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LWSNet - a novel deep-learning architecture
to segregate Covid-19 and pneumonia
from x-ray imagery
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Abstract
Automatic detection of lung diseases using AI-based tools became very much necessary to
handle the huge number of cases occurring across the globe and support the doctors. This
paper proposed a novel deep learning architecture named LWSNet (Light Weight Stack-
ing Network) to separate Covid-19, cold pneumonia, and normal chest x-ray images. This
framework is based on single, double, triple, and quadruple stack mechanisms to address
the above-mentioned tri-class problem. In this framework, a truncated version of standard
deep learning models and a lightweight CNN model was considered to conviniently deploy
in resource-constraint devices. An evaluation was conducted on three publicly available
datasets alongwith their combination. We received 97.28%, 96.50%, 97.41%, and 98.54%
highest classification accuracies using quadruple stack. On further investigation, we found,
using LWSNet, the average accuracy got improved from individual model to quadruple
model by 2.31%, 2.55%, 2.88%, and 2.26% on four respective datasets.
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1 Introduction

Coronavirus disease often referred to as Covid-19, is a submicroscopic pathogen resulting
from worldwide pandemics. Coronavirus causes rapid bronchial distress disorder, a severe
type of asthma. It is a kind of atypical, human-to-human transmissible pneumonia. Due to
its enormous adverse influence on the healthcare of the general community, the Covid-19
pandemic is currently the most serious issue affecting our entire world. To fight Covid-
19, governments and rulers imposed a variety of different strategies, policies, and lifestyles
[38]. Science and technology had significantly impacted the implementation of these new
ideas and techniques.

Reverse transcriptase-polymerase chain reaction (RT-PCR) [21] and enzyme-linked
immunosorbent assay (ELISA) [63] are two of the most commonly used methods for detect-
ing Covid-19 viruses. The most effective screening tool for finding Covid-19 patients is
RT-PCR, which can locate the virus’s RNA from lower respiratory tract samples. The whole
testing method for identifying pathogens using RT-PCR is manual and time-consuming,
with a high risk of false negatives of 39–61%. In any event, significant clinical develop-
ment leading to pneumonia, chest imaging studies are regularly conducted in suspected
or confirmed Covid-19 patients, by the recommendation of WHO [43]. Antibodies, anti-
gens, proteins, and glycoproteins are routinely measured in biological samples using an
immunological test known as ELISA.

According to preliminary research, people with Covid-19 or pneumonia infection show
anomalies in their chest radiographs. It was suggested that radiography examination might
be used as a critical means of pneumonia-based disease screening in epidemic areas [4].
Radiography analysis is an excellent complement to the RT-PCR test and, in some instances,
even provides a positive index. Accommodations for chest imaging are easily accessible
in modern medical systems, even though radiographic images cannot simply and rapidly
solve our purposes. There was a high demand for expert radiologists in this epidemic. The
healthcare industry needs a solution to this problem. The field of computer vision and image
processing could manage this problem with the aid of advanced tools and techniques [17].
Machine learning and deep learning were extremely promising solutions for managing these
issues.

Artificial intelligence is widely being applied in medical imaging identification, and
analysis [39]. The advantage of deep learning-based techniques such as CNN, RNN,
LSTM-RNN, etc., in the field of computer-vision, outperformed the work of professional
radiologists [29]. Those CNNs-based framework extract feature and classification predic-
tion capabilities are quite a height, but due to a tremendous amount of data required for the
training purpose, authors [6] used pre-trained models to save CPU power and calculation
time.

The chest X-ray image is readily available due to its low-cost compared to other tests;
the correct diagnosis from only these images is an immediate need for mankind. Since it is
difficult to diagnose COVID-19 and pneumonia from X-ray images manually by medical
practitioners, an automated system is required to correctly diagnose these diseases from the
pool of normal, pneumonia, and COVID-19 x-ray images.

In this research, we experimented with one of the largest datasets for COVID-19 iden-
tification, comprised of 20738 images in three classes. Here, a hybrid deep learning
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architecture is designed by the stack-ensemble method and tuned lightweight version of
the three standard deep learning frameworks and a custom CNN framework. The proposed
architecture is developed to consider the issue of deploying the system in low-configuration
devices to make the diagnosis faster with high performance.

The key contributions of the present work are as follows:

1. A novel stack ensemble deep learning framework namely LWSNet is proposed to
segregate Covid-19, Pneumonia and Normal from x-ray imagery.

2. During stack ensemble process, truncated versions ofMobileNetV2, VGG19 and Incep-
tionResNetV2 were considered, making the final model lightweight for running at
resource-constrained environments.

3. Three distinct public datasets were used to evaluate the performance of the proposed
system.

2 Review of state-of-the-arts

It is essential to quarantine patients as soon as possible in order to control this infec-
tious disease. Available resources are fast running out due to a constantly rising number of
patients and lengthy treatment time [21]. Researchers frommany disciplines and policymak-
ers urgently need to develop a strategy to control the unwanted situation. We are attempting
to concentrate on numerous computer vision areas to speed up the entire procedure. We
explored some previously mentioned research areas on computer vision intelligent sys-
tems for automatic diagnosis. Researchers are using radiographic images to apply machine
learning, and deep learning algorithms as the main categories to classify Covid-19 auto-
matically and pneumonia disease [19, 20, 28, 55]. Other subcategories, such as multi-layer
perceptron [62], ensemble [57], LSTM [22], fusion [53], and fuzzy [62], were applied for
categorization. Those categories can implement different imaging modalities like X-ray, CT,
etc.

2.1 Stack ensemble classification

The method of increasing the performance of the classifier by aggregating the already
learned sub-models to tackle the same classification task is known as ensemble learning
[36]. Each base learner takes a vote, and the meta-learner, a model that learns to improve the
base learners’ predictions, receives the final prediction. Tang et al. [57] suggested ensemble
learning can solve deep learning’s drawbacks by making predictions with several models
rather than as a single model. Their experiment showed the results with good accuracy of
95%. Saha et al. [50] proposed a model that extracted deep features from X-ray images,
then used an ensemble classifier. They obtained individual scores before implementing an
ensemble classifier, which provides better accuracy from 1320 images. The highest accu-
racy, precision, recall, and F1-score were 98.91%, 100%, 97.28%, and 98.89%. Li et al. [31]
combined ensemble with VGG16 as a base model, and they used cascade classifier from
multiple training sets.

