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Abstract
Pneumonia is an acute respiratory infection caused by bacteria, viruses, or fungi and has become very common in children

ranging from 1 to 5 years of age. Common symptoms of pneumonia include difficulty breathing due to inflamed or pus and

fluid-filled alveoli. The United Nations Children’s Fund reports nearly 800,000 deaths in children due to pneumonia.

Delayed diagnosis and overpriced tests are the prime reason for the high mortality rate, especially in underdeveloped

countries. A time and cost-efficient diagnosis tool: Chest X-rays, was thus accepted as the standard diagnostic test for

pediatric pneumonia. However, the lower radiation levels for diagnosis in children make the task much more onerous and

time-consuming. The mentioned challenges initiate the need for a computer-aided detection model that is instantaneous

and accurate. Our work proposes a stacked ensemble learning of deep learning-based features for pediatric pneumonia

classification. The extracted features from the global average pooling layer of the fine-tuned Xception model pretrained on

ImageNet weights are sent to the Kernel Principal Component Analysis for dimensionality reduction. The dimensionally

reduced features are further trained and validated on the stacking classifier. The stacking classifier consists of two stages;

the first stage uses the Random-Forest classifier, K-Nearest Neighbors, Logistic Regression, XGB classifier, Support

Vector Classifier (SVC), Nu-SVC, and MLP classifier. The second stage operates on Logistic Regression using the first

stage predictions for the final classification with Stratified K-fold cross-validation to prevent overfitting. The model was

tested on the publicly available pediatric pneumonia dataset, achieving an accuracy of 98.3%, precision of 99.29%, recall

of 98.36%, F1-score of 98.83%, and an AUC score of 98.24%. The performance shows its reliability for real-time

deployment in assisting radiologists and physicians.
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1 Introduction

Over the years, the number of respiratory diseases and

infections has increased drastically. Degradation in the air

quality has paved the way to numerous lung-related con-

taminations [1]. Pneumonia is one such acute lower res-

piratory infection that fills the alveoli with pus and fluid,

leading to reduced oxygen holding capacity in the lungs.

Lack of oxygen directly impacts the standard functioning

of the body. Fatigue and lethargy are a few of many

symptoms caused by inadequate oxygen levels. In severe

cases, it can deter the brain and heart. Symptoms of

pneumonia include fever, shallow breathing, and coughing.

In extreme cases, it causes sharp chest pains when

breathing and coughing. Sepsis, one of the many
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complications of pneumonia, can lead to tissue damage,

organ failure, and even death if left untreated. Studies show

that people with a weaker immune system are highly sus-

ceptible to pneumonia [2]. This acute respiratory infection

poses a much bigger problem in children predominantly

between 1 and 5 years of age whose immunity system is in

its embryonic stages of development [3]. Symptoms of

severe pneumonia in children include vomiting, severe

malnutrition, and the inability to consume food and water

[4].

Pediatric pneumonia accounts for nearly 800,000 deaths

of young children, as reported by the United Nations Chil-

dren’s Fund (UNICEF). Based on factors like age group and

other medical conditions, there are several diagnostic tests

for pneumonia. The most widely used diagnostic tests in

children include pulse oximetry to check the oxygen levels,

complete blood count (CBC) to check the activity of the

immune system when there is an infection, sputum test, and

chest X-rays to look for inflammation in the lungs. Abnormal

CBC can be due to a variety ofmedical conditions. The count

may decrease or increase even with mild infections. Thus,

CBC is not guaranteed to confirm the presence of pneumo-

nia. Children below the age of 10 have reduced sputum

production. This reduced sample quantity restricts con-

ducting various tests and eliminates its possibility as a con-

firmatory diagnostic test. Though pulse oximetrymight seem

like the best alternative, it cannot assure the presence of

pneumonia as there may be other lung contaminations

causing the low oxygen levels in the body. In addition to the

limitations of these tests, they are time and cost-inefficient.

These two factors are critical in saving lives. Cost in specific

is a prime challenge in underdeveloped countries where

people scarcely avail such diagnosis measures due to its high

costs. An affordable and rapid standardized test was adopted

considering these issues: Chest X-rays.

Chest X-rays being time and cost-effective are the most

common modality of pneumonia diagnosis. Doctors and

radiologists with years of expertise examine the X-rays to

detect the presence of pneumonia. Radiation level for chest

X-rays in children is lower in contrast to the radiation

levels used in adults to eliminate the risk of developing

cancer. Low radiation levels in X-rays lead to loss of

important information, making the task of pediatric pneu-

monia detection much more laborious and strenuous. With

the ongoing COVID-19 virus advancing into other variants,

several doctors across the globe are being transferred to

emergency wards. The current situation might place chil-

dren with pneumonia in jeopardy of not getting the

required medical attention and thus, motivates the need for

a computer-aided diagnostic model that is accurate and

immediate.

Several Computer-Aided Diagnosis (CAD) methods are

currently in use for various biomedical applications, such

as breast cancer detection [5], heart disease detection [6],

tuberculosis detection [7], Alzheimer disease detection [8],

diabetes-related retinal disease detection [9], and pneu-

monia detection. Literature survey shows that machine

learning-based pneumonia diagnosis from chest X-rays

using several feature extraction techniques helped physi-

cians automate the process of diagnosis. However, this

feature extraction process requires the usage of handcrafted

filters. Feature engineering in biomedical tasks requires

tremendous proficiency and relies laboriously on experts,

hence hindering the widescale development of CADs.

The applications of computer-aided diagnosis are now

limitless with the advent of deep learning. Deep learning has

been rooted down firmly in different domains owing to the

availability of enormous data and ample computational

resources. Deep Convolutional Neural Networks (CNN) has

gained lots of attention in recent years leading to state-of-the-

art performances in various image classification problems.

