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A Multifaceted benchmarking of synthetic
electronic health record generation models

Chao Yan 1,7, Yao Yan 2,7, Zhiyu Wan 1,7, Ziqi Zhang 3, Larsson Omberg 2,
Justin Guinney4,5, Sean D. Mooney4,8 & Bradley A. Malin 1,3,6,8

Synthetic health data have the potential to mitigate privacy concerns in sup-
porting biomedical research and healthcare applications. Modern approaches
for data generation continue to evolve and demonstrate remarkable potential.
Yet there is a lack of a systematic assessment framework to benchmark
methods as they emerge and determine which methods are most appropriate
for which use cases. In this work, we introduce a systematic benchmarking
framework to appraise key characteristics with respect to utility and privacy
metrics. We apply the framework to evaluate synthetic data generation
methods for electronic health records data from two large academic medical
centers with respect to several use cases. The results illustrate that there is a
utility-privacy tradeoff for sharing synthetic health data and further indicate
that nomethod is unequivocally the best on all criteria in each use case, which
makes it evident why synthetic data generation methods need to be assessed
in context.

The analysis of large quantities of data derived from electronic health
records (EHRs) has supported a number of important investigations
into the etiology of disease, personalization of medicine, and assess-
ment of the efficiencies and safety in healthcare administration1–3.
Mounting evidence suggests that broader data sharing would ensure
reproducibility, as well as larger and more robust statistical analysis4,5.
Yet EHR data are rarely shared beyond the borders of the healthcare
organization that initially collected the data. This is due to a number of
reasons, some of which are technical, others of which are more social
in their nature. In particular, the privacy of the patients to whom the
data correspond is often voiced as a reason for not sharing suchdata6,7.

Over the past several years, the notion of synthetic versions of
EHR data has been proposed as a solution for broader data sharing8,9.
While synthetic data are not novel in principle, recent advances in
machine learning have opened up new opportunities to model com-
plex statistical phenomena within such data, which could support a
variety of applications8. For instance, detailed synthetic data could
make it easier to develop techniques for clinical decision support, as

well as prototype automated research workflows10. At the same time,
synthetic data can sever the direct relationship with the real patient
records upon which they are based, thus mitigating privacy
concerns9,11. As a result, a growing set of research initiatives have
developed, or are considering the use of, synthetic data sharing,
including the National COVID Cohort Collaborative (N3C)12 (https://
covid.cd2h.org/n3c) supported by the U.S. National Institutes of
Health and the Clinical Practice Research Datalink13 (https://cprd.com/
synthetic-data) sponsored by the U.K. National Institute for Health and
Care Research.

While various synthetic EHR data generation techniques have
been proposed, generative adversarial networks (GANs) have gained a
substantial amount of attention, with their potential illustrated for a
wide range of applications8,14,15. Informally, a GAN is composed of two
neural networks that evolve over a series of training iterations: (1) a
generator that attempts to create realistic data and (2) a discriminator
that aims to distinguish between synthetic and real data16. Iteratively,
the generator receives feedback from the discriminator, which it
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leverages to tune its network to more effectively imitate the real data.
Unlike traditional data synthesis approaches, which either explicitly
model clinical knowledge or make assumptions about the relation-
ships between features17,18, models built through GANs circumvent
these challenging issues by directly learning complex relationships
from multi-dimensional data.

The field has advanced rapidly; however, there has been little
attention paid to benchmarking, which is a concern for several rea-
sons. First, there is a lack of consensus on the evaluation metrics that
should be applied to assess synthetic EHR data. Yet this is critical to
comprehensively compare and contrast candidate synthesis models.
While several investigations have demonstrated the superiority of new
GANmodels over existingmodels, the comparisons are not systematic
and are susceptible to the self-assessment trap19 in that the model
developers benchmark theirownmodels. Second, there is awide range
of use cases for synthetic data, each with its own set of priorities
regarding what aspects of the data should be preserved. Most pub-
lications on EHR data synthesis neglect the use case, such that it is
unclearwhat conditions are ideal for the simulationmodel. Third, prior
evaluations have typically focused on the simulation and evaluation of
a single execution, such that only one synthetic dataset is generated by
each model20,21. This is problematic because GAN models are often
associated with unstable training trajectories, which can lead to quite
different models and inconsistencies in the quality of the generated
data15,22,23.

In this paper, we introduce a benchmarking framework to evalu-
ate GAN models for EHR synthesis (Fig. 1). We focus specifically on
structured EHR data24, as this type of data has supported numerous
clinical association and outcome prediction studies. There are several
specific contributions of this work:
1. We incorporate a complementary set of data utility and privacy

metrics into the benchmarking framework to enable a systematic
evaluation of synthesis models.

2. We introduce a rank-based scoring mechanism that converts
scores from individualmetrics into the final score of amodel. This
mechanism enables tradeoffs between competing evaluation
metrics.

3. To enable broad reuse, the framework accommodates multiple
aspects of complexity from GAN-based synthesis, including
various data types in real data (e.g., categorical and continuous
feature representations), different data synthesis paradigms (i.e.,
the manner by which real data is applied to train generative
models), and the inconsistent quality of synthesized data by GAN
models.

4. We use EHR data from two large academic medical centers in the
United States to benchmark the state-of-the-art GAN models. We
demonstrate the flexibility and generalizability of the framework
through contextualized constructionof concrete use cases, where
synthetic EHRs already (or have the potential to) provide support.

5. Our findings show that no model is unequivocally the best on all
criteria in each use case for each dataset. This result clearly illus-
trates why synthetic data generation models need to be system-
atically assessed in the context of their use case before their
application.

Results
Benchmarking framework
The benchmarking framework focuses on two perspectives—utility
and privacy (Fig. 1). Table 1 summarizes the metrics incorporated into
the Multifaceted assessment phase of the benchmarking framework.
The “Methods” section provides the details for these metrics.

In this study, data utility was measured through the principles of
resemblance and outcome prediction. Resemblance focuses on the
internal distributional characteristics of data and considers two com-
plementary criteria: (1) feature-level statistics—the ability to capture

characteristics of the distributions of real data—through dimension-
wise distribution25, column-wise correlation26, and latent cluster
analysis27, and (2) record-level consistency, in terms of both the ability
to generate individual records that comply with clinical knowledge as
measured by clinical knowledge violation and the ability to capture the
quantity of record-level information by medical concept abundance.
By contrast, outcome prediction focuses on downstream modeling
tasks and measures the ability to train and evaluate machine learning
models as measured by model performance28 and feature selection.
Notably, the three metrics for feature-level statistics differ in the dis-
tributions considered and correspond to themarginal distribution, the
correlation between two features, and the joint distribution of all
features, respectively.

Data privacy was assessed through four metrics: (1) attribute
inference risk25, in which unknown attribute values of interest are
predicted from a set of known attribute values, (2) membership
inference risk25, which indicateswhether a real recordwasused to train
a generative model, (3) meaningful identity disclosure risk29, in which
the identity and sensitive attributes of a patient’s record are detected
as being part of the real dataset, and (4) nearest neighbor adversarial
accuracy (NNAA) risk30, which indicates whether a generative model
overfits the real training data. The privacy risks were measured under
the typical assumption about an attacker’s knowledge. Specifically, it
was assumed that the attacker has access to synthetic data, but not the
generative models20,25,31. It should be noted that we will mainly use the
term attribute (instead of feature) in the context of privacy risk to be
consistent with the privacy literature. In addition, we will use record to
denote the data for a patient.

Prior studies into synthetic EHRdata comparedmodels using only
a single training of the generator. Yet this can lead to a less reliable
evaluation because GAN models can be unstable relative to training
(leading to models with large differences in parameters)15,22, making it
hard to yield synthetic datasets of consistent data quality32–34. In this
work, we integrated a mechanism into the framework that involves
training multiple models and generating data from each to capture
variations in models and baking biases into model comparison (Syn-
thetic EHR data generation phase in Fig. 1). Specifically, we performed
model training and synthetic data generation five times for each
model. We then selected the three datasets that best preserved the
dimension-wise distribution of real data for the benchmarking analy-
sis. We relied upon thismetric to filter synthetic datasets because it is a
basic utility measure and provides face-value evidence of the usability
of synthetic data. In doing so, we dropped the synthetic datasets that
poorly captured the first-moment statistics of individual features.

We designed a ranking mechanism that scores each model based
on the results of three independently generated datasets. Specifically,
for each metric, we calculated the metric scores for all of the datasets
generated by all candidate models. Next, for each metric, we ranked
the synthetic datasets—with smaller ranks denoting better perfor-
mance of a dataset on the givenmetric. For eachmetric, wedefined the
average of the ranks of each model’s three synthetic datasets as the
rank-derived scoreon thismetric. Thus, therewere twelve lists of ranks
and rank-derived scores, one for each metric. The final score for a
model was the weighted sum of the rank-derived scores, where the
weights were tailored to the specific use case in the Model recom-
mendation phase. An example of this process is provided in
“Methods”.