Annavarapu et al. [5] introduced a new ensemble technique for reducing the com-
putationally learning cost. They named this approach the snapshot ensemble technique.
Snapshot Ensembling’s adaptability with a wide range of network models and learning tasks
was verified by its cyclic learning rate scheduling. This snapshot ensemble approach saved
the local minima parameter and changed the model during runtime. They used ResNet50 as
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a base architecture. Chowdhury et al. [9] used the snapshot ensemble model, which is based
on EfficientNet model. To identify and predict a critical section, they used the Grad-CAM
model to visualize a CAP. They published their overall accuracy of 96.07% for Covid-19
detection.

Upadhyay et al. [60] implemented a fusion-based model to categorize three distinct
classes. They used the handcrafted color-space method to collect specific features from X-
ray images and then applied a stacked ensemble. Abdar et al. [1] proposed novel model
named Uncertainty FuseNet. It is based on the fusion method using ensemble dropout
currently. This model produced good results in noisy data.

Gifani et al. [52] implemented a pre-trained model using a total of 15 pre-trained archi-
tectures and fine-tuned the target classes. Among the 15 pre-trained architectures, the
majority of voting was applied only on 5 architectures.

2.2 Deep transfer learning

Deep Transfer Learning is a method of deep learning where knowledge is transmitted from
one model to the other. Zhu et al. [64] used traditional CNN and VGG16 net models. They
optimized both the models and evaluated the predictions. But a weakness of their work
was the selection of fewer chest images. Gupta et al. [18] worked with a five pre-trained
integrated stack model called InstaCovNet-19. For boosting classification, various train-
ing and pre-processing techniques were applied. They benchmarked their model on other
state-of-the-art approaches. Fan et al. [12] experimented with five pre-trained models and
applied three optimizers using different learning rates. In addition, they used a 10-fold cross-
validation approach. They achieved an average accuracy of 97%. Mohammadi et al. [35]
discussed four popular pre-trained models with binary classification and obtained 99.1%
accuracy using MobileNet for identifying Covid-19 disease from a chest X-ray. Niu et al.
[42] proposed a new technique named distant domain transfer learning (DDTL). They used
two models, namely reduced-size U-net Segmentation and Distant Feature Fusion. Their
models worked on unstructured data and efficiently handled the variation in distribution
during the training and testing data. Rezaee et al. [48] introduced a pre-trained deep learning
architecture-based hybrid deep transfer learning technique. They utilized feature extraction,
feature selection, and a support vector machine to classify. Other researchers presented their
approach in aiming for pneumonia-based disease as an exception to these limited categories
of deep learning and machine learning model. Saha et al. [49] used a pre-processing method
to transform image data into an undirected graph such that simply the edges of the image
are considered rather than the entire image. These networks showed impressive accuracy of
99% for the limited dataset. Another effective approach utilized by researchers for classi-
fication is the segmentation method. Munusamy et al. [41] proposed an architecture using
segmentation of CT images and segregation on X-ray images. They used the U-net model
for segmentation purposes and combined the location information. They compared their
classification model with different pre-trained standard architecture, and overall accuracy
of 99% was reported.

2.3 Lightweight CNN

In lightweight CNN, layers of the network are made reduced considering the system’s com-
plexity, and accuracy trade-off [40]. Karakanis et al. [26] implemented a lightweight model
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in addition to a conditional generative adversarial network to develop synthetic images to
replace the minimal data set. They began with a two-class dataset but later switched to
a three-class dataset, which performed better. Paluru et al. [44] proposed 7.8 times fewer
lightweight parameters using U-net architecture. They showed that their model performed
well compared to the other six standard models. They claimed that their model could also
run on a low configuration system. Ter-Sarkisov et al. [58] discussed lightweight segmen-
tation models based on R-CNN masks with different standard architecture. The lightweight
model isn’t limited to working with fixed images or structural data. Trivedi et al. [59] pro-
posed a lightweight architecture based on MobileNet that can identify pneumonia from
chest x-ray images. A benchmark dataset containing 5856 images in two classes was used.
Additionally, they discussed the total training time for preparing the lightweight model and
represented the accuracy at 97.09%.

The state-of-the-art research dealt with available datasets ignoring the performance over
the conglomeration effects of these datasets. The system deployment issue on the resource-
constraint devices is also a significant research gap to the best of our knowledge.

3 Proposedmethod

In this work, we considered deep learning-based models. Medical fields were significantly
benefited from deep learning, including the detection of lung infection. In recent years, due
to their impressive classification capabilities, deep learning methods were gained popular-
ity on COVID-19. It was also observed that deep learning models outperform handcrafted
feature-based models [14]. To train a deep learning model, a huge amount of data and a
good amount of training time are required. So to abstain from these issues, here, transfer
learning-based models were considered.

Transfer learning [15] is a machine training strategy where a system is built utilizing
many training samples for a specific assignment and then used as the starting solution in
another study. Rather than constructing the whole architecture initially, a pre-trained frame-
work was used since this learning technique assures how an architecture trained for one
problem may perform on another issue. As a result, the learning process is more resilient
and adaptable. In addition, building a deep neural framework from scratch necessitates a
high volume of samples and a significant quantity of cost time. Transfer learning allows one
to focus on the beginning efforts rather than developing an entire deep architecture. Through
the use of the transfer learning technique, three well-established deep learning architectures
are transformed into lightweight models that are fine-tuned, as discussed in Section 3.1.

Amongst different deep learning frameworks [32], CNN is a very useful technique for
processing spatial data. It is generally made up of three tiers: convolution, pooling, and
dense. The design of such networks allows us to learn a wide range of complicated patterns
that a basic neural network often fails to perform. CNN-based frameworks are a wide variety
of uses, including self-driving cars, robots, surgical operations, etc. The convolutional layer
transfers the presence of features observed in individual portions of the input images into a
feature map. The process of creating a feature map from this layer is as follows:

νm,n =
m∑

m=1

n∑

n=1

ρ(m−j,n−k) ∗ xr
j,k (1)
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Where, xr
j,k represents the kernal for the j th, kth pixel in cth layer over the instance ρm,n

and * represent the convolution operator.

νm,n = λ

(
m∑

m=1

n∑

n=1

ρ(m−j,n−k) ∗ xr
j,k

)
(2)

Here, λ denotes ReLU (rectified linear unit) activation function, which can be expressed as

λ(z) = max(0; z) (3)

if (z < 0); Re(z) = 0 otherwise, Re(z) = z,where, z denotes the neuron input .
The softmax activation function is utilized in the network’s last dense layer, can be

represented as

χ(n) = en

∑m
1 en

(4)

Here, n signifies the source vector, which has a length of m.