The advantage of automatic feature extraction and engi-

neering in deep learning, which was not previously possible

with machine learning, has propelled the surge in computer-

aided diagnosis-based systems. Transfer learning, a splendid

breakthrough in artificial intelligence, has helped researchers

overcome the disadvantage of the inadequate dataset that

arises due to privacy concerns. Most of the deep learning

architectures used for pediatric pneumonia diagnosis per-

form well nonetheless, their performance is limited. The

cause for this is in the learning of a neural network: huge

parameters in neural networks tend to overfit and thereby

limit their performance on the test data. Most of the models

proposed in the literature are not generalizable and robust as

their performance has not been validated on similar datasets

belonging to the same disease. Possible reasons for the

limited performance include poor outlier handling, training

on high class imbalance datasets, models with convoluted

structure, and overfitting. The existing models are not

guaranteed to perform well on unseen data. Robustness and

generalizability are the key factors to be considered before

real-time deployment. Therefore, it is of utmost importance

to validate the performance on datasets of similar lung dis-

eases or the same disease. Accounting to the above-men-

tioned concerns, the major contributions of the proposed

work are summarized as follows:

• A stacked classifier-based learning approach, leverag-

ing the strengths of machine learning classifiers and

neural networks for pediatric pneumonia detection.

• A comparative performance analysis of the various

pretrained deep CNN architectures with the proposed

method for the task at hand.

• Class activation maps (CAM) to visualize the area of

interest pertinent to the classification of normal and

pneumonia X-rays.
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• t-distributed stochastic neighbor embedding (t-SNE)

based feature visualization for layman interpretability

of the features predicted by the deep CNN architecture.

• Investigation on the effect of the kernel PCA on the

performance of the classification model.

• An up-to-date comparison with other recent works

tested on the publicly available Kermany et al. [10]

dataset.

• A detailed investigation on the advantages and limita-

tions of the proposed architecture on the pediatric

pneumonia dataset.

• Performance analysis of the proposed method on

similar pneumonia datasets to prove its generalizability

and robustness.

The contributions made in the field of pediatric pneu-

monia diagnosis that motivated us to advance with the idea

of stacked ensemble learning are as follows:

• The unprecedented research on the diagnosis of pedi-

atric pneumonia with transfer learning, unfurled the

possibilities of research along with the open-source

availability of the dataset [10].

• The current impediment in the performance of deep

convolution layers was solved using dilated convolu-

tions, residual structures, and transfer learning [11].

• A fusion technique involving a deep CNN model with

PCA and logistic regression [12].

• A weighted average ensemble of deep CNN models

incorporating deep transfer learning [13].

• A majority voting ensemble of the predictions from

deep CNN models [14].

• CheXNet [15], a DenseNet121 model trained on the

ChestX-ray14 dataset whose performance exceeded that

of the average radiologist.

The rest of this article is organized as follows: Sect. 2

describes the literature survey and discusses the existing gap

in the literature and how our approach completes it. The

proposed approach is discussed in Sect. 3. Section 4 contains

the description of the dataset. Section 5 details the perfor-

mancemetrics used in this study. The experimental results are

analyzed and discussed with plots in Sect. 6. In Sect. 7, we

conclude our work; summarizing the problem and the limi-

tations of our approach, along with the possible future works.

2 Literature survey

Convolution Neural Network (CNN) gets its name from the

mathematical operation called convolution. CNN is widely

used for feature extraction and consists of three types of

layers: convolutional layer, pooling layer, and fully con-

nected layer. The first study on pediatric pneumonia

detection using deep learning facilitated the onset of

pediatric pneumonia-based diagnosis research [10]. The

dataset was made public, and researchers began experi-

menting with different neural network approaches. Multi-

layer Perceptron (MLP) and CNN-based approaches were

proposed in [16]. As a continuation of his previous work,

Saraiva et al. [17] used CNN for feature extraction, fol-

lowed by cross-validation for extensive learning from the

limited dataset. Several state-of-the-art deep learning

models were fine-tuned for pediatric pneumonia detection

on the Kermany et al. [10] dataset with competing per-

formances. However, the performances of these models

were limited. The current limitation of deep CNN archi-

tectures is the degradation of spatial information with

increasing layers. In classification tasks pertinent to med-

ical imaging, spatial information is of acute necessity.

Gaobo Liang et al. [11] proposed an elegant solution to this

shortcoming. They presented a deep learning framework

based on dilated convolution to preserve spatial informa-

tion alongside residual structures to prevent over-fitting. In

addition to dilated convolutions, their study emphasizes

using transfer learning for better training on the small-scale

dataset.

CheXNet [15], a deep CNN model built by Stanford’s

researchers trained on the ChestX-ray14 dataset, achieves a

diagnosis capability better than the average radiologist.

Additionally, they executed a secondary check on the given

dataset for proper classification. In transfer learning, pre-

defined weights are a key factor in determining the per-

formance of a model. The knowledge of CheXNet weights

was transferred to the task of pediatric pneumonia diag-

nosis in several studies. It is highly favorable if the weights

chosen belong to the same field. The differences in per-

formance when using CheXNet weights, ImageNet

weights, and random weights are detailed in [29]. Stephen

et al. [30] investigated the performance of simple CNN

architecture in the absence of transfer learning.

Several studies focus on existing deep CNN architec-

tures, such as MobileNets, VGGs, DensNets, and ResNets.

Rahman et al. [21] studied the performance of AlexNet,

ResNet18, DenseNet201, and SqueezeNet using transfer

learning for normal vs. pneumonia, bacterial vs. viral

pneumonia, and normal, bacterial, and viral pneumonia

classification. Novel architectures were proposed as a

solution to the existing limitations in these deep CNN

architectures. Deep sequential CNNs for pediatric pneu-

monia detection are introduced in [19]. In [20], the authors

exemplify the use of depthwise separable convolutions for

the task of pediatric pneumonia diagnosis. A hybrid system

consisting of adaptive median filter Convolutional Neural

Network (CNN) recognition model based on Random

Forest (RF) for detecting pneumonia from chest X-Ray

images was introduced in [35]. In addition to different
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architectures, several feature extraction techniques were

also employed. Wavelet transform is another technique for

feature extraction based on a set of predefined filters.

Akgundogdu et al. [18] analyzed the performance of 2D

discrete wavelet transform for feature extraction with ran-

dom forest for classification.

Image enhancement techniques have become a topic of

interest to improve the quality of the image and highlight

essential features in an image. The effect of HE, CLAHE,

image complement, gamma correction, and balance con-

trast enhancement techniques for chest X-rays are descri-

bed in Tawsifur et al. [23]. Rubini et al. [24] compared two

prominent spatial processing techniques- Adaptive his-

togram equalization (AHE) and Contrast Adaptive his-

togram equalization (CLAHE) for enhancing MRI images.