We used this framework to evaluate five EHR synthetic data gen-
eration models based on GANs8: (1) medGAN25, (2) medBGAN35, (3)
EMR-WGAN20, (4) WGAN35, and (5) DPGAN36. In addition, we incorpo-
rated abaseline approach that randomly samples the values of features
based on themarginal distributions of the real data to complement the
scope of benchmarking in terms of the variety of model behavior. We
refer to this approach as the sampling baseline, or Baseline. Interest-
ingly, as our results illustrate, this approach outperformed the GAN
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Fig. 1 | An overviewof the synthetic EHRdata generation benchmarking framework. The framework is composed of three phases: (1) a synthetic EHR data generation
process, (2) a multifaceted assessment process, and (3) a use case-specific model recommendation process. In Phase 1, given a synthesis paradigm and the real data, we
generatemultiple (specifically, three in our experiments) synthetic datasets using eachdata generationmodel. In Phase 2, each generated synthetic dataset is assessed and
assigned a value in terms of each assessment metric. Afterward, all synthetic datasets will be ranked according to their values in terms of eachmetric. In Phase 3, for each
use case, we assign a weight to eachmetric and convertmultiple (specifically, twelve in our experiments) ranking lists of synthetic datasets into one ranking list of models.
Finally, the top ranked model for each use case is recommended. EHR: electronic health record.
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models in practical use cases. Table 2 summarizes the key character-
istics of thesemodels, while complete details are provided inMethods.

Datasets
We performed our benchmarking using EHR data from two large
academic medical centers in the United States, the University of
Washington (UW) and Vanderbilt University Medical Center (VUMC).
Table 3 provides summary characteristics for the data. TheUWdataset
was introduced in a public DREAM Challenge for mortality
prediction37. It includes 2665 features from 188,743 patients who vis-
ited the UW health system between January 2007 and February 2019.

By contrast, the VUMC dataset includes 2592 features from 20,499
patients who tested positive for COVID-19 at an outpatient visit from
March 2020 to February 2021.

Data utility
Figure 2 depicts the prevalence of categorical features for the real and
synthetic datasets. It can be seen that Baseline consistently achieved
the most similar marginal distributions to real data for both datasets,
as it achieves the lowest APD of all synthesis models. Among the GAN
synthetic datasets, those generated by EMR-WGAN achieved a clear
pattern for both UW and VUMC datasets in which all binary features

Table 1 | A summary of the metrics in the framework

Metric Summary Direction

Utility Dimension-wise distribution Goal: The ability to capture marginal feature distributions in real data. Measurement: Average of the
absolute prevalence differences (APD) for binary features and the average of the Wasserstein distances
(AWD) for continuous features between real and synthetic datasets25.

↓

Column-wise correlation Goal: The ability to capture the relationship between two features in real data. Measurement: Average of
the cell-wise absolute differences of the Pearson correlation coefficient matrices derived from real and
synthetic datasets26.

↓

Latent cluster analysis Goal: The ability to capture the joint distribution of all features in real data. Measurement: Deviation of a
synthetic dataset in the underlying latent space from the corresponding real dataset in terms of unsu-
pervised clustering27.

↓

Clinical knowledge violation Goal: The ability to learn the clinical knowledge at the patient level. Measurement: Proportion of gen-
erated records that violate clinical knowledgederived from the real dataset (e.g., the synthetic records for
male patients are frequently associated with pregnancy diagnosis codes).

↓

Medical concept abundance Goal: The ability to retain record-level information from the real data. Measurement: Normalized Man-
hattan distance between the distributions of the number of assigned distinct medical concepts for real
and synthetic records.

↓

TSTR Model performance Goal: The ability to approximate the performance of the downstream task of machine learning model
development. Measurement: Given an outcome prediction task, this is calculated as the model perfor-
mance, typically the area under the receiver operating characteristics curve (AUROC), in the scenario of
training on synthetic dataset and testing on real dataset (TSTR)28.

↑

TRTS Model performance Goal: The ability to generate convincing and realistic data records for different labels. Measurement:
Given an outcome prediction task, this is calculated as the model performance, typically the AUROC, in
the scenario of training on real dataset and testing on synthetic dataset (TRTS)28.

↑

Feature selection Goal: The ability to support model interpretability in downstream tasks. Measurement: The proportion of
shared important features for models trained on a synthetic dataset and the corresponding real dataset.

↑

Privacy Attribute inference risk Goal: The adversary’s ability to infer sensitive attributes of a targeted record. Adversarial knowledge:
Demographics and some sensitive attributes of a targeted record. Measurement: The weighted sum of
F1 scores of the inferences of other sensitive attributes20,25.

↓

Membership inference risk Goal: The adversary’s ability to infer themembershipof a targeted record.Adversarial knowledge: A set of
attributes of a targeted record.Measurement: The F1 score of the inference based on Euclidean distances
between the targeted record and all synthetic records20,25.

↓

Meaningful identity disclosure risk Goal: The adversary’s ability to identify synthetic records with meaningful attributes. Adversarial knowl-
edge: A population dataset with identities. Measurement: The adjusted re-identification risk considering
the linkage between the synthetic dataset and the real dataset, the linkage between the synthetic dataset
and the population dataset, and the rareness of each sensitive attribute in the real dataset29.

↓

Nearest neighbor adversarial
accuracy risk

Goal: The extent to which a generative model overfits the real training dataset. Measurement: The dif-
ference between 1) the aggregated distance between records in the synthetic datasets and records in the
evaluation dataset and 2) the aggregated distance between records in the synthetic datasets and records
in the real dataset30.

↓

The direction of the values indicates if a higher (up arrow) or lower (down arrow) value is better.

Table 2 | A summary of the GAN models applied for benchmarking

Model Distance measure (loss
function)

Auto-encoder for discrete data
generation

Normalization Additional privacy components

medGAN25 Jensen-Shannon divergence Yes BatchNorm for generator No

medBGAN35 f-divergence Yes BatchNorm for generator No

EMR-WGAN20 Wasserstein divergence No BatchNorm for generator; LayerNorm for
discriminator

No

WGAN35 Wasserstein divergence Yes BatchNorm for generator No

DPGAN36 Wasserstein divergence Yes BatchNorm for generator Yes (differentially private stochastic
gradient descent)

All models share the generator-discriminator architecture for EHR data synthesis, but differ in their specializations to enhance either utility or privacy.
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were closely distributed along the diagonal line, suggesting a strong
capability of retaining the first-moment statistics in the real data. By
contrast, medBGAN, medGAN, and DPGAN (in descending order of
APD) were less competitive, exhibiting a tendency to deviate from the
marginal distribution in real data. For the VUMC dataset, the synthetic
datasets fromWGAN exhibited a similar pattern to those generated by
EMR-WGAN in terms of APD. Yet for the UWdataset, WGAN achieved a
substantially higher APD than EMR-WGAN. DPGAN, which enforced a
differential privacy constraint on WGAN, led to heavier deviations

from the marginal distribution in real data. In addition, all models,
except forWGANandDPGAN, achieved higher APD for theUWdataset
than for the VUMC dataset.

Figure 3 depicts seven data utility metrics for the real and syn-
thetic datasets. EMR-WGAN exhibited the highest average utility for
the UW dataset for all individual utility metrics except for dimension-
wise distribution (Fig. 3a–g). EMR-WGAN was also the best model
according to five (Fig. 3h, i, k, l, and m) of the seven metrics for the
VUMC dataset. For the other two metrics (i.e., clinical knowledge vio-
lation and feature selection), WGAN achieved the best performance,
which suggests it is more adept at record-level consistency andmodel
interpretability (Fig. 3j, n). By contrast, for the VUMC dataset, Baseline
consistently had the worst average utility (Fig. 3h–n). Also, for the UW
dataset, Baseline was one of the two worst performing models for six
metrics (Fig. 3b–g). DPGAN also performed poorly as it can be seen
that it was associatedwith the lowest utility for theUWdataset in terms
of column-wise correlation, latent cluster analysis, medical concept
abundance, and feature selection.