3.1 Proposed lightweight models

In this work, we proposed lightweight versions of existing deep CNN models:
MobileNetV2, VGG19, and InceptionResNetV2, and designed a custom lightweight CNN
(CLCNN) architecture. Developing lightweight stack ensemble models aims to deploy
the system into resource-constraint devices. The number of parameters generated in the
lightweight models is significantly less than the original counterpart.

3.1.1 Lightweight MobileNetV2

MobileNet-V2 is built on the principles of MobileNet-V1, which uses depth-wise separable
convolution as a robust building component. They introduced an inverted residual block and
a linear bottleneck framework in this version [51]. The original MovibleNetV2 architecture
has fifty-three levels and 3.4 million parameters in its final version. In contrast, the proposed
lightweight version consists of only the top twenty-five layers and utilizes 0.139331 M
parameters. The structure and parameter details of this architecture are shown in Table 1.

3.1.2 Lightweight VGG19

Simonyan and Zisserman [54] at the University of Oxford, UK, in early 2014, designed a
CNN model named VGG network. VGG (Visual Geometry Group) was trained using the
ImageNet ILSVRC dataset, consisting of more than 1 million pictures. According to these
picture patterns, pictures are divided into 1000 categories and utilize more than 100 thou-
sand images for training and 50 thousand images for validation. VGG-19 is a VGG variation
with 19 densely linked layers that routinely outperform other state-of-the-art models. The
model is made up of convolutional and fully connected layers that allow for enhanced fea-
ture extraction and the use of maxpooling instead of average pooling for downsampling,
and modifying the linear unit (ReLU) as the activation function, selecting the largest value
in the image area as the pooled value.
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Table 2 The comparison of number of trainable parameters (Million) between original and lightweight
versions

Architecture Name Trainable Parameter Less parameter (%) of lightweight model

Original Model Lightweight Model

MobileNetV2 3.4 M 0.139331 M 96.03

InceptionResNetV2 55 M 0.226131 M 99.59

VGG19 144 M 0.413699 M 99.71

Customize CNN – 0.042835 M –

3.1.3 Lightweight InceptionResNetV2

The Inception-ResNet architecture [56] combines Inception block with residual module. In
each Inception component, there is a filter expansion layer, which is used to scale up the
depth of the filter bank to match the depth of the input. Wemade a lightweight version of this
architecture by considering only the top twenty layers out of one hundred sixty-four. There
are 0.2261 M parameters generated in this pre-trained lightweight architecture, whereas 55
M parameters are in the original architecture. In Table 1 the structure and parameter details
of the lightweight InceptionResNetV2 architecture model are presented.

3.1.4 Custom lightweight CNN (CLCNN)

In this CLCNN framework (shown in Fig. 1), six convolution layers with 64, 32, 16, 16,
8, and 8 filters accompanied by two max-pool layers having a pooling size of 2 × 2 were
considered. One max-pool layer is placed after the first two convolutions layers, and the
second one is employed at the end of the fourth convolution layer. A dense/output layer of
size 3 was used. In ablation study, we obtained the accuracies of 96.25%, 96.45%, 96.42%,
and 96.35%, using 0.3, 0.4, 0.5, and 0.6 dropout values, respectively. Since a dropout of 0.4
yielded the best accuracy, we considered this value throughout the rest of the experiments.
The layer-wise number of trainable parameters generated is shown in Table 1. The number
of trainable parameters in original and lightweight versions is tabulated in Table 2.

3.2 Lightweight stack ensemble learning

The prediction outcome suffers from high variance, and generalization problems [24] occur
due to noise in the training data and the unpredictability of the deep learning models. We
considered a stack ensemble approach to boost efficiency. It uses deep learning architec-
ture for non-linear integration of predictors to increase prediction accuracy while reducing
training errors. Specifically, several ensemble techniques are available, but among all the
technique stacking generalization, [61] method is most effective in terms of accuracy.
Before obtaining the final prediction, passing information through one group of classifiers
to other sets of classifiers is known as stacking generalization. The information in the clas-
sifier network originates from several subgroups of the training set. The original training set
is split into numerous subgroups of training sets, a distinguishing property of stacking gen-
eralization. Each sub-training group is utilized to gather biased information on the dataset’s
generalization behavior, which is then used to populate the classifier network. This study
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Fig. 1 CLCNN architecture for Covid-19 and pneumonia classification

developed an ensemble-based stacked framework for improving classification by combining
predictions of different models and obtaining the highest positive true predictive values.

Figure 2 depicts the architecture of the proposed lightweight stack ensemble learning
framework. In this architecture, we considered lightweight CNN models as single models.
Then the stacked ensemble was designed considering double stack, triple stack, and quadru-
ple stack. The performance of the single models was evaluated after classification from the
final predictor. The double stack consists of, MobileNetV2 & VGG19, MobileNetV2 &
InceptionResNetV2, MobileNetV2 & CLCNN, VGG19 & InceptionResNetV2, VGG19 &
CLCNN, and InceptionResNetV2 & CLCNN. Similarly, a triple stack consists of three base
architecture such as InceptionResNetV2 & VGG19 & MobileNetV2, InceptionResNetV2
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Normal
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Custom CNN
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Fig. 2 Four-step experiments of the proposed lightweight stack ensemble learning architecture
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& VGG19 & CLCNN, and MobileNetV2 & VGG19 & CLCNN. This quadruple stack
comprises MobileNetV2, VGG19, InceptionResNetV2, and CLCNN. This multi-stack pre-
diction is fed to the meta-learner. In the meta-learner, three dense layers having sizes 512,
256, and 128 were deployed. The meta-learner predictions are fed to the final prediction
block, which comprises a dense layer of dimension 3.

4 Experiment

The LWSNet is a classification problem to detect Covid-19 from chest X-ray images. Since
the infection is unusual and has pneumonia-like characteristics, we included pneumonia
images along with Covid-19 and normal images in our experiment.

4.1 Setup

We performed training and evaluation of our proposed system on a GPU machine consists
of two core Intel(R) Core(TM) i5-10400 H CPU @ 2.60 GHz 2.59 GHz, 32 GB of RAM,
and two NVIDIA Quadro RTX 5000. It runs on Windows 10 Pro OS version 20H2 with
TensorFlow 2.0.0 installed for deep learning model training and inference, where cuDNN
is enabled to speed up the training computation on a GPU device.

