Table 6.
Performance comparison of different machine learning classifiers with the stacking classifier with values rounded off to the nearest two decimal positions
Classifier | Accuracy | Precision | Recall | F1-score | AUC |
---|---|---|---|---|---|
Logistic regression | 98.13 | 98.83 | 98.60 | 98.71 | 97.73 |
Support vector classifier | 98.13 | 99.29 | 98.13 | 98.71 | 98.12 |
Nu- Support vector classifier | 97.44 | 97.47 | 99.07 | 98.26 | 96.07 |
K-Nearest classifier | 98.13 | 99.29 | 98.13 | 98.71 | 98.12 |
MLP classifier | 97.10 | 98.81 | 97.20 | 98.00 | 97.03 |
Gaussian naïve bayes | 95.91 | 96.12 | 98.36 | 97.23 | 93.84 |
Bernoulli NB | 94.89 | 98.77 | 94.16 | 96.41 | 95.50 |
Gradient boosting classifier | 94.72 | 97.37 | 95.33 | 96.34 | 94.20 |
XGB classifier | 96.59 | 99.28 | 96.03 | 97.62 | 97.07 |
Decision Tree classifier | 94.72 | 97.37 | 95.33 | 96.34 | 94.20 |
Random forest classifier | 96.08 | 96.13 | 98.60 | 97.35 | 93.95 |
Extra Trees classifier | 96.76 | 97.01 | 98.60 | 98.80 | 95.21 |
Bagging classifier | 98.13 | 98.60 | 98.83 | 98.72 | 97.53 |
AdaBoost classifier | 95.06 | 97.84 | 95.33 | 96.57 | 94.83 |
LGB classifier | 97.10 | 98.58 | 97.43 | 98.00 | 96.83 |
CatBoost classifier | 97.96 | 99.29 | 97.90 | 98.59 | 98.00 |
HistGradient boosting classifier | 96.08 | 99.27 | 95.33 | 97.26 | 96.72 |
Proposed method | 98.30 | 99.29 | 98.36 | 98.83 | 98.24 |