Data privacy
Figure 4 depicts four data privacy metrics for the real and synthetic
datasets. All synthetic datasets achieved a lower privacy risk than the
real data. In terms of membership inference risk, meaningful identity
disclosure risk, and NNAA risk, Baseline posed the lowest average risk
except that DPGAN achieved the lowest average meaningful identity
disclosure risk for the UW dataset. In terms of attribute inference risk
(Fig. 4a, e), WGAN achieved the lowest average risk for the UW dataset
and medGAN achieved the lowest average risk for the VUMC dataset.
On the other hand, EMR-WGAN posed the highest average risk on all
privacymetrics. However, even the highest risks posed by EMR-WGAN
in our experiments for each privacy metric (i.e., 0.152 for the attribute
inference risk, 0.276 for the membership inference risk, 0.015 for the
meaningful identity disclosure risk, and 0.020 for the NNAA risk) can
be regarded as low risk if we segment the range of risk from 0 to 1
equally into three categories (i.e., low, median, and high) in which the
low risk category means the risk is lower than 0.333. Note that Zhang
et al.20 used the highest risk among risks posed by either medBGAN or
WGAN as the threshold for both the attribute inference risk and the
membership inference risk (i.e., 0.152 and 0.242, respectively, for our
experiments). From this perspective, only EMR-WGAN for the VUMC
dataset has a slightly higher membership inference risk than the
threshold. In addition, El Emam et al.29 used 0.09 as the threshold for
the meaningful identity disclosure risk to determine whether a syn-
thetic dataset is risky, which is much higher than 0.015, under the
guidelines from the EuropeanMedicinesAgency38 andHealthCanada39

for the sharing of clinical data, whereas some custodians used 0.333 as
the threshold40,41. Furthermore, Yale et al.30 applied 0.030 as the
threshold for the NNAA risk, which suggests that 0.020 is at an
acceptable level.

Utility privacy tradeoff
Figure 5a, b provides a summary of the models’ rank-derived scores
with respect to each utility and privacy metric. The privacy-utility
tradeoff in both datasets is evident. A generative model associated
with a higher utility (e.g., EMR-WGAN) usually had a lower privacy
score, whereas a model associated with a higher privacy score often
had lower utility, as illustrated in Baseline for the VUMC dataset and
DPGAN for the UW dataset. The other models, which exhibited a
moderate utility ranking, were often associated with a moderate
privacy ranking as well. This phenomenon generally holds true for all
of the models tested.

To illustrate how the benchmarking metrics complement each
other, we investigated their pairwise correlation. In doing so, a strong
correlation indicates that two metrics provide similar rank-derived
scores acrossmodels and tworealdatasets,whereas aweak correlation

Table 3 | The characteristics of the benchmarking datasets

UW Dataset VUMC Dataset

Age – 26.0,
40.3, 55.8

41.0 ± 18.7

Race

White 69.9% 131,830 65.2% 13,366

Black 7.9% 14,956 8.8% 1794

Asian 9.4% 17,646 1.9% 384

American Indian
or Alaska Native

1.5% 2836 0.0% 42

Pacific Islander 0.8% 1563 0.0% 0

Unknown 10.5% 19,912 24.0% 4913

Gender

Male 45.3% 85,490 43.9% 8990

Female 54.7% 103,253 56.1% 11,509

Medical features for generation

Binary features

# of
unique codes

2662 2581

Diagnosis
(Phecode)

1736 1269

Procedure
(Category)

66 67

Medication
(RxNorm
Ingredient)

860 1245

# of unique
codes per
patient

13.0,
30.0, 51.0

36.8 ± 31.3 6.0, 21.0, 59.0 45.3 ± 63.6

Continuous features

Diastolic
pressure

– 68.0,
75.0, 82.0

75.0 ± 10.7

Systolic
pressure

– 114.0,
124.0, 136.0

125.3 ± 15.9

Pulse – 77.3,
90.0, 104.3

91.4 ± 18.6

Temperature – 36.8,
37.1, 37.7

37.3 ± 0.6

Pulse Oximetry – 95.1,
97.1, 99.0

97.1 ± 2.1

Respirations – 16.0,
18.0, 23.9

19.6 ± 4.4

Body
Mass Index

– 24.4,
30.3, 38.1

31.3 ± 8.7

Data split for prediction

Training data

Positive label 3.8% 4966 3.8% 541

Negative label 96.2% 127,158 96.2% 13,808

Evaluation data

Positive label 3.8% 2129 4.2% 260

Negative label 96.2% 54,490 95.8% 5609

x,y,z represents the first quartile, median, and third quartile. x ± y represents the mean and one
standard deviation. x%y indicates that the percentage of y patients is x% among all patients.
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implies that the twometrics complement each other by discriminating
model assessment. Figure 5c depicts a heatmap of the rank-derived
scores (in Fig. 5a, b) across all models for the VUMC and UW datasets.
There are several notable findings. First, the privacy-utility tradeoff is
evident from the fact that all pairs of utility and privacy metrics were
negatively correlated. Second, numerous weak correlations were
observed in the utility metrics, including a very weak negative corre-
lation between TRTS Model performance and dimension-wise dis-
tribution. In particular, the performance of synthesis models on
dimension-wise distribution was weakly correlated with the model
prediction performance, medical concept abundance, and clinical
knowledge violation metrics. Yet, there were a relatively strong cor-
relation (correlation coefficient = 0.89) between column-wise correla-
tion and latent cluster analysis and two strong correlations formedical
concept abundance with (1) latent cluster analysis (correlation coeffi-
cient = 0.90) and (2) TSTR model performance (correlation coeffi-
cient = 0.94). Third, fromaprivacy perspective, attribute inference risk
exhibited weak correlations with the other three privacy metrics,
whereas the membership inference risk rankings were correlated with
meaningful identity disclosure risk in a relatively strong manner (cor-
relation coefficient = 0.88). With only 2 (out of 66) metric pairs asso-
ciatedwith a correlation coefficient >0.90, the results indicate that the
metrics are complementary and belong in the framework.

Model selection in the context of use cases
Generative model benchmarks need to be contextualized through
specific use cases, where different uses of the synthetic data will have
different priorities when it comes to the different metrics in the fra-
mework. In the Model recommendation phase, we apply three exam-
ple use cases to illustrate the process and select the most appropriate
synthetic data generation model: (1) education, (2) medical AI devel-
opment, and (3) system development (as detailed in “Methods”). Each
use case is associated with a different set of weights for the utility and
privacy metrics. We adjusted the weights assigned to the ranking
results from individual metrics for each use case according to their
typical needs. For example, the utility weights for the first-moment
statistics, medical concept correlations, patient-level clinical knowl-
edge, and medical concept abundance were set higher in the educa-
tion scenarios than in other use cases, whereas privacy risks were of
less concern than in the system development and medical AI devel-
opment use cases. By contrast, medical AI development provides
greater emphasis on the metrics for model development and inter-
pretability than the other two use cases. The system development use
case places a greater emphasis on privacy risks and data sparsity to
support function and data flow testing.

Table 4 summarizes the final ranking results for the gen-
erative models based on the use cases. It can be seen that EMR-

Fig. 2 | Dimension-wise distribution for the UW and VUMC datasets.Here, each
dot corresponds to a feature, and the x- and y-axes correspond to the prevalence of
a feature in real and synthetic data, respectively. The results for three

independently generated synthetic datasets are shown for each candidate model.
Dots on the dashed diagonal line correspond to the perfect replication of
prevalence.
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WGAN and WGAN best support education and medical AI devel-
opment, respectively. By contrast, sampling-based Baseline was
best for system development. It is notable that, in the system
development use case, EMR-WGAN and DPGAN achieved the
lowest rankings for the VUMC and UW, respectively. In addition,
DPGAN demonstrated ranking scores that were no better than
WGAN on all of the six scenarios considered (use case by dataset).

Synthesis paradigms
A data synthesis paradigm is the manner by which a generative model
utilizes features in a real dataset to generate synthetic data. These
features could be a key outcome (e.g., a readmission event) or
demographics (e.g., age of the patient). The selection of a synthesis
paradigm has an impact on the utility and privacy of synthetic data. It
should be noted that selecting synthesis paradigms and candidate

generative models are two facets of the synthesis process embedded
into the Synthetic EHR data generation phase (Fig. 1). The bench-
marking framework was thus designed to accommodate the need to
incorporate different data synthesis paradigms according to the key
features (e.g., the 21-day hospital admission post COVID-19 positive
testing and six-month mortality in general) as part of the bench-
marking. In this study, we specifically evaluated two synthesis para-
digms: (1) the combined synthesis paradigm (Fig. 6c) and (2) the
separated synthesis paradigm (Fig. 6d). Further details are provided in
“Methods”.