4.2 Datasets

The datasets used in this study were obtained from three different public sources and con-
tained three classes. As a result, since Covid-19 is a novel disease, only a limited number of
benchmark datasets are available for studies. The first datasets were collected from Kaggle
repositories, which contained 6432 samples divided into three classes. The second dataset
was constructed using 50% of chest X-ray images from Kaggle repositories with three
classes. This dataset contains 21165 chest X-ray images from four classes. The third dataset
is mixed with two public repositories; one is the GitHub repository with Covid-19 images,
which is constantly updated by a researcher named Cohen et al. [11] at the Montreal Uni-
versity, and the other datasets are taken from the Kaggle repository [37] with two classes:
Normal and Pneumonia. These mixed datasets are also available in the Kaggle repository. In
order to conduct further experiments, we prepared a combined dataset. Merge three datasets
with their respective classes to create a combined dataset. Table 3 represents the number of
images containing three categories: Covid-19, Pneumonia, and Normal, from four different
datasets. In Fig. 4 the sample sizes using an 8:2 train-set of three datasets are shown. The
sample images of three classes corresponding to the three datasets are presented in Fig. 3.

Table 3 Details of the databses used in the current experiment

Datasets Covid-19 Normal Pneumonia Total

Dataset 1 [45] 576 1583 4273 6432

Dataset 2 [10] 1808 5096 672 7576

Dataset 3 [47] 874 1583 4273 6730

Dataset 4 (combined) 3258 8262 9218 20738
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Fig. 3 Organize the three datasets Dataset 1, Dataset 2, and Dataset 3 with their corresponding classes of
images in three columns: (a) Covid-19, (b) normal, and (c) pneumonia

4.3 Evaluation protocol

To evaluate the performance of our LWSNet, we used different evaluation metrics since
accuracy is not sufficient [13] to justify the performance of the proposed framework, espe-
cially in disease detection cases. The classification of diseases is based directly on the
number of True Positives, False Negatives, True Negatives, and False Positives. Using
these values, the following matrices are used to evaluate model performance from different
perspectives:

Sensitivity Sensitivity is a measure that evaluates the number of patients who was detected
as positive in a scenario when the patient is genuinely effected.

Specificity Specificity is a measure that evaluates the number of patients who was not been
detected as negative in a scenario when the patient is genuinely not effected.

F1-Score Statistics use F1 scores to determine how accurate a test is when analyzing clas-
sification data. During the computation of the F1 score, the precision and recall of the test
are both considered. The F1 score is the harmonic average of precision and recall, where 1
is the best and 0 is the worst score.

Precision Precision is the positive prediction value for the corresponding diseases. A
predicted value of this disease is calculated based on true and false positives.
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Negative predictive value The negative predicted value is calculated based on the true,
and false negative values.

Miss rate Miss rate refers to the result of a test which suggests that a person does not have
a specific disease when, in reality, that person does in fact, have that disease.

Fall-out One of the most significant risks of receiving a false positive result is when the
person is cohorted with other patients who are suffering with Covid-19 and is thus exposed
to the virus.

False discovery rate When making multiple comparisons, the false discovery rate is a
means of conceptualizing the rate of type I error in the null hypothesis testing that is often
used. Statistical approaches for regulating false discovery rates are intended to keep the
predicted percentage of rejected null hypotheses) from exceeding a certain threshold.

False omission rate It is The statistical technique, which is the complement of nega-
tive predictive value, is employed in multiple hypothesis testing to account for numerous
comparisons. It calculates the percentage of false negatives that are wrongfully rejected.

Training regime The datasets are of different sizes, so the images were resized into dimen-
sions of 224 × 224 as a pre-processing step. The datasets were split into 8:2 train-test sets.
The reason for the 8:2 division is that it was observed that the 8:2 train-test set gave better
results compared to other ratios [64]. By this split, there are 5144 trains and 1288 tests for
dataset 1. For dataset 2, 6061 images were considered in training, while 1515 images were
for testing. Similarly, 5384 images were used in training, and the rest, 1346, were kept for
testing dataset 3. To show the robustness of LWSNet, we combined all three datasets with
their respective classes. In this combination, there are 16592 trained images and 4146 test
images. At the beginning of the experiment, the learning rate was set to 0.001. The perfor-
mance was evaluated at the interval of 0.001 learning rate. A dropout value was set at 0.5
throughout our experiment. Accordingly, the initial and secondary momentum exponential
decay rates were fixed to 0.9 and 0.999. The epsilon level was set to 0.0000001. The value
of the AMSGrad Boolean optimization parameter variable was set to false.

4.4 Results & analysis

Several levels of experiments were conducted to build the LWSNet model. The experiment
was performed on single as well as double, triple, and quadruple stacking experiments. A
total of 60 experiments were conducted during the experimentation period. To demonstrate
the performance of LWSNet, we used different statistical approaches.

To test the underfit and overfit of single architectures, the accuracies and corresponding
losses were presented in Fig. 4. It is seen that using mobileNetV2 training and validation
loss were almost null, whereas, in InceptionResNetV2, there is a validation loss of 0.17%.
Similarly, VGG19 and Custom CNN loss were generated at 0.08 and 0.27. In Table 4 the
accuracies and losses corresponding to the learning rates are presented for the quadruple
stack model on four datasets. Changing the learning rate is very significant in building a
better DL model. We observed that accuracy gradually increased and loss decreased when
learning rates were decreased.

The results of individual lightweight architecture: MobileNetV2 (Mbl), VGG-19 (Vgg),
InceptionResNetV2 (Incp) and Custom lightweight CNN (CLCNN) are depicted in Fig. 5,
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models on dataset 1
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Table 4 Accuracy and loss values for the three datasets and the combination of three datasets in the quadruple
stack model for diverse learning rates

Learning Rate Dataset 1 Dataset 2 Dataset 3 Combined

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

0.001 0.9805 0.0912 0.9658 0.2430 0.9651 0.3751 0.9786 0.1283

0.0001 0.9719 0.1785 0.9643 0.2186 0.9641 0.3660 0.9786 0.1085

1.00E-05 0.9727 0.1829 0.9741 0.2196 0.9638 0.3613 0.9854 0.1101

1.00E-06 0.9728 0.1852 0.9658 0.2241 0.9634 0.3630 0.9779 0.1136

1.00E-07 0.9719 0.1826 0.9643 0.2216 0.9638 0.3623 0.9767 0.1126

1.00E-08 0.9727 0.1833 0.9658 0.2245 0.9634 0.3616 0.9774 0.1131

1.00E-09 0.9727 0.1848 0.9658 0.2235 0.9634 0.3615 0.9777 0.1116

1.00E-10 0.9727 0.1848 0.9643 0.2234 0.9638 0.3601 0.9779 0.1128

also represent other three stacking experiment results. In the four different individual
lightweight models, the average accuracy of the datasets 1, 2, 3, and combined is 96.22%,
93.95%, 94.52%, and 95.84%, respectively. The average values of MobileNetV2, VGG-19,
InceptionResNetV2, and CLCNN for those four datasets are 94.00%, 94.48%, 95.74%, and
95.39%, respectively.