El Asnaoui et al. [22] compares fine-tuned deep-learning

architectures’ performances for binary classification in

pediatric chest X-rays. Their work details the advantage of

using Contrast Limited Adaptive Histogram Equalization

(CLAHE) as an image enhancement technique for better

learning.

The class imbalance problem is a necessity that needs to

be addressed in machine learning. Machine learning is

heavily dependent on a balanced dataset for unbiased

training. Sampling is an important solution to deal with

class imbalance problems. Habib, Nahida, et al. [25] pro-

posed the use of Random Under Sampling, Random Over

Sampling, and SMOTE on ensembled features from VGG-

19 and CheXNet. Luján-Garcı́a et al. [26] explored random

undersampling (RUS) for unbiased training and used a

cost-sensitive learning approach for the Xception network.

However, such approaches’ performance was limited

because the data generated from SMOTE was unable to

capture the required features for pediatric CXRs, and no

new data was generated to improve learning in RUS.

The performance of a model can be increased using

several techniques. Increasing the feature set is one way to

improve the performance of the model. This idea applied to

pneumonia diagnosis was introduced by Nahid et al. [27]

where they proposed a novel two-channel CNN architec-

ture for pneumonia diagnosis. Predictions using feature

concatenations from SqueezeNet and InceptionV3 along

with ANNs are detailed by Islam et al. [28]. Their work

entails retraining with modified parameters in addition to

redistributing the existing dataset for unbiased training.

Hyperparameters are a major contributing factor to the

performance of a model. The right choice of optimizers is

crucial to get the best results. While most of the recent

related research focused on Adam optimizer, the effect of

Stochastic Gradient Descent (SGD) optimizer was

explained in [31].

Ensemble approaches are another important technique to

improve the predicting accuracy of a model. Chouhan et al.

[14] studied the performance of a majority voting ensemble

combining the predictions from AlexNet, DenseNet121,

Inception V3, GoogLeNet, and ResNet18. Sagar Kora

Venu [13] proposed a weighted average ensemble of these

deep CNN models—MobileNetV2, Xception, Dense-

Net201, ResNet152V2, and InceptionResNet. Nahida et al.

[12] proposed a combination of a deep convolutional

neural network for feature extraction, Principal Component

Analysis (PCA) for dimensionality reduction, and logistic

regression for classification. Improved feature representa-

tion may increase the performance of a classification

model. A graph knowledge embedded convolutional net-

work called CGNet was proposed by Yu et al. [33]. They

used the transfer learning technique for feature extraction

followed by graph-based feature reconstruction for classi-

fication. Mittal et al. [34] proposed a CapsNet architecture

for classifying normal and pneumonia images.

The main impeding factor for the complete transition to

artificial intelligence (AI) is the lack of transparency. A

promising field of research called explainable AI (XAI) has

been gaining momentum lately. A unique approach in

integrating explainability for pneumonia detection was

introduced by Nguyen, Hai, et al. [32]. They proposed a

combination of custom CNN architecture and Grad-CAM

for pneumonia detection. An abundance of research has

been done in this field. However, there exist limitations

which are discussed below:

1. Most studies propose data augmentation techniques to

increase the number of samples for training to ensure

improved performance. Artificially increasing the

dataset is time and space inefficient.

2. Studies emphasize the use of CheXNet weights for

custom CNN training which is a challenging task.

3. Lot of research proposes the use of custom complex

architectures that are not easily replicable and hampers

the reproducibility of the work.

4. The absence in the exploration of ensemble approaches

pertinent to pediatric pneumonia diagnosis was

observed. The same was witnessed concerning the

use of machine learning classifiers.

5. The pressing need for dimensionality reduction using

PCA has not been stated firmly.

6. Data sampling methods like RUS, ROS, and SMOTE

lead to longer training times and over-fitting.

7. Most of the above-mentioned studies failed to cover

the aspect of feature visualization. This is very

important to ensure the learned features are meaningful

for predictions.

Our work proposes a detection pipeline to bridge the gap

in the existing literature. The dataset has been redistributed

for unbiased training instead of using data sampling

methods. The proposed methodology is based on the
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Xception architecture pretrained on the commonly avail-

able ImageNet weights for feature extraction. The extrac-

ted feature maps from the global average pooling layer are

passed to the t-SNE for feature visualization. Kernel PCA

is then used for dimensionality reduction. Stacking

ensemble classifier approach with KNN, SVC, Random-

Forest classifier, Nu-SVC, MLP classifier, and Logistic

Regression was used along with Stratified K-Fold cross-

validation to overcome overfitting. All additional details

are discussed in the forthcoming sections.

3 Proposed approach

This section details the workflow of the proposed pediatric

pneumonia detection model, from the collection of data to

the final classification as illustrated in Fig. 1. The dataset

contains images of varying sizes. In this study, we reshape

the images according to the requirement of different deep

CNN models. Each image is normalized to bring the pixel

values between the range 0–1 using the Keras image gen-

erator in addition to the introduction of sheer, zoom, and

flip augmentations as shown in Table 1. Image augmen-

tations are a necessary part of modeling to prevent over-

fitting. These augmentations are generated on the fly in

concurrence with the training.

The proposed architecture is trained on a two-step pro-

cess. The first step was to use train deep CNN architecture

for feature extraction. The Xception network was selected

among all the other existing deep CNN architectures based

on its performance for this task. A global average pooling

layer was added to obtain feature maps. To prevent over-

fitting, a dropout rate of 0.4 was used and the Xception

network was trained using binary cross-entropy loss. The

ImageNet weights were used for transfer learning from

second half of the layers in the Xception network. This

resulted in better feature extraction from the CXRs. With

the model now being able to extract the required features,

the second step was to train the stacking classifier using the

extracted features. The extracted features from the fine-

tuned Xception network are sent through Kernel PCA for

dimensionality reduction. The reduced features are trained

on the stacking classifier with Nu-SVC, XGB classifier,

Logistic Regression, K-Nearest classifier, Support Vector

classifier, Randomforest classifier and MLP classifier for

the first stage. The predictions from the base estimators

(first stage classifiers) are trained on a meta classifier (lo-

gistic regression) for the final binary NORMAL and

PNEUMONIA classification.