We observed that the separated synthesis paradigm demon-
strated several advantages over the combined synthesis paradigm.The
separated paradigm tended to achieve better utility on the dimension-
wise distribution and outcome prediction metrics, while sustaining
only a negligible increase of privacy risks (Supplementary Figs. 1–3,

Fig. 3 | Data utility for the UW (a–g) and VUMC (h–n) datasets. a, h Column-wise correlation. b, i Latent cluster analysis. c, j Clinical knowledge violation for gender-
specific phecodes. d, kMedical concept abundance. e, l TSTRModel performance. f,m TRTSModel performance. g, nThe proportion of top k features in common (25 for
UW and 20 for VUMC). The heatmaps correspond to the ratio of clinical knowledge violations in gender (blue = low value; red = high value). A dashed line indicates the
mean value across three synthetic datasets. (Phecode: 625: Symptoms associated with female genital organs; 614: Inflammatory diseases of female pelvic organs; 792:
Abnormal Papanicolaou smear of cervix and cervical HPV; 796: Elevated prostate-specific antigen; 601: Inflammatory diseases of prostate; 185: Prostate cancer; 638: Other
high-risk pregnancy; 655: Known or suspected fetal abnormality; 646: Other complications of pregnancy NEC; 603.1: Hydrocele; 601.3: Orchitis and epididymitis; 604.1:
Redundant prepuce and phimosis/BXO).
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Supplementary Table 3). In all use cases, the separated synthesis
paradigm outperforms the combined synthesis paradigm for all six
models (Supplementary Table 4), save for two situations in the edu-
cational use case, where the combined synthesis paradigm led to
slightly better performance than the separated synthesis paradigm for
medBGAN and WGAN.

The raw values for each evaluation metric are provided in
Supplementary B.

Discussion
The framework introduced in this work provides a mechanism to
determine which EHR data synthesis models are most appropriate for
which use case for a given dataset. The framework can further be
applied to guide the development of new synthesismodels by enabling
greater consistency in evaluations. There are multiple aspects worth
discussing.

Thebenchmarking resultswith theUWandVUMCdatasets yielded
several notable findings. First, EMR-WGAN consistently performs well
for themajority of utilitymetrics (Fig. 5a, b and Supplementary Table 1).
This benefit is clearly due to a sacrifice in privacy, as this method also
consistently exhibited the greatest privacy risks. Second, the inverse is

true for Baseline, in that it achieves low privacy risks at the expense of
low utility (except for dimension-wise distribution) (Fig. 5a, b and
Supplementary Table 1). This is not surprising because its sampling
strategy neglects the joint distribution of the real data. Third, DPGAN,
which adds a small amount of noise to WGAN, achieved a similar or
worse ranking than WGAN (Table 4). This implies that, at least for the
settings considered in this study, there is not much benefit in incor-
porating differential privacy into the synthetic data generation process.

In addition, it is worth remarking that there are non-trivial dif-
ferences in model performance between the UW and VUMC datasets.
Notably, with respect to APD (Fig. 2), whileWGANandDPGANperform
well for the VUMC dataset, they do not for the UW dataset. This may
stem from differences in the complexity of the joint distribution
between the two real datasets and the WGAN mechanism applied to
this dataset (note that DPGAN was implemented based on WGAN). At
the same time, this findingmay also be an artifact of the differences in
the selected synthesis paradigms. It can be seen, for instance, that the
separated synthesis paradigm led to an improved feature distribution
resemblance (Supplementary Fig. 1).

Our analysis also provides evidence of a utility-privacy tradeoff
across the synthesis models. This phenomenon has been widely

Fig. 4 | Average privacy risk (n=3) of the synthetic versions of the UW (a–d) and
VUMC (e-h) datasets. a, e Attribute inference risk. b, fMembership inference risk.
c, gMeaningful identity disclosure risk. d, h Nearest neighbor adversarial accuracy

(NNAA) risk. The risks associated with the real data are shown in the bottom red
bars. The 95% confidence intervals are marked as thin horizontal black lines.

Article https://doi.org/10.1038/s41467-022-35295-1

Nature Communications |         (2022) 13:7609 8



discussed in the data privacy literature42,43, where traditional privacy-
preserving approaches (e.g., generalization or suppression of sensi-
tive information) are applied to make changes directly to the real
dataset that will be shared. Yet this phenomenon is characterized by
several aspects of our study on synthetic data. First, no data synthesis
model is unequivocally the best for all metrics, use cases, or datasets
(Fig. 5a, b and Supplementary Table 1). Second, the overall ranks of
data synthesis models differ across synthetic data use cases. For
example, Baseline was among the worst models for Medical AI
development, but was the best for System development (Table 4).
Third, the evaluation metrics for data utility and privacy are nega-
tively correlated in general (Fig. 5c). These findings highlight why it is
critical to contextualize the comparison of EHR synthesis models
through concrete use cases.

In investigating how evaluation metrics relate to each other, we
observed two correlations that are stronger than others (Fig. 5). First,
therewas a relatively strong positive correlation between column-wise
correlation and latent cluster analysis, which suggests that, if a GAN-
basedmodel retained correlations between features in real data, it was
likely able to represent the joint distribution of the real data as well.
This is because GANs do not explicitly learn from local feature corre-
lations, but rather focus on global patterns. Second, medical concept
abundance demonstrated a strong correlation with both latent cluster

analysis and TSTR model performance. In effect, medical concept
abundance serves as a proxymeasure that characterizes how close the
distributions of the severity of illness (or, more generally, health sta-
tus) are between a synthesized cohort and the corresponding real
cohort. For GAN models, medical concept abundance score that is
close to zero implies that the synthesized cohort has high patient-level
feature quality and thus can be clustered in a similar manner to real
data in the latent feature space. These two aspects typically align with
how TSTR model performance and latent cluster analysis work,
respectively. Third, unsurprisingly, there was a relatively strong rela-
tionship between membership inference risk and identity disclosure
risk.When a synthetic record has a highmeaningful identity disclosure
risk, it likely contains values that are very similar to a real record on a
substantial portion of its sensitive attributes. Similarly, when a syn-
thetic record has a high membership inference risk, there is a real
record in the training data that it looks very similar to. Thus, it is likely
that the two records match their quasi-identifiers and contribute to a
high meaningful identity disclosure risk. However, these observations
do not imply that there exists redundancy in metrics because (1) they
measure clearly different data characteristics, (2) this observation
might not generalize to other models and datasets that can lead to
reduced correlations, and (3) the correlation coefficients are still
deemed imperfect correlations.

Fig. 5 | Rank-derived scores of synthesis models and metric correlations.
a Rank-derived scores on synthetic data generated using UW data. b Rank-derived
scores on synthetic data generated using VUMC data. c A heatmap of the Pearson

correlation coefficients for pairwise metrics on the rank-derived scores across all
candidate models for the two real datasets (UW and VUMC). The best (i.e., lowest
rank) and worst scores for each metric are in bold red and black font, respectively.

Table 4 | Overall rank of generative models for the use cases in the Model recommendation phase

Use Case Dataset Overall model rank

1 2 3 4 5 6

Education UW EMR-WGAN (5.6) medBGAN (8.0) Baseline (8.7) medGAN (10.5) WGAN (10.9) DPGAN (13.2)

VUMC WGAN (6.5) EMR-WGAN (7.5) medBGAN (10.1) Baseline (10.7) DPGAN (11.0) medGAN (11.2)

Medical AI Development UW EMR-WGAN (6.3) WGAN (8.6) medBGAN (8.7) medGAN (9.9) Baseline (11.2) DPGAN (12.3)

VUMC WGAN (8.1) DPGAN (8.5) EMR-WGAN (8.6) medGAN (8.8) medBGAN (10.8) Baseline (12.0)

System Development UW Baseline (7.9) medBGAN (9.1) EMR-WGAN (9.5) medGAN (9.6) WGAN (9.8) DPGAN (11.1)

VUMC Baseline (8.7) medBGAN (9.3) medGAN (9.3) WGAN (9.4) DPGAN (9.5) EMR-WGAN (10.8)

Model ranks were based on the benchmarking framework scores (in parenthesis).
The fact that DPGAN and EMR-WGAN have the same score for the VUMC dataset in the Medical AI Development use case is due to precision loss instead of an actual tie.
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We observed that all models induced some level of knowledge
violation, while the rates of violation at which the occurrence tran-
spired differ between the methods. For instance, we observed a non-
trivial number of violations in commonsense sex-disease relationships
for all models (Fig. 3c, j). For instance, over 50% of the synthetic

records with the prostate cancer diagnosis code generated by DPGAN
are associated with a generated Female gender. This phenomenon
implies that GAN models are unable to perfectly recognize and learn
from the record-level knowledge in EHR. Although such violations can
be partially resolved through a post-hoc editing process before data

Fig. 6 | Anarchitecturaldepictionof thedeep generativemodels and synthesis paradigms considered in this study. aThe generativemodel architectureofmedGAN,
medBGAN, WGAN, and DPGAN. b The generative model architecture of EMR-WGAN. c Combined synthesis paradigm. d Separated synthesis paradigm.
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are shared, this phenomenon suggests that further research is neces-
sary for the development of synthesis methods, such as embedding
constraints of violations as a penalty into the learning process21.