In this experiment, the batch size of 32, initial learning rate 0.001, optimizer RMSprop,
activation function ReLu, and epoch size 100 were considered. We utilized these parame-
ters for training four individual architectures. The results of four datasets showed that our
CLCNN architecture performed well as compared to the pre-trained lightweight architec-
ture. In the CLCNN architecture, only 42,899 trainable parameters were used, which were

Individual

99.00%

98.00%

97.00%

96.00%

95.00%

94.00%

93.00%

92.00%

91.00%

90.00%

89.00%

Fig. 5 Consolidated accuracy graph to single architecture to quad stack architecture. The individual model’s
abbreviation within brakets is MobileNetV2(Mbl), VGG19(Vgg), InceptionResNetV2(Incp), and custom
lightweight CNN (CLCNN) and ‘+’ sign indicate that models are concatenated for ensemble stacking
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2.24, 4.27, and 8.64 times less than mobileNetV2, InceptionResNetV2, and VGG19, respec-
tively. The parameters are tabulated in Table 2. Stacking approaches were divided into three
phases according to the proposed lightweight stack ensemble architecture. The stacking
process in the first phase was done by selecting two lightweight models among the 4 vari-
ants. Using these selection criteria, a total of six combinations are there in a dataset. As a
result, using the double-stack ensemble technique, a total of 24 experiments were carried out
on four datasets. Compared to individual models, in the double-stack ensemble model, the
accuracies improved by 0.32%, 1.54%, 1.14%, and 1.22% for dataset 1, dataset 2, dataset
3, combined, respectively. For dataset 2, the double-stacked architecture performed better
than the single-lightweight architecture in terms of average accuracy. In the second step, we
took three distinct models and combined them into a single stack. Three lightweight models
were selected from four types of the triple stack model. The average accuracy gained by the
triple stack model compared with the double stack was 0.88%, 0.68%, 0.36%, and 0.51%
for datasets 1, 2, 3, and combined, respectively.

Testing was conducted further by changing the number of epochs from 50 to 300 with
50 epoch intervals considering the batch size of 32. But, the system’s performance didn’t
increase for the increasing number of an epoch. Considering 100 epochs, we experimented
again by changing the batch size by 64, 128, and 256. For 128 batch size, the quadruple
stack block returns the highest accuracies of 98.54%, 96.50%, 97.41%, and 98.10%, on
dataset 1, 2, 3 and combined, respectively.

The accuracy value of a system cannot be the only measure of its performance. We
further calculated other statistical measures to check the architecture performance. We used
nine statistical metrics to evaluate the LWSNet architecture’s efficiency in terms of correctly
and incorrectly identified X-ray images with their respective diseases. From the Table 5 we
observed that false positive rate is 0.0009, 0.0181, 0.0026 and 0.0010 for Covid-19 classes
in Dataset 1, 2, 3, and Combined, respectively.

4.5 Error analysis

It was observed from Table 4 that changing the learning rates 0.001, 1.00e-06, and 1.00e-05,
the lowest error rate of 1.46%, 2.59%, 3.49%, and 1.90% were generated for a quadru-
ple stack using dataset 1, 2, 3, and combined, respectively. The correctly and incorrectly
classified samples for each respective dataset can be understood easily from the confusion
matrices as shown in Fig. 6. It is observed that for dataset 1 in Fig. 6(a) the lowest error was
generated, i.e., 26 samples out of 1285 sample size were misclassified. As a result of this
sample size, one instance of Covid-19 was misclassified as pneumonia, and one instance of
normal was misinterpreted as Covid-19, while three instances of pneumonia were wrongly
classified as Covid-19. Similarly, in the combined dataset, 22 samples were misclassified to
detect Covid-19, while 30 samples were misclassified to detect pneumonia (Fig. 6(d)).

In Fig. 7, the misclassified instances of images are shown. The possible reasons of
misclassification are noisy, blur, and opaque images.

4.6 Comparative study

We compared LWSNet with the standard lightweight deep learning models for dataset 1,
2, 3, and combined dataset. The results indicate that the proposed LWSNet model is most
effective in four datasets, particularly in the combined dataset. The accuracy of LSWNet
was improved by 3.77%, 2.07%, 2.88%, and 2.09% when compared with lightweight
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Fig. 6 Confusion matrix of quad stack architecture of (a) Dataset 1, (b) Dataset 2, (c) Dataset 3, and (d)
Combined dataset

MobileNet, InceptionResNetV2, and CLCNN in the combined dataset, respectively. In
Table 6, along with accuracy, precision, sensitivity, and f1-score, the inference time for a
batch size of 128 is also presented for single models and LSWNet.

The proposed architecture was compared with other state-of-the-art architecture. In
Table 7, it is seen that the accuracies were improved by 4.54%, 0.93%, and 0.28% and the
F1-score on dataset 1 were improved by 4.48%, 1.12%, and 1.48% in comparison with the
article of Gour et al. [16], Abdar et al. [1], and Jain et al. [23], respectively. Also, comparing
the techniques [3, 27, 33, 46], with this proposed method for dataset 2, the accuracies got
improved by 0.73%, 5.86%, 1.39%, and 0.50%. But, compared with the work of Aggarwal
et al. [2] a loss of 0.50% of accuracy was also observed. Using the same dataset, the f1-
scores of our method comparing with Rahman [46] and Lafraxocite [33] were improved by
1.11% and 1.97%, respectively. For dataset 3, the f1-scores in our technique were improved
by 0.48%, 5.49%, 0.66%, and 4.46%, and the accuracies were gained by 0.40%, 6.91%,
8.41%, and 0.98% comparing the results of the articles of [7, 8, 30, 34], respectively.
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Fig. 7 The first column represents the target class, and misclassified samples of the target class are repre-
sented by the second and third columns. Here, the first row and the first column represent the target class of
Covid-19. In the same row, the second and third columns represent misclassified samples that are normal and
pneumonia, similarly in the second and third rows

5 Conclusion

In this work, we presented LWSNet, a lightweight stack ensemble architecture to segregate
Covid and non-Covid pneumonia. We explored truncated versions of three state-of-the-art
networks, namely MobileNetV2, VGG19, InceptionResNetV2, and CLCNN architecture
for the said problem. Further, the stack ensemble technique was employed on these four
tailors-made models. Three different stacking techniques, namely double, triple and quadru-
ple stacking, were experimented. Among all, the quadruple stack ensemble produced the
highest accuracy of 97.28%, 96.50%, 97.41%, and 98.54%, using datasets 1, 2, 3, and
combined, respectively, which outperform the state-of-the-art.