3.1 Transfer Learning

The performance of any deep learning model relies on the

amount of data available. Accessibility to large datasets is

guaranteed to increase the performance of deep learning

models and make them more robust. Large datasets allow

the model to learn much more intrinsic patterns. However,

this is not always the case in medical imaging pertinent to

pediatric pneumonia due to concerns, such as patient pri-

vacy and the time-consuming task of inspecting and

labeling the data. Transfer learning [36] serves as a solu-

tion to this problem. In transfer learning, we use the

existing knowledge gained when trained on a similar task

and apply it to our detection of pediatric pneumonia. In our

study, we fine-tune models pre-trained on ImageNet

weights (trained on more than 14 million images ranging

across 1000 classes).

3.2 Deep learning models

The literature survey concludes on the observation that

competing performances were obtained when using pre-

trained deep CNN models. A detailed investigation on

existing pretrained CNN architectures was performed to

find the architecture best suited to the task at hand. These

models pretrained on ImageNet weights were trained and

tested on the Kermany dataset [10] to understand its

advantages and limitations for pediatric pneumonia diag-

nosis. The initial half of layers were frozen while the

second half of the models were fine-tuned. Pre-trained deep

CNN models, such as VGG16 [37], VGG19 [37], Mobi-

leNet [38], MobileNetV2 [38], MobileNetV3Large [50],

MobileNetV3Small [50], InceptionResNetV2 [39], Den-

seNet121 [40], DenseNet169 [40], DenseNet201 [40],

InceptionV3 [41], ResNet50 [42], ResNet101 [42],

ResNet152 [42], ResNet50V2 [43], ResNet101V2 [43],

ResNet152V2 [43], EfficientNetB0 [51] and Xception [44]

are trained on the Kermany dataset [10] to find the best

performing model. The features are then extracted using

the best performing model. The extracted features are

passed through the global average pooling layer to extract

one feature map from each image. These features are used

for further processing. Details on the parameters used to

conduct all the experimentations are explained in results

and discussions.

3.2.1 Xception

CNNs rely on the gradients in the image for feature

retrieval. Increasing convolution layers introduces the

vanishing gradient problem, hence explaining the stagger-

ing performance with the increasing number of

Neural Computing and Applications (2023) 35:8259–8279 8263

123



convolutional layers. Residual connections were intro-

duced as a solution to the vanishing gradient problem. In

time, researchers began incorporating residual structure in

deep CNN models. Inception made its way into the

research community along with its successors- InceptionV3

and InceptionResNets. Inception was built on the hypoth-

esis that the spatial and cross-channel correlations in fea-

ture maps can be decoupled. Xception, leveraging this

hypothesis pushed it to the extreme, thereby getting the

name Xception, the extreme version of Inception.

The Xception architecture is a stack of 14 modules (36

convolutional layers) with linear residual connections

except for the first and the last modules. The entry flow

initiates the flow of data and is followed by the middle flow

where the set of operations is repeated 8 times. The

architecture incorporates residual structure to tackle the

vanishing gradient problem. The exit flow terminates the

order of convolutions. The detailed architecture flow dia-

gram is shown in Fig. 2. Each convolution and separable

convolution layer is succeeded by batch normalization. In

contrast to depthwise separable convolution where depth-

wise convolution is followed by pointwise convolution as

shown in Fig. 3, Xception follows the reverse. The process

starts with pointwise convolution followed by depthwise

convolution.

Fig. 1 Proposed architecture for pediatric pneumonia classification

Table 1 Augmentations used in our study and their corresponding

values

Methods Corresponding parameters

Rescale 255

Shear 0.2

Zoom 0.2

Horizontal Flip True
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3.2.2 Hyperparameters

To improve the feature extraction capability of the models,

the best performing deep CNN architecture was first

selected among existing deep CNN architectures. This

selection was based on training all the architectures with a

learning rate of 0.001 with adam as the optimizer and

selecting the best performing model. The sigmoid activa-

tion function was used for this binary classification task.

Hyperparameter tuning is a crucial step to boost the per-

formance of a model. In our study, we fine-tuned the

models based on different combinations of optimizers and

learning rates as shown in Table 2, to select the perfect

composition that results in the highest validation accuracy.

Binary cross-entropy is used as the loss function which

calculates the difference between the expected and actual

output. The value for the loss function ranges between 0

and 1 and is given by Eq. 1.

Loss =
Xoutput size

i¼0

yi � log ŷið Þ þ 1� yið Þ � log 1� ŷið Þ ð1Þ

Fig. 2 The architecture for xception deconstructed as (a) Entry flow, (b) Middle flow and (c) Exit flow

Fig. 3 Illustration of the working of a depthwise separable convolution network
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3.3 Principal component analysis

Large datasets often have redundant features which makes

them difficult to interpret. No additional benefit is gained

by learning the redundant feature rather it burdens the time

taken to train a model. An immediate solution to this

complication is Principal component analysis [45]. PCA is

a famous statistical method used for dimensionality

reduction. The PCA algorithm reduces the dimensionality

of the given input in such a way that it minimizes the loss

in reduced data. The objective of the PCA algorithm is to

maximize the variance by creating new uncorrelated vari-

ables. The first set of uncorrelated variables forms the first

principal axes. Similarly, subsequent sets of variables form

their corresponding principal axes. The first principal axes

capture the maximum variance and subsequent axes that

are orthogonal to the previous axes capture decreasing

variances in order. PCA performs well for linearly sepa-

rable data however, this is never the case in real-world

data. Kernel PCA [46] was developed as a solution to deal

with nonlinear dimensionality reduction. It captures much

more intrinsic correlations between the given high-dimen-

sional features.

3.4 Stacking classifiers

Ensemble learning has attracted considerable attention in

the past years. Studies emphasize it as a promising way to

improve the performance of a model. Stacking Classifier is

one such ensemble learning technique. As the name sug-

gests, it stacks the predictions from individual classifiers

(base classifiers) and uses them as features. These features

are trained on a final classifier called the meta classifier.

Stacking exploits the strengths of individual predictions,

making predictions much richer and accurate.