Despite the merits of this study, there are several limitations that
provide opportunities for future improvement. First, the evaluation
metrics we incorporated into the benchmarking framework do not
necessarily represent the entire metric universe for synthetic data
assessment. We aimed to cover the key characteristics of synthetic
data by introducing representative metrics and did not incorporate
every related metrics that could create redundancy. However, the
framework can readily be extended to incorporate new utility and
privacy metrics as they are introduced.

Second, this study relied upon a handful of use cases to assess the
synthesismodels and interpret the results that do not cover the gamut
of all possible applications. As a result, the weight profiles applied to
the metrics in the evaluation may not sufficiently represent the space.
There is clearly an opportunity to explore how changing the weights
influencesmodel rankings. In particular, we neglected scenarios where
the privacy risks were already sufficiently low, such that the synthetic
datasets should only be assessed for their utility. Yet, the challenge in
this scenario is that there is no clear consensus on what an acceptable
privacy risk threshold for synthetic data is29. In this respect, we believe
that further discussion and deliberation on legal standing and policy
making is needed to inform the benchmarking framework44. On the
other hand, when the goal of data synthesis is to support data
augmentation45,46 (rather than data sharing), where the limited volume
and representativeness of the real data that are now available can be
addressed to boost the effectiveness of medical AI algorithms47–49,
maintaining data utility becomes the primary goal of synthetic data
generation. The benchmarking framework canprovide support to data
augmentation by rulingout privacy components by setting theweights
of the related metrics to zero and incorporating new metrics, such as
training on real and synthetic data testing on real data.

Third, the introduced benchmarking framework was specifi-
cally designed for contrasting models that generate structured
EHR data. We believe that other data types in EHRs, such as
longitudinal medical events, unstructured clinical notes, and
medical images, are also valuable for data synthesis such that
building corresponding benchmarking frameworks is critical as
models emerge. The development of these frameworks requires
incorporating new evaluation metrics that are specific to the
nature of the data components. However, we believe our ranking
strategy will still be reusable.

Fourth, we considered only a subset of GAN models for demon-
stration purposes. In doing so, we excluded models that were devel-
oped to resolve deficiencies in EHR synthesis that arise in specific
applications. For instance, we did not include MC-medGAN, which
allows for a better representation of multi-category features;50 Cor-
GAN, whichwas designed to represent correlations between physically
adjacent features;51 and HGAN, which considers constraints between
features21, and others that made minor adjustments to core GAN
architecture.

Fifth, the two datasets utilized in our evaluation, though derived
from real EHR systems,were curated through a series of preprocessing
steps. As a result, they may not represent the full scope of EHR data
complexity. For instance, they may not address heterogeneity in data
modality, organizing structures, missingness patterns, and the size of
feature space, among other aspects. As such, further investigation is
needed to examine, and potentially extend, the applicability of the
benchmarking framework for real-world datasets with various
properties.

Sixth, there is mounting evidence that suggests generative mod-
els may induce bias and fairness issues, such that subgroups of the
population are not evenly well-generated52. As a consequence, the
resulting synthetic data, in certain circumstances, could accentuate

disparities in health. We believe that the benchmarking framework
introduced in this paper would benefit from extensions to cover bias
and fairness dimensions. However, measuring bias and fairness in
synthetic data is still very much an open problem and likely requires
further investigation before a canonical set of metrics are ready for
integration.

Seventh, the final results of the benchmarking framework are
rank-based, which compresses the absolute values from individual
metrics to relative values in the rank space. Thus, they are not directly
comparable to the results in prior publications. A user might have to
rerun all analyses on their own datasets in order to find the optimal
model. Given this situation, there is clearly a need for universalmetrics
that can be compared across datasets for different models.

Eighth, the statistical significance of the observed differences for
each metric cannot be tested in many cases due to the fact that there
were only three runs of models. This would be possible if additional
runswereperformed, but each run required substantial computational
resources such that there is no simple cost-effective way to feasibly do
so at the present moment in time. However, our rank-based method
does not rely on statistical significance to derive model comparison.

Finally, we aimed to use consistent parameterizations across the
GAN implementations when they incorporated the same technical
mechanism (e.g., the size of a deep network) while respecting the
original implementations of all methods. However, the datasets
we used in this study were not the same as those relied upon in the
development of these methods. As a consequence, it is possible that
the parameter settings we relied upon might not be optimal. Thus, a
more extensive set of experiments is needed to investigate the gen-
eralizability of our observations on benchmarking results.

Methods
The Institutional Review Boards (IRB) at Vanderbilt University Medical
Center and the University of Washington approved this study under
IRB#211997 and 00011204, respectively. The IRBs grant a full waiver of
written informed consent from patients due to the nature of the ret-
rospective observational study.

Dataset
University of Washington (UW). This dataset comes from the general
population at UW Medicine enterprise data warehouse, which man-
ages EHR data from more than 60 medical sites across the UW Medi-
cine system including the University of Washington Medical Center,
Harborview Medical Center, and Northwest Hospital and Medical
Center. Specifically, data from January 2007 to February 2019 for
patients with at least 10 visits within two years prior to the date of the
latest recorded visit were used. This dataset includes diagnoses,
medications, procedures, and an indicationof if the patient diedwithin
sixmonths after the final visit date of the patient53. This dataset covers
188,743 patients.

Vanderbilt University Medical Center (VUMC). This dataset corre-
sponds to a cohort of COVID-19 positive patients who visited VUMC.
Specifically, we selected the patients who tested positive (via a
polymerase chain reaction test) in an outpatient visit before February
2021. For those who exhibited multiple positive testing results, we
retained one at random. We collected the diagnoses, medications,
and procedures from these patients’ EHRs between 2005 and the
date of the positive COVID-19 test. In addition, the most recent
readings for the seven most prevalent measures or laboratory tests
prior to the selected positive testing events were included. This
corresponded to diastolic and systolic blood pressures, pulse rate,
temperature, pulse oximetry, respiration rate, and body mass index.
For this dataset, the prediction task is whether a patientwas admitted
within 21 days of their COVID-19 test54. This dataset covers 20,499
patients.
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To standardize data representation, we converted the categorical
features, including diagnoses (encoded as International Classification
ofDiseasesNinth or TenthRevision, or ICD9/10), procedures (encoded
as Current Procedural Terminology Fourth Edition, or CPT4), medi-
cations (encoded as RxNorm Drug Terminology), and demographics
(gender and race), to a binary format to denote the presence (or
absence) of the corresponding concepts. We followed the convention
of dimensionality reduction preprocessing20,25,55 by (1) mapping the
ICD9/10 codes into Phenome-wide Association Studies (PheWAS)
codes, or phecodes, which aggregate billing codes into clinically
meaningful phenotypes, (2) generalizing the CPT4 codes using a
hierarchical architecture of procedures56, and, (3) converting clinical
RxNorm drugs to RxNorm drug ingredients. We represented the race
of patients in a one-hot encoding format (i.e., a binary vector). We
retained features withmore than 20 occurrences in each dataset. After
preprocessing, features in the UW dataset were all binary, whereas the
VUMC dataset contained eight continuous features (namely, age and 7
laboratory tests).

Both datasets were split according to a 70:30 ratio into Training
and Evaluation datasets. The Training datasets were relied upon to
train synthetic data generation models while the Evaluation datasets
were reserved for assessment purposes only.

GAN models for benchmarking
Figure 6a, b illustrate the architectures for the GANmodels assessed in
the benchmarking activities.

medGANwas an early attempt to leverage the power of GANs16 to
synthesize individual-level EHR data25. The categorical format of
medical concepts created a challenging situation in learning where the
GANs’ approximation of the discrete data rendered the training pro-
cess suboptimal. To address this issue, medGAN leveraged a pre-
trained autoencoder to project the discrete representations into a
compact continuous space to enhance the subsequent GANs training.
Also, medGAN integrated a set of helpful learning techniques, such as
batch normalization and short connection, to reduce the instability of
the training process. It should be recognized thatmedGAN relied upon
the Jensen-Shannon Divergence (JS Divergence) between the real and
synthetic data distributions as the optimization objective. These
designs (except for the learning objective) were inherited by several
later models as shown in Fig. 6a.

medBGAN was based on the same architectural designs as
medGAN35. To enhance training performance in terms of the quality of
the synthetic data, particularly when dealing with categorical values,
medBGAN replaced the loss function of the medGAN discriminator
with a boundary-seeking loss function. In doing so, the generator was
directed to generate synthetic data points near the decision boundary
of the discriminator, which enables better generation performance
particularly for categorical data.