Our plan for the future is threefold: (i) the experiments will be carried out on other radi-
ological images such as CT and MRI, (ii) different advanced deep learning architectures
such as generative adversarial network, attention-based encoder-decoder, zero-shot learn-
ing, etc., will also be explored, and (iii) fusion of deep and handcrafted features, and clinical
information (upon availability) will also be evaluated.
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Table 6 Evaluation metrics of lightweight deep learning models with LWSNet on given X-ray images
datasets

Datasets Models Name Precision Sensitivity f1-score Accuracy(%) Time/step

Dataset 1 MobileNet 0.9520 0.9563 0.9540 96.34 694 ms

InceptionResNetV2 0.9508 0.9529 0.9512 96.19 695 ms

VGG19 0.9498 0.9588 0.9541 96.58 693 ms

Custom CNN 0.9550 0.9447 0.9498 95.80 692 ms

LWSNet 0.9632 0.9765 0.9697 97.28 690 ms

Dataset 2 MobileNet 0.8979 0.8992 0.8982 92.51 85 ms

InceptionResNetV2 0.9350 0.9350 0.9350 95.05 86 ms

VGG19 0.8870 0.9101 0.8978 93.04 84 ms

Custom CNN 0.9349 0.9310 0.9334 95.21 84 ms

LWSNet 0.9512 0.9489 0.9500 96.50 80 ms

Dataset 3 MobileNet 0.9142 0.9205 0.9178 93.15 421 ms

InceptionResNetV2 0.9494 0.9572 0.9512 95.98 419 ms

VGG19 0.9165 0.9318 0.9236 93.82 420 ms

Custom CNN 0.9412 0.9438 0.9425 95.16 419 ms

LWSNet 0.9745 0.9747 9746 97.41 417 ms

Combined Dataset MobileNet 0.9440 0.9294 0.9362 94.77 383 ms

InceptionResNetV2 0.9633 0.9565 0.9598 96.48 384 ms

VGG19 0.9515 0.9522 0.9517 95.66 386 ms

Custom CNN 0.961 0.9477 0.9540 96.45 385 ms

LWSNet 0.9779 0.9719 0.9748 98.54 384 ms

Table 7 Comparison with same public X-ray images dataset by using different evaluation metrics

Datasets Author’s Precision Sensitivity f1-score Accuracy(%)

Dataset 1 Gour et al. [16] 0.9581 0.9333 0.9300 92.74

Abdar et al. [1] 0.9635 0.9637 0.9636 96.35

Jain et al. [23] 0.9800 0.9466 0.9600 97.00

Proposed LWSNet 0.9632 0.9765 0.9697 97.28

Dataset 2 Lafraxo et al. [27] 0.9369 0.9366 0.9367 95.77

Ahmed et al. [3] 0.9200 0.8900 0.8980 90.64

Rahman et al. [46] 0.9455 0.9456 0.9453 95.11

Loey et al. [33] 0.9608 0.9604 0.9605 96.00

Aggarwal et al. [2] 0.9766 0.9733 0.9733 97.00

Proposed LWSNet 0.9512 0.9489 0.9500 96.50

Dataset 3 Li et al. [30] 0.9700 0.9709 0.9698 97.01

Mangal et al. [34] 0.9128 0.9414 0.9198 90.50

Chatterjee et al. [8] 0.8500 0.9350 0.9680 89.00

Kanwal et al. [25] 0.1000 0.1000 0.1000 93.00

Chakraborty et al. [7] 0.9900 0.9368 0.9300 96.43

Proposed LWSNet 0.9745 0.9747 0.9746 97.41
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Data Availability This study used a secondary dataset as described by Rahman et al. in [10, 37, 45, 47].
The dataset can be obtained from the https://www.kaggle.com repository using this direct links: https://www.
kaggle.com/datasets/tawsifurrahman/covid19-radiography-database, https://www.kaggle.com/datasets/pault
imothymooney/chest-xray-pneumonia, https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-
pneumonia.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Acknowledgement The fourth author would like to acknowledge Indian Council of Medical Research, Govt
of India [Ref. No. BMI/12(81)/2021] for the research work.

References

1. Abdar M, Salari S, Qahremani S, Lam H-K, Karray F, Hussain S, Khosravi A, Acharya UR, Nahavandi
S (2021) Uncertaintyfusenet: robust uncertainty-aware hierarchical feature fusion with ensemble monte
carlo dropout for covid-19 detection. arXiv:2105.08590

2. Aggarwal S, Gupta S, Alhudhaif A, Koundal D, Gupta R, Polat K (2022) Automated covid-19 detection
in chest x-ray images using fine-tuned deep learning architectures. Expert Syst 39(3):12749

3. Ahmed F, Bukhari SAC, Keshtkar F (2021) A deep learning approach for covid-19 8 viral pneumonia
screening with x-ray images. Digital Government: Research and Practice 2(2):1–12

4. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L (2020) Correlation of chest ct
and rt-pcr testing for coronavirus disease 2019 (covid-19) in China: a report of 1014 cases. Radiology
296(2):32–40

5. Annavarapu CSR et al (2021) Deep learning-based improved snapshot ensemble technique for covid-19
chest x-ray classification. Appl Intell 51(5):3104–3120

6. Apostolopoulos ID, Mpesiana TA (2020) Covid-19: automatic detection from x-ray images utilizing
transfer learning with convolutional neural networks. Phys Eng Sci Med 43(2):635–640

7. Chakraborty S, Murali B, Mitra AK (2022) An efficient deep learning model to detect covid-19 using
chest x-ray images. Int J Environ Res Public Health 19(4):2013

8. Chatterjee S, Saad F, Sarasaen C, Ghosh S, Khatun R, Radeva P, Rose G, Stober S, Speck O, Nürnberger
A (2020) Exploration of interpretability techniques for deep covid-19 classification using chest x-ray
images. arXiv:2006.02570