3.5 Stratified K-fold cross-validation

Cross-validation is the most widely employed technique to

estimate the model’s performance on unseen data. The

performance on unseen data is of utmost importance for

real-world deployment. The cross-validation technique

facilitates the model to learn the most out of the provided

data and prevent over-fitting. The Stratified K-Fold is an

extension of the K-Fold cross-validation technique devel-

oped for the purpose of dealing with imbalanced class

distributions. It ensures that each fold has same class dis-

tribution as in the original dataset. The dataset used has a

higher number of pneumonia CXRs than normal CXRs for

training. The class distribution in the training set was

preserved in each of the folds. In this study we used

Stratified K-Fold cross-validation with n_splits = 10.

4 Dataset description

The Kermany et al. [10] dataset was used for all the

experiments in this comparative study. The dataset com-

prises 5856 Chest X-Ray images belonging to two cate-

gories- Normal (1538 X-rays) and Pneumonia (4273

X-rays). The dataset was split on an 80–10-10 (train-test-

validation) split ratio after recombining the train and test

data of the Kermany et al. [10] dataset. The data distribu-

tion used in this study is shown in Table 3. These chest

X-ray images are from routine screening in Pediatric

patients between 1 – 5 years of age from the Guangzhou

Women and Children’s Medical Centre. The faint white

occlusions, present in the X-rays in the second row in

Fig. 4 are due to the occupancy of pus and fluids in the

alveoli.

5 Performance metrics

Performance metrics are imperative to distinguish the

performance of classification models. The metrics used in

this study are accuracy, precision, recall, F1-score, and the

AUC value. The Confusion matrix counts the distribution

of predictions across the actual labels as shown in Fig. 5.

Accuracy, Precision, Recall, and F1-score are derived from

the confusion matrix.

The accuracy of a model is calculated as the ratio

between correct predictions and total predictions as shown

Table 2 List of

hyperparameters and their

values used in our study to

finalize the perfect combination

for the task at hand

Hyper parameter Corresponding values

Optimizer Adam, SGD, Nadam, RMSprop, Adamax, Adagrad

Learning rate 0.01, 0.001, 0.0001, decay rate from 0.001 to 0.000001

Batch size 32

Table 3 Distribution of the dataset for our study

Category Train Test Validation

Normal 1266 159 158

Pneumonia 3418 427 428

Total 4684 586 586
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in Eq. 2. The precision of a model is calculated as the ratio

between true positives and total positives as shown in

Eq. 3. It summarizes the quality of positive predictions

made by the model. For a good classifier, precision is close

to 1. Recall of a model is calculated using Eq. 4, which

shows how well the predictions are classified as actual

positive. F1-score is the harmonic mean of precision and

recall as shown in Eq. 5. The Area Under Curve (AUC)

score is the area under the receiver operating characteristics

(ROC) curve. It defines the ability of the model to

distinguish between patients with and without pneumonia.

For a good classification model, the AUC score must be

close to 1.

Accuracy =
TPþ TN

TPþ TNþ FPþ FN
ð2Þ

Precision =
TP

TPþ FP
ð3Þ

Recall =
TP

TPþ FN
ð4Þ

F1 score = 2
Precision � Recall

Precision + Recall

� �
ð5Þ

6 Results and discussion

Several deep-CNN models were trained on the 4684 x-ray

images for 30 epochs and evaluated on the test data con-

sisting of 586 images to determine the model best suited for

the task at hand. Google Colab resourced with K80 GPU

and 12 GB RAM was used to conduct all the foremen-

tioned experiments in this study. Tensorflow2 and Keras2

were used to build and evaluate the models.

The following models are compared and the best per-

forming model is used for feature extraction: VGG16,

VGG19, MobileNet, MobileNetV2, MobileNetV3Small,

MobileNetV3Large, InceptionResNetV2, DenseNet121,

DenseNet169, DenseNet201, InceptionV3, ResNet50,

Fig. 4 Samples of Normal x-rays and Pneumonia x-rays from the dataset in the first row and second row, respectively

Fig. 5 Confusion matrix. True Positive (TP)—number of pneumonia

x-rays correctly predicted as pneumonia. False Negative (FN)—

number of pneumonia x-rays wrongly predicted as normal. True

Negative (TN)—number of normal x-rays correctly predicted as

normal. False Positive (FP)—number of normal x-rays predicted

wrongly as pneumonia
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ResNet101, ResNet152, ResNet50V2, ResNet101V2,

ResNet152V2, Xception and EfficientNetB0. Each of the

models above were pre-trained on ImageNet weights with

the corresponding input image of size 224 9 224 for all

architectures except for InceptionV3, ResNet152V2 and

Xception with an input image of size 299 9 299. All deep

CNN models were trained with a constant learning rate of

0.001 and Adam as the optimizer. The initial layers of all

the deep CNN models were frozen during training. Table 4

describes the layer count at which fine-tuning commenced

for each deep CNN model with the corresponding count of

trainable parameters. Table 5 illustrates the performance of

the existing deep CNN architectures for the binary classi-

fication of no-pneumonia vs pneumonia detection along

with the proposed method.

When noticed, the family of DenseNet models performs

consistently well. The reflection of collective knowledge in

DenseNets enabled it to achieve an accuracy of 0.96.

InceptionResNetV2, ResNet152V2, and Xception are the

best performing architectures with the highest accuracy

compared to the rest of the models for the task of pediatric

pneumonia detection. The residual connections are a key

factor that has suppressed over-fitting and thus enabled the

above models to perform well on the test data. Though

ResNet152V2 and InceptionResNetV2 achieve the same

accuracy of 0.97 and an AUC of 0.98 similar to that of

Xception, the latter has a higher recall of 0.97 compared to

the former architectures. The recall of a model is of utmost

importance as we do not want X-rays with pneumonia to be

classified as normal. The confusion matrix for the test data

predictions from the Xception architecture is shown in

Fig. 6. From the confusion matrix, we conclude that the

Xception in itself is unable to deal with false positives and

false negatives. Figure 7 shows the ROC curve for the test

data predictions. Xception proves to be a good feature

extractor with an AUC of 0.97 still, its performance can be

improved by looking at the feature representations.

The training and validation plots are shown in Fig. 8.

Though the loss initially peaks at irregular intervals, it

substantially decreases. It can also be inferred that the

validation loss and accuracy are constrained to certain

bounds from 1 to 0 and 0.75 to 1, respectively. The vali-

dation data of 586 images were used for hyperparameter

tuning. The Xception model was first fine-tuned on dif-

ferent optimizers to find the best fit for the task at hand.