WGAN was developed based on the observation that a learning
objective adopting JS divergence can lead to diminishing gradients,
which, in turn, can subsequently impede the optimization of the
generator35. To address this problem,WGAN incorporatedWasserstein
divergence57 into the training objective. This approach applies a Lip-
schitz constraint on the discriminator and ensures a more accurate
characterization of the distance between two distributions. TheWGAN
implementation in our paper used the strategy that each of the dis-
criminator’s parameters is clipped to stay within a certain range (i.e.,
−0.01–0.01), which is referred to as parameter clipping, to satisfy the
Lipschitz constraint.

DPGANwas a differentially private (DP) version of WGAN36, which
achieved a theoretically guaranteed privacy protection on synthetic
health data via employing the differential privacy principle58 in GAN
training. It followed the differential private stochastic gradient descent
(DP-SGD) mechanism in the model training process so that it is dif-
ferential private, but modified the implementation of DP-SGD by

replacing gradient clipping with parameter clipping. We set ϵ to 104 to
prevent the generation of synthetic datasets with very little to no
utility.

EMR-WGAN was developed based on the observation that the
autoencoder design can induce barriers during model training when
working with an advanced distance measure between two
distributions20. EMR-WGANhad the autoencoder component removed
and equipped Wasserstein divergence as its optimization objective
(Fig. 6b). EMR-WGAN made several additional amendments to the
architecture. First, it introduced layer normalization to the dis-
criminator to further improve the learning performance. Second, it
incorporated a gradient penalty strategy to enforce the Lipschitz
constraint, which reduced the negative impact of parameter clipping
on GAN’s capability to approximate data distribution.

Model training and data selection
We normalized all continuous features by mapping them into a [0,1]
range. We trained the generative models using the normalized data
and mapped the generated data back to the original space of the
continuous features as a post-training step. To enable a direct com-
parison, all hyperparameters were assigned the same values across all
models in which they resided. For instance, we used the same deep
neural network architecture, learning rates, optimizers, and initializa-
tion strategies.

Given that the GAN models differed in the pattern of training
loss trajectories, to ensure a fair comparison such that the opti-
mal training status for each model can be selected, we applied
several rules to select the model training endpoint. We observed
that the divergence loss for medGAN and medBGAN demon-
strated a pattern of fluctuation before quickly growing to a very
large number. We selected the epoch right before the beginning
of the increasing trend, which usually corresponded to the lowest
losses. By contrast, the losses of EMR-WGAN and WGAN demon-
strated a clear convergence pattern, where the losses decreased
first and then stayed relatively stable; however, the quality of
synthetic data can differ after loss convergence. For both models,
we examined multiple epochs from the area where the training
loss converged and selected the top three synthetic datasets that
demonstrated higher utility in dimension-wise distribution. For
DPGAN, we observed that the loss decreased to a relatively low
value and then started to fluctuate. We then selected the epoch
right before fluctuation begins as the end point of training.

Multifaceted assessment
Data utility. In earlier investigations8,14, the term utility was defined in
parallel with resemblance (i.e., the statistical similarity of two datasets)
and was specifically used to refer to the value of real or synthetic data
to support predictions. By contrast, in this work, we rely upon the
terminology as it has been communicated in the literature41,42,59,60,
where privacy and utility are typically posed as competing concepts
and utility indicates the general quantifiable benefit of data for its
consumers. In this respect, the notion of resemblance is a specific
realization of utility.

Dimension-wise distribution. The distributional distance of each
feature between a real and synthetic dataset is often applied to mea-
suredata utility. In this study,wecalculated the average of the absolute
prevalence difference (APD) for binary features and the average of the
feature-wiseWasserstein distances (AWD) for continuous features. The
prevalence of a binary feature was defined as the percentage of
patients who were associated with the corresponding concept in a
dataset. Due to the fact that the Wasserstein distance is unbounded,
for each continuous feature, we normalized the values into the range
of [0,1] based on the distances derived from all synthetic datasets used
for model assessment.
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For a dataset with both binary (note that categorical features can
be converted tobinary features for synthesis) and continuous features,
such as the VUMC dataset, the results of APD and AWD need to be
combined into a final score. To do so, for binary features, we sum the
absolute prevalence difference, and, for continuous features, we sum
the feature-wise (normalized) Wasserstein distances. We then aver-
aged the two results (i.e., divided by the total number of features). To
ensure the average values are easy to read, we multiplied a factor of
1000 by the metric results, which share the same magnitude of the
number of features.

Column-wise correlation. Thismetric quantifies the degree towhich a
synthetic dataset retains the feature correlations inherent in the real
data26. For each pair of synthetic and real datasets, we first computed
the Pearson correlation coefficients between all features in each
dataset, which yielded two correlation matrices of the same size. We
then calculated the average of all cell-wise absolute differences
between the two matrices to quantify the fidelity loss in a synthetic
dataset. We multiplied all values by a factor of 10002 for presentation
purposes. For reference convenience, we name this quantity as cor-
relation distance.

Latent cluster analysis. This metric assesses the deviation of a syn-
thetic dataset in the underlying latent space from the corresponding
real dataset in terms of an unsupervised clustering27. For each pair of
real and synthetic datasets, we stacked them into a larger dataset and
reduced the dimensionality of the space by applying a principal
component analysis (PCA) and retaining the dimensions that cover
80% of the variance in the system. We then applied k-means to define
the clusters, where kwas determined according to the elbowmethod61

(which was found to be three for both datasets in this study). It should
be recognized that the elbowmethod is a heuristic and the number of
clusters could alternatively be specified according to the desired
granularity of quality inspection. The following clustering-based value
was then calculated to quantify the deviation of synthetic data from
real data:
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where nR
i and ni denote the number of real data points and the total

number of data points in the ith cluster, respectively. We name this
quantity as latent deviation for reference convenience. For thismetric,
a lower value implies that the density functions of the real and syn-
thetic datasets in the latent space are more similar.

Clinical knowledge violation. Unlike the previousmetrics, thismetric
focuses on the record-level utility. Specifically, it quantifies the degree
to which a generative model learns to synthesize clinically meaningful
records in terms of the ability to capture clinical knowledge fromdata.
An example for continuous features is that the systolic blood pressure
of a patient should be greater than the corresponding diastolic pres-
sure. A synthetic dataset with a number of conflicts against clinical
knowledge derived from real data can be less useful in those use cases
that rely on record-level readability. In this study, we used a data-
driven approach to derive the clinical knowledge from real data for
model evaluation. We first identified the phecodes from real data that
were only associated with one gender. For each gender, we then
selected the most prevalent three phecodes that were only associated
with this gender in real data. For each synthetic dataset, we computed
the odds of each selected phecode appearing in the opposite gender.
The average value from the selected phecodes was then calculated,
where a higher value implies a lower capability of representing the
clinical knowledge inherent in the real data.

Medical concept abundance. Close resemblance in feature-level
metrics does not necessarily imply high similarity in the record-level
distributions between the real and synthetic datasets. Thus, inspired
by theworkof Yale et al.30, we introduce ametric that characterizes the
degree to which a synthesis model captures the quantity of record-
level information in the real data. Specifically, we compute the nor-
malized Manhattan distance between the histogram of the number of
assigned distinct medical concepts for real and synthetic records. To
do so,wefix the space to the total number of distinctmedical concepts
that are considered in synthesis and then divide the range into M
evenly sized bins according to the desired assessment granularity. We
then computed the medical concept abundance distance asPM

i = 1∣hr ið Þ � hsðiÞ∣=2N, where hr(i) and hs(i) represent the number of
records in the ith bin that are real and synthetic, respectively, and N
denotes the total number of real records. Thismetric is thus in the [0,1]
range, where a lower the value indicates a higher real-synthetic data
similarity in terms of record-level information distributions. In this
study, we set M equal to 20.

Prediction Performance and important features. One of the more
common scenarios for which synthetic EHR data is expected to pro-
vide support is machine learning model development and
evaluation62,63. To assess this capability, we performed two types of
analysis. The first, which is straightforward and has been widely uti-
lized, compares model performance for a specific prediction task in
two distinct scenarios: (1) training a machine learning model using the
synthetic dataset (obtained from a generative model learned from a
real dataset) and then perform an evaluation based on an independent
real dataset, and (2) training a model based on the independent real
dataset and evaluate it using the synthetic dataset. In each scenario, for
comparison purposes, the reference model is trained based on the
corresponding real dataset. The first scenario adheres to how the
synthetic data will be utilized after data are shared in practice. By
contrast, the secondplays a complementary role in that it assesses how
convincingly the synthetic records match their labels28. It should be
noted that, in the second scenario, it is possible that the testing per-
formance for certain synthetic data is higher than for the real data
because of the potential of mode collapse for GAN models (which
means a generativemodel can only generate synthetic records that are
close to a subset of real data). However, we do not believe this is a
concern, due to the fact that the other utility metrics will reflect this
problem in the final model ranking.