9. Chowdhury NK, Kabir MA, Rahman MM, Rezoana N (2021) Ecovnet: a highly effective ensemble
based deep learning model for detecting covid-19. PeerJ Comput Sci 7:551

10. Chowdhury ME, Rahman T, Khandakar A (2022) Covid-19 radiography database. https://www.kaggle.
com/datasets/tawsifurrahman/covid19-radiography-database. Accessed 10 May 2022

11. Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M (2020) Covid-19 image data collection:
prospective predictions are the future. arXiv:2006.11988

12. Fan Z, Jamil M, Sadiq MT, Huang X, Yu X (2020) Exploiting multiple optimizers with transfer learning
techniques for the identification of covid-19 patients. J Healthc Eng 2020

13. Ghosh M, Mukherjee H, Obaidullah SM, Santosh K, Das N, Roy K (2021) Lwsinet: a deep learning-
based approach towards video script identification. Multimed Tools Appl 80(19):29095–29128

14. Ghosh M, Baidya G, Mukherjee H, Obaidullah SM, Roy K (2022) A deep learning-based approach to
single/mixed script-type identification, pp 121–132

15. GhoshM, Roy SS, Mukherjee H, Obaidullah SM, Santosh K, Roy K (2022) Understanding movie poster:
transfer-deep learning approach for graphic-rich text recognition. Vis Comput 38(5):1645–1664

16. Gour M, Jain S (2020) Stacked convolutional neural network for diagnosis of covid-19 disease from
x-ray images. arXiv:2006.13817

17. Gupta A (2019) Current research opportunities for image processing and computer vision. Comput Sci
20

18. Gupta A, Gupta S et al, katarya R (2021) Instacovnet-19: a deep learning classification model for the
detection of covid-19 patients using chest x-ray. Appl Soft Comput 99:106859

19. Gupta RK, Sahu Y, Kunhare N, Gupta A, Prakash D (2021) Deep learning based mathematical model
for feature extraction to detect corona virus disease using chest x-ray images. Int J Uncertain, Fuzziness
Knowl-Based Syst:921–947

21821Multimedia Tools and Applications (2023) 82:21801–21823

https://www.kaggle.com
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia
http://arxiv.org/abs/2105.08590
http://arxiv.org/abs/2006.02570
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
http://arxiv.org/abs/2006.11988
http://arxiv.org/abs/2006.13817


20. Hou J, Gao T (2021) Explainable dcnn based chest x-ray image analysis and classification for covid-19
pneumonia detection. Sci Rep 11(1):1–15

21. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X et al (2020) Clinical features
of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395(10223):497–506

22. Islam MZ, Islam MM, Asraf A (2020) A combined deep cnn-lstm network for the detection of novel
coronavirus (covid-19) using x-ray images. Informat Med Unlocked 20:100412

23. Jain R, Gupta M, Taneja S, Hemanth DJ (2021) Deep learning based detection and analysis of covid-19
on chest x-ray images. Appl Intell 51(3):1690–1700

24. Jakubovitz D, Giryes R, Rodrigues MRD (2018) Generalization error in deep learning.
arXiv:1808.01174

25. Kanwal A, Chandrasekaran S (2022) 2dcnn-bicudnnlstm: hybrid deep-learning-based approach for
classification of covid-19 x-ray images. Sustainability 14(11):6785

26. Karakanis S, Leontidis G (2021) Lightweight deep learning models for detecting covid-19 from chest
x-ray images. Comput Biol Med 130:104181

27. Lafraxo S, El Ansari M (2021) Covinet: automated covid-19 detection from x-rays using deep learning
techniques. In: 2020 6th IEEE congress on information science and technology (CiSt). IEEE, pp 489–494

28. Lasker A, Ghosh M, Obaidullah SM, Chakraborty C, Roy K (2022) Deep features for covid-19 detec-
tion: performance evaluation on multiple classifiers. In: International conference on computational
intelligence in pattern recognition. Springer, pp 313–325

29. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
30. Li T, Han Z, Wei B, Zheng Y, Hong Y, Cong J (2020) Robust screening of covid-19 from chest x-ray

via discriminative cost-sensitive learning. arXiv:2004.12592
31. Li X, TanW, Liu P, Zhou Q, Yang J (2021) Classification of covid-19 chest ct images based on ensemble

deep learning. J Healthc Eng
32. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures

and their applications. Neurocomputing 234:11–26
33. Loey M, El-Sappagh S, Mirjalili S (2022) Bayesian-based optimized deep learning model to detect

covid-19 patients using chest x-ray image data. Comput Biol Med 142:105213
34. Mangal A, Kalia S, Rajgopal H, Rangarajan K, Namboodiri V, Banerjee S, Arora C (2020) Covidaid:

covid-19 detection using chest x-ray. arXiv:2004.09803
35. Mohammadi R, Salehi M, Ghaffari H, Rohani A, Reiazi R (2020) Transfer learning-based automatic

detection of coronavirus disease 2019 (covid-19) from chest x-ray images. J Biomed Phys Eng 10(5):559
36. Mohammed M, Mwambi H, Omolo B, Elbashir MK (2018) Using stacking ensemble for microarray-

based cancer classification. In: 2018 International conference on computer, control, electrical, and
electronics engineering (ICCCEEE). IEEE, pp 1–8

37. Mooney P (2020) Chest X-ray images (pneumonia). www.kaggle.com. https://www.kaggle.com/
datasets/paultimothymooney/chest-xray-pneumonia. Accessed 10 May 2022

38. Mukherjee H, Dhar A, Obaidullah S, Santosh K, Roy K et al (2021) Covid-19: a necessity for changes
and innovations. In: COVID-19: prediction decision-making, and its impacts, pp 99–105

39. Mukherjee H, Ghosh S, Dhar A, Obaidullah SM, Santosh K, Roy K (2021) Deep neural network to
detect covid-19: one architecture for both ct scans and chest x-rays. Appl Intell 51(5):2777–2789

40. Mukherjee H, Ghosh S, Dhar A, Obaidullah SM, Santosh K, Roy K (2021) Shallow convolutional neural
network for covid-19 outbreak screening using chest x-rays. Cogn Comput:1–14

41. Munusamy H, Muthukumar KJ, Gnanaprakasam S, Shanmugakani TR, Sekar A (2021) Fractal-
covnet architecture for covid-19 chest x-ray image classification and ct-scan image segmentation.
Biocybernetics Biomed Eng 41(3):1025–1038

