Skip to main content
. 2022 Dec 7;35(11):8259–8279. doi: 10.1007/s00521-022-08099-z

Table 6.

Performance comparison of different machine learning classifiers with the stacking classifier with values rounded off to the nearest two decimal positions

Classifier Accuracy Precision Recall F1-score AUC
Logistic regression 98.13 98.83 98.60 98.71 97.73
Support vector classifier 98.13 99.29 98.13 98.71 98.12
Nu- Support vector classifier 97.44 97.47 99.07 98.26 96.07
K-Nearest classifier 98.13 99.29 98.13 98.71 98.12
MLP classifier 97.10 98.81 97.20 98.00 97.03
Gaussian naïve bayes 95.91 96.12 98.36 97.23 93.84
Bernoulli NB 94.89 98.77 94.16 96.41 95.50
Gradient boosting classifier 94.72 97.37 95.33 96.34 94.20
XGB classifier 96.59 99.28 96.03 97.62 97.07
Decision Tree classifier 94.72 97.37 95.33 96.34 94.20
Random forest classifier 96.08 96.13 98.60 97.35 93.95
Extra Trees classifier 96.76 97.01 98.60 98.80 95.21
Bagging classifier 98.13 98.60 98.83 98.72 97.53
AdaBoost classifier 95.06 97.84 95.33 96.57 94.83
LGB classifier 97.10 98.58 97.43 98.00 96.83
CatBoost classifier 97.96 99.29 97.90 98.59 98.00
HistGradient boosting classifier 96.08 99.27 95.33 97.26 96.72
Proposed method 98.30 99.29 98.36 98.83 98.24