For prediction, we applied light gradient boosting machines
(LightGBMs) due to their consistently superior performance over tra-
ditional machine learning models in healthcare64–66. In this evaluation,
we randomly partitioned each real dataset according to a 70:30 spilt,
where the 30% data served as the independent real dataset. We use the
area under the receiver operating characteristic curve (AUROC) as the
performance measure. We used bootstrapping to derive a 95% con-
fidence interval for each model.

The second analysis focuses on the degree to which a synthetic
dataset provides reliable insights into important features in the pre-
diction task. This was incorporated as a critical metric because model
explainability is critical for engendering trust and conducting algo-
rithmic audits. To do so,we counted the shared top important features
for models trained on a synthetic dataset and the corresponding real
dataset and then computed the corresponding proportion. We used
the SHapley Additive exPlanations (SHAP)67 value to rank features and
defined the important features as the topM features that retain 90% of
the performance on real data, which was 25 and 20 for the UW and
VUMC datasets, respectively.

Privacy
We focused on three types of privacy attacks that have targeted fully
synthetic patient datasets: attribute inference20, membership
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inference20,31, and meaningful identity disclosure29. In an attribute
inference attack, given the synthetic dataset and partial information
(e.g., demographics and phenotypic attributes) of a patient’s record in
the real dataset, an adversary can infer all sensitive attributes of the
record. Henceforth, we use real dataset to denote real training dataset
for simplicity. In a membership inference attack, given the synthetic
dataset and a patient’s record, an adversary can infer whether the
patient’s record is in the real dataset, which discloses sensitive infor-
mation shared by all records in the real dataset (e.g., an HIV-positive
dataset). In ameaningful identity disclosure attack, given the synthetic
dataset and a population dataset with identifiers, an adversary can
infer the identity (and sensitive attributes) of a patient’s record in the
real dataset by matching an identified record to a record in the syn-
thetic dataset which also matches a record in the real dataset due to
potential overfitting of the data generation process. In general, among
the three attacks, a larger number of attributes (i.e., identities and
sensitive attributes) can be inferred for each victim in the meaningful
identity disclosure attack, whereas a smaller number of attributes (i.e.,
the membership) can be inferred for each victim in the membership
inference attack. In addition, we harnessed a privacy loss metric,
proposedbyYale et al.30, which directlymeasures the extent towhich a
generative model overfits the real dataset.

Attribute inference risk. In an attribute inference attack20, an adver-
sary attempts to infer a set of sensitive attributes of a targeted record
in the real dataset given a set of the targeted record’s attributes and the
synthetic dataset. The set of attributes known by the adversary usually
includes demographic attributes, such as age, gender, or race68.
Sometimes, the adversary also knows the target’s common clinical
phenomena such as a diagnosis of the flu, cold, stomach ache, or
conjunctivitis. In these cases, the sensitive attributes correspond to the
target’s other diseases. We assume the adversary attempts to infer the
attributes using a k-nearest neighbors (KNN) algorithm. More specifi-
cally, the adversary first finds the set of k records in the synthetic
dataset that are the most similar to the targeted record based on the
set of known attributes as the neighbors. Given this set, the adversary
attempts to infer each unknown attribute using a majority rule classi-
fier for the members in the set.

To evaluate the attribute inference risk, we first calculated the
inference risk for each attribute that the adversary wants to infer for a
set of patient records. For each binary attribute, we simulated the
inference attack and calculated the F1 score. Each categorical attribute
was converted into binary attributes using one-hot coding. For each
continuous attribute, we simulated the inference attack and calculated
the accuracy, which is defined as the rate that the prediction is suffi-
ciently close to the true value according to a closeness threshold.
Afterward, we set the attribute inference risk measure as a weighted
sum of the risks for attributes, where the weight for each attribute is
proportional to the corresponding information entropy in the real
dataset and all weights sum to one.

We used the entire real dataset as the set of targeted records. In
the KNN algorithm, we set k to 1 and use the Euclidean distance mea-
sure. We assumed that the adversary knows the demographic attri-
butes (age, gender, and race for the VUMC dataset; gender, and race
for theUWdataset) and the 256phecodes that aremost frequent in the
real dataset. The adversary attempts to infer all of the other phecodes
and numerical attributes. In this study, the closeness threshold was set
to 0.1. In two supplementary experiments, we varied the setting by
changing k to 10 or changing the number of known phecodes to 1024.

Membership inference risk. Knowing that an individual corresponds
to a record in the real dataset constitutes a privacy risk because the
records may be included according to specific criteria. For instance,
these criteria may be disease- (e.g., HIV) or lifestyle-dependent (e.g., a
certain sexual orientation). Notably, this information may not be

included as an attribute in the real dataset because it is shared by all
records in the dataset (e.g., when all of the real records select for their
HIV positive status) and, thus, cannot be inferred in the aforemen-
tionedattribute inferenceattack. The adversary,with the knowledgeof
all or partial attributes of a target, can infer the membership by com-
paring the targeted record to all records in the synthetic dataset on
those known attributes. A correct inference would reveal the target’s
sensitive information and also discredit the data sharer who aimed not
to reveal that a certain individual was in the training data.

To evaluate the membership inference risk20, we assume that the
adversary is in possession of the synthetic data and all attributes of a
set of targeted records. We further assume that risk evaluators (i.e.,
users of the benchmarking framework) know whether each targeted
record is in the real dataset. We first calculate the Euclidean distance
between each synthetic record and each targeted record in terms of all
attributes. Given a distance threshold, the adversary claims that a
targeted record is in the real dataset if there exists at least one record
with a distance smaller than the threshold. After the adversary infers
the membership status of the targeted records, the F1 score of the
membership inference would be used as the risk measure.

We use all records in the real dataset and the evaluation dataset as
the targeted records. We normalize all continuous attributes into a
range of zero and one. We set the distance threshold to 2 in the main
experiment and 5 in the supplementary experiment to assess the
sensitivity of the model.

Meaningful identity disclosure risk. Although a fully synthetic dataset
appears to have no risk of identity disclosure, a synthetic dataset
generated by an overfittedmachine learningmodelmay permit record
linkage to theoriginal records. In recognitionof this fact, El Emamet al.
introduced a risk model29 that considers both identity disclosure and
the ability of an adversary to learn new information upon doing so. In
this attack, the adversary links the synthetic dataset to a population
dataset, which is an identified dataset that covers the underlying
population of the real dataset, uponquasi-identifiers (i.e., the common
attributes in both datasets). Afterward, for each targeted record in the
synthetic dataset, the adversary infers the identity using a majority
classifier over the linked records in the population dataset. They fur-
ther assumed that the adversary can execute the record linkage attack
by generalizing any attribute in any record to a certain level (i.e., an
age, 20, can be generalized to an age group, [20–29]).

To evaluate the meaningful identity disclosure risk29, we use the
metric introducedby El Eman et al., which is basedon themarketer risk
measure and additionally considers the uncertainty and errors in the
adversary’s inference. This metric is calculated as:

max
1
N

Xn
s = 1

1
f s

×
1 + λs
2

× Is ×Rs

� �
,
1
n

Xn
s = 1

1
Fs

×
1 + λs
2

× Is ×Rs

� � !
ð2Þ

whereN is the number of records in the population, s is the index for a
record in the real dataset.n is the number of records in the real dataset,
fs is the number of records in the real dataset that canmatch record s in
the real dataset in terms of values on the quasi-identifiers (QIDs), Fs is
the number of records in the population that canmatch record s in the
real dataset in terms of values on the QIDs, λs is an adjustment factor
based on error rates sampled from two triangular distributions29, Is is a
binary indicator of whether record s in the real dataset matches a
record in the synthetic dataset, Rs is a binary indicator of whether the
adversary would learn something new, and Rs is 1 if at least L% of the
sensitive attributes satisfy the following criteria. For each categorical
attribute, the criteria are: (1) there is at least one synthetic record that
can match at least one real record on that sensitive attribute, and (2)
pj <0:5 in which pj is the proportion in the real sample that have the
same j value, and j 2 J in which J is the set of different values the
sensitive feature can take. For each continuous attribute, the criterion
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is ps × |Xs − Yt| < 1.48 ×MAD, in which ps is the proportion in the real
sample that are in the same cluster with the real record after a
univariate k-means clustering, Xs is the sensitive attribute of the real
record,Yt is the sensitive attribute of the synthetic recordmatching the
real record, and MAD is the median absolute deviation.

