Table 5.
Quad stack performance evaluation for different datasets
Rate | Dataset 1 | Dataset 2 | Dataset 3 | Combined | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | N | P | C | N | P | C | N | P | C | N | P | |
Sensitivity | 0.9661 | 0.9650 | 0.9848 | 0.9632 | 0.9708 | 0.9148 | 0.9716 | 0.9678 | 0.9847 | 0.9652 | 0.9739 | 0.9839 |
Specificity | 0.9991 | 0.9866 | 0.9676 | 0.9819 | 0.9539 | 0.9920 | 0.9854 | 0.9795 | 0.9886 | 0.9820 | 0.9956 | |
F1-score | 0.9785 | 0.9619 | 0.9842 | 0.9524 | 0.9743 | 0.9165 | 0.9771 | 0.9601 | 0.9864 | 0.9517 | 0.9733 | 0.9892 |
Precision | 0.9913 | 0.9589 | 0.9836 | 0.9419 | 0.9779 | 0.9182 | 0.9828 | 0.9525 | 0.9882 | 0.9386 | 0.9728 | 0.9946 |
Negative predictive | 0.9966 | 0.9886 | 0.9698 | 0.9887 | 0.9395 | 0.9917 | 0.9957 | 0.9902 | 0.9735 | 0.9937 | 0.9828 | 0.9870 |
Miss rate | 0.0339 | 0.0339 | 0.0152 | 0.0368 | 0.0368 | 0.0852 | 0.0284 | 0.0284 | 0.0153 | 0.0348 | 0.0348 | 0.0161 |
Fall-out | 0.0009 | 0.0134 | 0.0324 | 0.0181 | 0.0461 | 0.0080 | 0.0026 | 0.0146 | 0.0205 | 0.0114 | 0.0180 | 0.0044 |
False discovery | 0.0087 | 0.0411 | 0.0164 | 0.0581 | 0.0221 | 0.0818 | 0.0172 | 0.0475 | 0.0118 | 0.0614 | 0.0272 | 0.0054 |
False omission | 0.0034 | 0.0114 | 0.0302 | 0.0113 | 0.0605 | 0.0083 | 0.0043 | 0.0098 | 0.0265 | 0.0063 | 0.0172 | 0.0130 |