The Adam optimizer performs best as seen in Fig. 9. This

combination was further tested on different learning rates.

Figure 10 illustrates the competing performances of these

learning rates when set to a static and a continuously

regressing value. Based on Figs. 9 and 10, the optimal

hyperparameters with the adam optimizer and a constant

learning rate of 0.001 were chosen for feature extraction.

Inspection of the features learned by deep learning

models is crucial especially in the biomedical domain for

its adaptability as a life-saving resource. This inspection

was made possible with class activation maps [57] giving

an overall vision of what the Xception model has learned.

Figures 11 and 12 show the pixels that contributed the

most while looking at pediatric pneumonia diagnosis for

misclassified and correctly classified samples, respectively.

Table 4 Fine-tuning

information and the number of

trainable parameters associated

with each model used in our

study

Deep CNN model Fine-tuned from Total number of trainable parameters

VGG16 9 13,569,793

VGG19 11 17,699,329

MobileNet 50 2,665,473

MobileNetV2 77 2,064,769

MobileNetV3Small 117 1,371,849

MobileNetV3Large 134 4,028,273

ResNet50 87 21,364,225

ResNet50V2 95 21,352,449

ResNet101 172 30,640,129

ResNet101V2 188 30,625,793

ResNet152 257 39,855,617

ResNet152V2 282 39,836,673

InceptionV3 155 16,791,489

Xception 66 14,860,313

InceptionResNetV2 390 41,922,529

DenseNet121 213 4,632,897

DenseNet169 297 8,544,833

DenseNet201 353 12,741,185

EfficientNetB0 118 3,700,169
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Our method uses Xception for feature extraction with

adam as the optimizer, the learning rate set to a constant

value of 0.001 throughout the experiment, and a batch size

of 32. The extracted features are visualized using the t-SNE

[58] feature representation for the layman interpretability

of the features predicted by the model. The t-SNE is a

nonlinear dimensionality reduction technique that tries to

preserve the local structure of the data. The feature maps of

the test data are visualized using the t-SNE feature repre-

sentation. The two dimensions (x and y-axes) shown in

Fig. 13 are the first two principal components of the test

data. This approach allowed us to visualize the normal and

pneumonia samples in separate clusters. The cluster for-

mation gives an idea of how well the predictions are made.

In addition, the visualization element gives an insight into

the possible classifiers that can be used for the classifica-

tion task.

The parameter values used for visualization are n_-

components = 2, perplexity = 40, and n_iter = 300. The

t-SNE plot of the extracted feature maps from the Xception

architecture is shown in Fig. 13. Looking at the cluster

Table 5 Performance chart of

deep learning models with

values rounded off to the nearest

two decimal positions

Model Accuracy Precision Recall F1-score AUC

VGG16 0.73 0.73 1.00 0.84 0.5

VGG19 0.73 0.73 1.00 0.84 0.5

MOBILENET 0.96 1.00 0.96 0.97 0.97

MOBILENETV2 0.94 0.99 0.91 0.95 0.95

MOBILENETV3SMALL 0.27 0.00 0.00 0.00 0.5

MOBILENETV3LARGE 0.89 0.89 0.97 0.93 0.82

RESNET50 0.69 1.00 0.57 0.73 0.79

RESNET50V2 0.96 0.99 0.96 0.98 0.97

RESNET101 0.23 0.46 0.32 0.37 0.16

RESNET101V2 0.96 1.00 0.94 0.97 0.97

RESNET152 0.75 0.75 1.00 0.86 0.54

RESNET152V2 0.97 1.00 0.96 0.98 0.98

DENSENET121 0.96 1.00 0.95 0.97 0.97

DENSENET169 0.96 1.00 0.94 0.97 0.97

DENSENET201 0.96 1.00 0.95 0.97 0.97

INCEPTIONV3 0.92 1.00 0.89 0.94 0.95

XCEPTION 0.97 0.99 0.97 0.98 0.98

EFFICIENTNETB0 0.312 1 0.05 0.11 0.53

INCEPTIONRESNETV2 0.97 1.00 0.96 0.98 0.98

PROPOSED METHOD 0.98 0.99 0.98 0.99 0.98

Fig. 6 Confusion matrix for xception predictions on the test data

Fig. 7 ROC curve for test data predictions made by the fine-tuned

xception model
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formations, we conclude that the test samples are nonlin-

early separable with minor overlaps between the predic-

tions and that we need a classifier that is able to deal with

such complexity. This study proposes the use of the

stacking classifier to deal with the nonlinearly separable

classification.

Thus, finalizing Xception as the feature extractor, the

next step is dimensionality reduction using PCA (Principal

Component Analysis). Dimensionality reduction is an

important step to prevent the model from learning redun-

dant features. In our study, we use the RBF (radial basis

function) kernel with the number of resulting components

Fig. 8 Training and validation accuracy-loss history of the fine-tuned xception model

Fig. 9 Xception model performance on the validation set using different optimizers

Fig. 10 Xception model performance on the validation set using different learning rates with adam as the optimizer
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as 200. This number has been chosen based on careful

examination of the cumulative variance plot with a 95%

cut-off threshold, shown in Fig. 14. Several machine

learning classifiers were trained on the dimensionally

reduced features and validated against the stacking classi-

fier for the binary classification of normal and pneumonia

CXRs. Table 6 concludes that the stacking classifier out-

performs all machine learning classifiers by leveraging the

strength of individual estimators.

Redundant features are detrimental to the performance

of a classification model. The existing correlations between

the important and redundant features are the key explana-

tion for the hampering performance. The beneficial effect

of removing redundant features in the task pertinent to

pediatric pneumonia diagnosis is illustrated in Table 7

(Normal vs Pneumonia classification). The cumulative

variance plot describes the percentage of the total variance

captured by the first n components from the entire data.

Higher variance indicates better preservation of important

information from the data. The cumulative variance plot,

Fig. 14 shows that the first 200 components capture most

of the variance and that all additional principal components

Fig. 11 Class activation maps of misclassified X-rays (row 1: normal classified as pneumonia, row 2: normal classified as pneumonia, row 3:

pneumonia classified as normal)
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henceforth are redundant. The 200-dimensional output is

passed to the two-stage stacking classifier.

