ADHD. A
boxplot shows significantly increased whole brain neural flexibility
in subjects with ADHD who are receiving treatment with medication
as compared to unmedicated ADHD subjects (corrected p= 0.025),
significantly decreased whole brain neural flexibility in unmedicated
ADHD subjects as compared to the TDC group (corrected
p ¼ 0:012), no significant difference in whole brain neural flexibility
between medicated ADHD subjects and subjects in the TDC group
(corrected p ¼ 0:74). Black asterisks indicate significant differences
after FDR correction. Statistical significance levels: *p < 0.05.
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Neural flexibility-based prediction
Machine learning methods have been increasingly employed to
differentiate ADHD patients from TDC and predict clinical
outcomes [8, 65]. Using the open access ‘ADHD-200’ dataset, a
number of prediction models have been developed, with a range
of accuracy from 55 to 90% [66–77]. Although, previous studies
have reported promising prediction performance, concerns haven
been raised about their methodological robustness [8]. Specifi-
cally, after reviewing 69 studies using neuroimaging features to
predict ADHD diagnosis, Pulini et al. indicated that high
classification accuracy appears to be inflated by circular analysis
and small sample size and that many studies lack independent
validation [78]. To mitigate these concerns, we combined tenfold
CV and independent testing procedures in this study. First, ten
repetitions of tenfold CV were applied. Since partitioning the
dataset into tenfolds could yield random effects that may
influence prediction performance, performing multiple repetitions
should minimize this effect. Second, our models were validated
using an independent dataset from NYU. Considering the
experimental differences between these two datasets (imaging
protocol, PKU: eye open/closed, NYU: eye closed, PKU: ADHD
Rating Scale IV, and NYU: CPRS-LV), which could greatly influence
the consistency of the data, our models still yield acceptable
prediction performance.
Finally, aforementioned studies largely focused on accurate

classification of ADHD. To date, only a few studies have been
conducted to predict ADHD symptom severity [79]. In this study, a
regression model was developed by identifying patterns of neural
flexibility that are predictive of clinically obtained ADHD severity
score (R2: 0.2794 for tenfold CV, 0.156 for independent test).
Currently, clinical ADHD diagnosis mainly relies on behavioral
assessments after symptoms onset and have potential rater bias
during implementation. Our findings could potentially inform
efforts at earlier detection for vulnerable youth.

Core regions of prediction
Using the ranked regional importance scores yielded by the
XGBoost algorithm, we identified 24 brain regions that yielded the
highest classification accuracy and 28 core regions that yielded
the highest R2 for predicting ADHD severity. We refer to these
brain regions as the core regions for classification (CR_c) and
regression (CR_r) models. We found that models including only

the core regions outperformed models including all regions. These
findings indicate that using all brain regions likely include noise,
inevitably leading to a negative impact on the performance of the
models. As a result, the use of the importance scores yielded by
the XGBoost offers a method to potentially remove noise while
preserving the features that are important for model training.
Among the detected 24 CR_c and 28 CR_r, 11 regions (VIS: 4

nodes; DMN: 3 nodes; FPN: 2 nodes; SUB and UC: 1 node each) were
consistently observed, suggesting that they may play key roles for
delineating ADHD from TDC as well as for predicting ADHD severity.
Indeed, using these 11 regions, comparable performance to the
CR_c and CR_r models was achieved from ten times tenfold cross
validation within the PKU dataset (Accuracy ¼ 71:43%, R2 ¼ 0:23),
as well as from the independent testing set (Accuracy ¼ 70:21%,
R2 ¼ 0:11). We also identified 13 regions specific to classification
accuracy and 17 regions specific to regression accuracy. These
regions were mainly located in DMN, FP, SAL, VIS, and attention
networks. This indicates that while there is some overlap, there are
also important differences between brain regions capable of
distinguishing TDC and ADHD and predicting severity of ADHD
symptoms.

Limitations
There are several limitations of this study. First, as publicly
available datasets, the imaging parameters and the rating systems
of IQ and ADHD severity differ between PKU and NYU cohorts.
Nevertheless, our prediction models were generalizable across the
two cohorts. Second, we only considered males in the machine
learning models due to the limited female subjects with ADHD.
Third, we opted not to adjust IQ since the ADHD subjects tends to
exhibit low IQ and controlling this variable can provide counter-
intuitive estimates of the effects of interest [11]. Finally, current
study was performed with the limited sample size, the use of a
cross-sectional design, and the use of data with short acquisition
time. A longitudinal and prospective study with a larger sample
size, longer scanning time and detailed medication information
will be needed to further confirm our findings.

CONCLUSION
In conclusion, we investigated the dynamic functional network
reconfiguration in ADHD. Significantly decreased neural flexibility

Fig. 4 Successful prediction of ADHD status and severity using neural flexibility. a The accuracy, sensitivity, specificity, and AUC when using
all 264 ROIs, top 24 ROIs, and independent testing using the NYU dataset with the top 24 ROIs, respectively for the ADHD classification model,
and b the spatial distribution of the most predictive 24 regions using ranked importance scores. c The R2 scores when using all 264 ROIs, top
28 ROIs, and independent testing using the NYU dataset with the top 28 ROIs, respectively for the ADHD severity regression model, and
d scatter plots comparing the representative neural flexibility-based severity score using tenfold cross validation and clinically obtained ADHD
severity score using the top 28 regions for PKU dataset (left) and independent testing using the NYU dataset (right). e The spatial distribution
of the most predictive 28 regions using ranked importance scores.
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was observed in children with ADHD spanning multiple brain
functional networks, supporting the multi-network explanations of
ADHD. Using the XGBoost approach, core regions critically
important for differentiating ADHD from TDC, as well as predicting
ADHD severity were reported. Finally, we were able to successfully
classify group membership and predict ADHD severity using an
independent testing dataset, demonstrating the robustness of
these approaches. Our study demonstrated the potential clinical
utility of neural flexibility to diagnose children with ADHD and
monitor disease severity.
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