In this study, we rely upon an adversarialmodel that is as strong as
the one introduced by El Eman et al.29 (i.e., with a similar sample-to-
population ratio and a similar number of QIDs). For the VUMCdataset,
we assume that the adversary has access to a population dataset of
633,035 records, which includes the name and 10 QIDs of all patients
that havevisitedVUMCbefore February 2021. The correspondingQIDs
are three demographic attributes (namely, age, sex, and race) and
seven phenotypic attributes that are the most frequent diseases of
those patients. For the UW dataset, we assume that the adversary has
access to a population dataset of 466,980 records including the name
and 10QIDs of all patientswhohave visitedUWat leastfive times in the
past two years prior to the index event date, which is defined as the
date of the latest recorded visit as of February 2019. The corre-
sponding QIDs are two demographic attributes (namely, sex and race)
and eight phenotypic attributes that are the most frequent diseases of
those patients. The parameter L is set to 1 which means at least 26 (or
27) attributes need to be inferred correctly and meaningfully for an
attack to be regarded as a successful attack that brings risk to VUMC
(orUW)dataset. Thedifference betweenVUMCandUWdatasets is due
to the fact that the VUMC dataset has 74 fewer attributes than the UW
dataset. To test the sensitivity of the model, we change the parameter
setup by changing L to 0.1 in the supplementary experiment.

Nearest neighbor adversarial accuracy risk. Overfitting can induce
privacy risks for synthetic data. Yale et al. introduced a privacy loss
metric for synthetic data that directly measures the extent to which a
generative model overfits the real dataset based on the notion of
nearest neighbor adversarial accuracy (NNAA)30,69. The NNAA risk we
use in our evaluation is based on thismetric. Specifically, let ST, SS, and
SE be three sets of samples with the same size from three datasets:
ST = x1T , � � � , xnT

� �
from the real training dataset, SS = x1S, � � � , xnS

� �
from

the synthetic dataset, and SE = x1
E , � � � , xn

E

� �
from the evaluation data-

set. The NNAA risk is calculated as the difference between two dis-
tances:

AAES � AATS

in which
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1
2

1
n
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1
n
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1
2

1
n
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i= 1
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+
1
n

Xn
i= 1
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where the indicator function 1(∙) equals one if its argument is true and
zero otherwise. dTS ið Þ= minj ∣∣xiT � xjS∣∣ is defined as the distance
between xi

T 2 ST , a data point in the sample from the real data, and its
nearest neighbor in SS, the sample from the synthetic data. Further-
more, dST ðiÞ=minj ∣∣xi

S � xj
T ∣∣ is the distance between xi

S 2 SS, a data
point in the sample from the synthetic data, and its nearest neighbor in
ST, the sample from the real data. Moreover, dTT ðiÞ=minj,j≠i∣∣xi

T � xj
T ∣∣

is the distance between xiT and its nearest neighbor in a sample of size
(n� 1) instances drawn from the same distribution, and
dSSðiÞ=minj,j≠i∣∣xi

S � xj
S∣∣ is the distance between xiT and its nearest

neighbor in a sample of size (n� 1) instances drawn from the same
distribution. Similarly, dESðiÞ=minj ∣∣xi

E � xj
S∣∣ is the distance between

xiE 2 SE , a data point in the sample from the evaluation data, and its
nearest neighbor in SS, the sample from the synthetic data.

Furthernore, dSE ðiÞ=minj ∣∣xi
S � xj

E ∣∣ is the distance between xi
S, a data

point in the sample from the synthetic data, and its nearest neighbor in
SE, the sample from the evaluation data. Moreover,
dEE ðiÞ=minj,j≠i∣∣xiE � xj

E ∣∣ is the distance between xiE and its nearest
neighbor in a sample of size (n� 1) drawn from the same distribution.

The original NNAA risk as defined by Yale et al.30 requires all
samples of datasets to have the same size; however, in our experi-
ments, the sizes of the training and synthetic dataset are both larger
than the size of the evaluation dataset. Thus, we randomly sample the
training dataset and the synthetic dataset to be in the same size of the
evaluation dataset multiple times and use the average result as the
NNAA risk. In addition,we normalize all continuous attributes into a [0,
1] range before computing distances.

Ranking mechanism
Supplementary Fig. 4 provides a concrete example of how our
benchmarking framework ranks models. In this example, we use
three candidate synthesis models to illustrate the process. When
ranking models, with respect to each metric, each model receives a
rank-derived score that is calculated as the average of ranks of three
datasets associated with eachmodel. The final score for eachmodel
is calculated as the weighted sum of the rank-derived scores from
all metrics. All models are then ranked according to their final
scores.

When ranking datasets, ties (i.e., two or more datasets having
exactly the same value of a metric) can occur. In this case, the datasets
receive the same adjusted rank (which is not necessarily an integer). In
the example, there are three datasets that are tied in terms of an
evaluationmetric (Metric 2). The associated indices are 3, 4, and 5. The
average of these three indices is thus (3 + 4 + 5)/3 = 4, which is taken as
the adjusted rank that each of the three datasets would be assigned.

Use case description
In this study, we consider three use cases of synthetic data to
demonstrate generative model selections in the context of specific
needs. The benchmarking framework translates a usecase intoweights
on the metric-level results. By default, all weights are set to be equal,
and all weights sum to 1. We adjusted the weights according to the
needs of the use case. The following provides a summary of the use
case, while the detailed weight profiles are provided in Supplementary
Table 23.

Education. It is expected that synthetic EHR data will support educa-
tional purposes. The potential data users for this use case are students
interested in health informatics or entry-level health data analytics. In
general, privacy risks in this use case are relatively small for several
reasons: (1) access control and audit logs are easy to implement, and
(2) data use agreement can be applied to further protect the data. By
contrast, the educational use case has high demand inmaintaining the
statistical characteristics of the real medical records and minimizing
obvious clinical inconsistencies. Thus, we lowered the weight assigned
to each of the privacy metrics to 0.05 and raised the weight for
dimensional-wise distribution to 0.25, column-wise correlation, and
clinical knowledge violation to 0.15, medical concept abundance to
0.10, with the remaining metrics set to 0.05.

Medical AI development. It has been repeatedly shown that synthetic
health data are able to support the development of medical AI by
providing similar testing performance as on real data10,70. We estab-
lished the use case formachine learningmodel development based on
the aforementioned prediction tasks: (1) 21-day hospital admission
post positive COVID-19 testing (for the VUMC dataset) and (2) six-
month mortality (for the UW dataset). In this use case, we prioritized
the model prediction-related utility metrics (performance results and
feature selection) and privacy because the synthetic data are open to
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the broad data science community. As such, we raised the combined
privacy weight to 0.3 and model performance to 0.5.

System development. In the healthcare domain, software system
development teams often need access to sufficiently large and realistic
datasets thatmimic real data for function andworkflow testing, as well
as computational resource estimation. In this use case, it is important
that the synthetic data maintain both the size and the sparsity of the
real data. These are factors represented in metrics for dimension-wise
distribution and medical concept abundance. At the same time, priv-
acy needs to be prioritized as the engineers may not have the right to
work with the records of patients—particularly if they are not
employees of the healthcare organization. Thus, we set the dimension-
wide distributionweight andmedical concept abundance each to 0.15,
the privacy metrics to 0.5, while each of the rest weights were
set to 0.04.

Synthesis paradigms
In this study, we investigated two common synthesis paradigms as
examples. The first strategy treats the outcome variable the same as
other features in model training, which leads to a combined synthesis
paradigm (Fig. 6c), whereas the second strategy was designed to
independently train a generativemodel for each outcome represented
by the outcome variable, leading to a separated synthesis para-
digm (Fig. 6d).

We applied the combined synthesis paradigm to both datasets
and all results that have been communicated so far were based on this
strategy. We performed a comparison between the two strategies on
the UW dataset. We did not conduct the comparison for the VUMC
dataset because the volume of positive records is too small to support
separated GAN training. We ensured that the synthesized data shared
the same size as the corresponding real dataset and that the dis-
tribution of the outcome variable remained the same as well.

More specifically, for each metric in the Multifaceted
assessment phase, the number of synthetic datasets for evalua-
tion becomes nm× nd× ns, where nm, nd, and ns denote the number
of candidate generative models for benchmarking, the number of
synthetic datasets considered for each model in comparison, and
the number of considered synthesis paradigms, respectively. In
this investigation, we have 6 × 3 × 2 = 36 synthetic datasets for the
UW dataset.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The electronic health record data that support the findings of this
study are available upon request from the corresponding authors and
approval from the institutions’ respective IRBs. Requests for accesswill
be processed within around 2 months subject to signing of a data use
agreement.

Code availability
The source code associated with this study is publicly available at:
https://github.com/yy6linda/synthetic-ehr-benchmarking.
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