The first stage in the stacking classifier leverages the

RandomForestClassifier, Support Vector Classifier,

KNeighborsClassifier, XGBClassifier, LogisticRegression,

Nu-Support Vector Classifier, and MLPClassifier. The

hyperparameters for each of these classifiers were selected

using GridsearchCV and are detailed in Table 8. Individual

predictions from each of the five classifiers are sent to the

meta-classifier for the final classification. The meta clas-

sifier uses LogisticRegression with penalty = l2, tol = 1e-

4, C = 1.0, solver = ‘lbfgs’ and max_iter = 100. Stratified

K-Fold cross-validation with n_splits = 10 was employed

to help the model learn the most from the existing limited

dataset and prevent over-fitting.

The confusion matrix for Stratified K-Fold cross-vali-

dation stacking classifier predictions on the test set is

shown in Fig. 15. Lesser false-positive predictions from the

stacking classifier are observed compared to the raw pre-

dictions made by the Xception architecture due to the

strengths of individual classifiers. Thus, the strength of a

stacking classifier solely relies on the individual strengths

Fig. 12 Class activation maps of correctly classified X-rays (row 1: normal classified as normal, row 2: normal classified as normal, row 3:

normal classified as normal)
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of the predictors. Principal component analysis has facili-

tated in lowering the number of false positives and false

negatives which can be seen as a comparison between

Figs. 15 and 16. The ROC curve, shown in Fig. 17 has an

AUC value of 0.98. The AUC value from the stacking

classifier has a 1% increase from the previously obtained

AUC value. Looking at the confusion matrix, the loss of

1.7% in the accuracy of the model might favorably be due

to the imbalanced dataset or insufficient training samples

for training. The proposed method achieves a much higher

accuracy of 98.30%.

Table 9 compares the performance, technique, and

classification classes of our proposed approach with other

recent works. The proposed work exhibits competing per-

formances with other literary works for the binary classi-

fication of normal and pneumonia CXRs. All the works

mentioned in the Table validated their results tested on the

Kermany et al. [10] dataset. Since the Xception model used

as the feature extractor is based on the commonly available

ImageNet weights, reproducibility is easier. In addition to

stacking various machine learning classifiers for rich pre-

dictions, the proposed method was tested on unseen

pneumonia datasets for model generalization and robust-

ness which was previously absent in recent works. The

limitation of the proposed model is in its heavy reliance on

the correct combination of base classifiers for accurate

classification. The comparison hints at a possible future

direction for using feature concatenations (Islam et al. [28])

followed by a stacking classifier for better results.

7 Robustness and generalization
of the proposed approach for lung disease
classification

The generalization of a proposed approach is essential to

validate its performance. The proposed stacking classifier

trained on the Kermany et al. [10] pediatric pneumonia

Fig. 13 t-SNE feature

representation of the test data

extracted from the xception

model

Fig. 14 Cumulative variance plot of the extracted xception features
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dataset was tested on other pneumonia datasets [55, 56].

The confusion matrix of the predictions made on the test

data on the two pneumonia datasets is shown in Figs. 18

and 19, respectively. The misclassifications in the first [55]

and second [56] datasets are 25 and 31 false positives

(normal predicted as pneumonia), respectively. The pro-

posed method shows null false negatives in both unseen

datasets. Tables 10 and 11 discuss the classification report

for the corresponding datasets [55, 56]. The proposed

method achieves an accuracy of 88% on the unseen test

dataset [55] with 100 images belonging to normal and

pneumonia classes each as shown in Table 10. The model’s

reliability is supported by the precision of 100%, recall of

75% for the normal class, and precision of 80%, and recall

Table 6 Performance

comparison of different

machine learning classifiers

with the stacking classifier with

values rounded off to the nearest

two decimal positions

Classifier Accuracy Precision Recall F1-score AUC

Logistic regression 98.13 98.83 98.60 98.71 97.73

Support vector classifier 98.13 99.29 98.13 98.71 98.12

Nu- Support vector classifier 97.44 97.47 99.07 98.26 96.07

K-Nearest classifier 98.13 99.29 98.13 98.71 98.12

MLP classifier 97.10 98.81 97.20 98.00 97.03

Gaussian naı̈ve bayes 95.91 96.12 98.36 97.23 93.84

Bernoulli NB 94.89 98.77 94.16 96.41 95.50

Gradient boosting classifier 94.72 97.37 95.33 96.34 94.20

XGB classifier 96.59 99.28 96.03 97.62 97.07

Decision Tree classifier 94.72 97.37 95.33 96.34 94.20

Random forest classifier 96.08 96.13 98.60 97.35 93.95

Extra Trees classifier 96.76 97.01 98.60 98.80 95.21

Bagging classifier 98.13 98.60 98.83 98.72 97.53

AdaBoost classifier 95.06 97.84 95.33 96.57 94.83

LGB classifier 97.10 98.58 97.43 98.00 96.83

CatBoost classifier 97.96 99.29 97.90 98.59 98.00

HistGradient boosting classifier 96.08 99.27 95.33 97.26 96.72

Proposed method 98.30 99.29 98.36 98.83 98.24

Table 7 Performance comparison with and without PCA with values rounded off to the nearest two decimal positions

Method Accuracy Precision Recall F1-score AUC

Stacking classifier in the absence of PCA 97.79 99.05 97.90 98.47 97.69

Stacking classifier with PCA 98.30 99.29 98.36 98.83 98.24

Table 8 Fine-tuning information and the number of trainable parameters associated with each model used in our study

Classifier Hyperparameters

RandomForest n_estimators = 100, criterion = ’gini’, min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_leaf = 0.0,

min_impurity_decrease = 0.0, ccp_alpha = 0.0

Support vector C = 1.0, kernel = ’poly’, degree = 3, gamma = ’scale’, coef0 = 0.0, tol = 1e-3

Nu-Support

vector

kernel = ’rbf’, degree = 1, gamma = ’scale’, probability = True, nu = 0.25, tol = 1e-3

K-Neighbors n_neighbors = 5, weights = ’uniform’, leaf_size = 30, p = 2

XGB loss = ’deviance’, learning_rate = 0.1, n_estimators = 100, subsample = 1.0, criterion = ’friedman_mse’,

min_samples_split = 2, min_samples_leaf = 1, max_depth = 3, min_weight_fraction_leaf = 0.0

Logistic

regression

penalty = ’l2’, tol = 1e-4, C = 1.0, solver = ’lbfg’, max_iter = 100

MLP Hidden_layer_sizes = (50,10,10,10), activation = ’tanh’, solver = ’adam’
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of 100% correct prediction for the pneumonia class. In

unseen dataset [56], the proposed method achieves an

accuracy of 95% supported by 234 X-rays belonging to

class normal and 390 X-rays belonging to class pneumonia

as shown in Table 11. The model’s reliability is supported

by the precision of 100%, recall of 87% for the normal

class, and precision of 93%, and recall of 100% correct

prediction for the pneumonia class. The weighted and

macro averages differ by a small margin because of the

class imbalance but are limited within 93-96%.