42. Niu S, Liu M, Liu Y, Wang J, Song H (2021) Distant domain transfer learning for medical imaging.
IEEE J Biomed Health Inform 25(10):3784–3793

43. Organization WH et al (2020) Clinical management of severe acute respiratory infection (sari) when
Covid-19 disease is suspected: interim guidance, 13 March. Technical report, World Health Organization

44. Paluru N, Dayal A, Jenssen HB, Sakinis T, Cenkeramaddi LR, Prakash J, Yalavarthy PK (2021) Anam-
net: anamorphic depth embedding-based lightweight cnn for segmentation of anomalies in covid-19
chest ct images. IEEE Trans on Neural Netw and Learn Syst 32(3):932–946

45. Prashant P (2020) Covid-19 diagnosis using X-ray images. Kaggle. https://www.kaggle.com/code/
prashant268/covid-19-diagnosis-using-x-ray-images. Accessed 10 May 2022

46. Rahman T, Khandakar A, Qiblawey Y, Tahir A, Kiranyaz S, Kashem SBA, Islam MT, Al Maadeed S,
Zughaier SM, khan MS et al (2021) Exploring the effect of image enhancement techniques on covid-19
detection using chest x-ray images. Comput Biol Med 132:104319

47. Refat CMM (2020) Chest X-ray images pneumonia and covid-19. https://www.kaggle.com/masumrefat/
chest-xray-images-pneumonia-and-covid19. Accessed 10 May 2022

21822 Multimedia Tools and Applications (2023) 82:21801–21823

http://arxiv.org/abs/1808.01174
http://arxiv.org/abs/2004.12592
http://arxiv.org/abs/2004.09803
www.kaggle.com
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/code/prashant268/covid-19-diagnosis-using-x-ray-images
https://www.kaggle.com/code/prashant268/covid-19-diagnosis-using-x-ray-images
https://www.kaggle.com/masumrefat/chest-xray-images-pneumonia-and-covid19
https://www.kaggle.com/masumrefat/chest-xray-images-pneumonia-and-covid19


48. Rezaee K, Badiei A, Meshgini S (2020) A hybrid deep transfer learning based approach for covid-19
classification in chest x-ray images. In: 2020 27th national and 5th international Iranian conference on
biomedical engineering (ICBME). IEEE, pp 234–241

49. Saha P, Mukherjee D, Singh PK, Ahmadian A, Ferrara M, Sarkar R (2021) Retracted article: graph-
covidnet: a graph neural network based model for detecting covid-19 from ct scans and x-rays of chest.
Sci Rep 11(1):1–16

50. Saha P, Sadi MS, Islam MM (2021) Emcnet: automated covid-19 diagnosis from x-ray images using
convolutional neural network and ensemble of machine learning classifiers. Informat Med Unlocked
22:100505

51. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. (2018) Mobilenetv2: inverted residuals and
linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 4510–4520

52. Shalbaf A, Vafaeezadeh M (2021) Automated detection of covid-19 using ensemble of transfer learning
with deep convolutional neural network based on ct scans. Int J Comput Assist Radiol Surg 16(1):115–
123

53. Sharifrazi D, Alizadehsani R, Roshanzamir M, Joloudari JH, Shoeibi A, Jafari M, Hussain S, Sani ZA,
Hasanzadeh F, khozeimeh F et al (2021) Fusion of convolution neural network, support vector machine
and sobel filter for accurate detection of Covid-19 patients using x-ray images. Biomed Sig Process
Conrol 68:102622

54. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition.
arXiv:1409.1556

55. Singh D, Kumar V, Yadav V, Kaur M (2021) Deep neural network-based screening model for Covid-
19-infected patients using chest x-ray images. Int J Pattern Recognit Artif Intell 35(03):2151004

56. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of
residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence

57. Tang S, Wang C, Nie J, Kumar N, Zhang Y, Xiong Z, Barnawi A (2021) Edl-covid: ensemble deep
learning for Covid-19 case detection from chest x-ray images. IEEE Trans Ind Informat 17(9):6539–6549

58. Ter-Sarkisov A (2021) Lightweight model for the prediction of Covid-19 through the detection and
segmentation of lesions in chest ct scans. Int J Autom Comput Artif Intell Mach Learn 2(1):01–15

59. Trivedi M, Gupta A (2022) A lightweight deep learning architecture for the automatic detection of
pneumonia using chest X-ray images. Multimed Tools Appl 81(4):5515–5536

60. Upadhyay K, Agrawal M, Deepak D (2020) Ensemble learning-based Covid-19 detection by feature
boosting in chest X-ray images. IET Image Process 14(16):4059–4066

61. Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259
62. Zhang X, Wang D, Shao J, Tian S, Tan W, Ma Y, Xu Q, Ma X, Li D, Chai J et al (2021) A deep learning

integrated radiomics model for identification of coronavirus disease 2019 using computed tomography.
Sci Rep 11(1):1–12

63. Zhou C, Bu G, Sun Y, Ren C, Qu M, Gao Y, Zhu Y, Wang L, Sun L, Liu Y (2021) Evaluation of
serum igm and igg antibodies in Covid-19 patients by enzyme linked immunosorbent assay. J Med Virol
93(5):2857–2866

64. Zhu J, Shen B, Abbasi A, Hoshmand-Kochi M, Li H, Duong TQ (2020) Deep transfer learning artificial
intelligence accurately stages Covid-19 lung disease severity on portable chest radiographs. Plos One
15(7):0236621

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

21823Multimedia Tools and Applications (2023) 82:21801–21823

http://arxiv.org/abs/1409.1556

	LWSNet - a novel deep-learning architecture to segregate Covid-19 and pneumonia from x-ray imagery
	Abstract
	Introduction
	Review of state-of-the-arts
	Stack ensemble classification
	Deep transfer learning
	Lightweight CNN

	Proposed method
	Proposed lightweight models
	Lightweight MobileNetV2
	Lightweight VGG19
	Lightweight InceptionResNetV2
	Custom lightweight CNN (CLCNN)

	Lightweight stack ensemble learning

	Experiment
	Setup
	Datasets
	Evaluation protocol
	Sensitivity
	Specificity
	F1-Score
	Precision
	Negative predictive value
	Miss rate
	Fall-out
	False discovery rate
	False omission rate
	Training regime


	Results & analysis
	Error analysis
	Comparative study

	Conclusion
	Declarations
	References