The results conclude that though the challenges of

pediatric pneumonia diagnosis are characteristically dif-

ferent from adult pneumonia, the proposed method can be

extended to aid with the diagnosis of adult pneumonia.

8 Conclusion and future work

In this work, we propose a computer-aided diagnosis tool

for pneumonia detection in infants using chest X-rays.

Pediatric pneumonia is one of the substantial causes of the

increasing death toll among children. Lower radiation

levels in chest X-rays for children make detection a cum-

bersome and time-consuming task. Other works in the

same field include using novel architectures and an

ensemble of deep CNN models with the added advantage

of using an augmented dataset to increase the number of

samples in each category. Our work uses the existing deep

CNN models for feature extraction; visualized using t-SNE

feature representations and class activation maps, followed

by Kernel PCA for dimensionality reduction. The reduced

features advance into the stacking classifier for the final

normal or pneumonia classification. Redistribution of the

dataset instead of added augmentations to ensure unbiased

training was the initial dominant factor for reliable per-

formance. Our work uses transfer learning on pre-trained

models to compensate for the availability of a limited

dataset and introduces data augmentations to prevent

overfitting. The Xception model achieves the highest

accuracy and is used as the feature extractor. The advan-

tage of Xception for this task in specific has been studied in

detail along with the addition of PCA on the performance

of the classification model. Dimensionality reduction is

used to eliminate the redundant features. A stacking

Fig. 15 Confusion matrix for predictions made on the test dataset

using the stacked classifier with kernel PCA

Fig. 16 Confusion matrix for predictions made on the test dataset

using the stacked classifier without kernel PCA

Fig. 17 ROC curve for predictions made on the test dataset using the

stacked classifier
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classifier covering nearly all machine learning models and

neural networks was employed. Stacking classifier with

Stratified K-Fold cross-validation results in an accuracy of

98.3%. The proposed approach was tested other pneumonia

datasets to validate the performance across unseen data for

generalization.

As for future work, we would like to explore the effects

of spatial domain data pre-processing techniques like

Histogram Equalization (HE), Local Histogram Equaliza-

tion (LHE), and Contrast Limited Adaptive Histogram

Equalization (CLAHE) for the task of pediatric pneumonia

detection. Reinforcement Learning-based hyperparameter

tuning is another potential area of research. In the t-SNE

plot (Fig. 13), we notice a few outliers and feature overlap

between normal and pneumonia chest X-rays. This visu-

alization pinpoints a potentially better model for better

classification results. Custom CNN architectures with

fewer parameters specific to occlusion-based categorization

can be employed. The introduction of augmentations for

training might help the model perform much better and

reduce the current misclassification rate of 1.7%. In addi-

tion to that, we would like to explore simple yet powerful

Table 9 Performance of other recent works on the Kermany et al. [10] dataset with values rounded off to the nearest two decimal positions

Authors Classes Technique Accuracy

(%)

Precision

(%)

Recall

(%)

AUC

(%)

Kermany et al. [10] Normal and

Pneumonia

Inception V3 pretrained CNN model 92.8 90.1 93.2 –

Nahida et al. [27] Normal and

Pneumonia

Two-channel CNN model 97.92 98.38 97.47 97.97

Stephen et al. [30] Normal and

Pneumonia

Custom CNN model without Transfer Learning 93.73 – – –

Chouhan et al. [14] Normal and

Pneumonia

Majority voting ensemble model 96.39 93.28 99.62 99.34

Rajaraman et al. [47] Normal and

Pneumonia

Custom VGG-16 model 96.2 97.0 99.5 99.0

Siddiqi et al. [19] Normal and

Pneumonia

Deep sequential CNN model 94.39 92.0 99.0 –

Hashmi et al. [48] Normal and

Pneumonia

Weighted classifier 98.43 – – 99.76

Yu Xiang et al. [33] Normal and

Pneumonia

CGNET 98.72 97.48 99.15 –

El Asnaoui et al. [22] Normal and

Pneumonia

Deep CNN model 96.27 98.06 94.61 –

Saraiva et al. [16] Normal and

Pneumonia

MLP and NN approach 92.16 – – –

Saraiva et al. [17] Normal and

Pneumonia

Custom CNN 95.30 – – –

Mittal et al. [34] Normal and

Pneumonia

CapsNet architecture 96.36 – – –

Rahman et al. [21] Normal and

Pneumonia

Deep CNN model 98.0 97.0 99.0 98.0

Sagar Kora Venu

et al. [5]

Normal and

Pneumonia

Weighted average ensemble model 98.46 98.38 99.53 99.60

Toğaçar et al. [49] Normal and

Pneumonia

Deep CNN model 96.84 96.88 96.83 96.80

Nahida et al. [25] Normal and

Pneumonia

SMOTE on ensembled features from VGG-19

and CheXNet

98.90 – – 99.00

Islam et al. [28] Normal and

Pneumonia

Feature concatenations with ANN 98.99 99.18 98.90 –

Proposed Work Normal and

Pneumonia

Stacking classifier based on features extracted

from Xception

98.3 99.29 98.36 98.24
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feature extraction models. CheXNet [15] was set as a

benchmark for this study for it has reached the diagnostic

level of human radiologists. With our work performing

better CheXNet [15], it will be of immense help to all

physicians and radiologists for accurate diagnosing in a

matter of seconds. This early detection will help reduce the

mortality rate of children suffering from pneumonia.
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