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can significantly reduce the recovery of infectious 
SARS-CoV-2 compared to uncoated controls, indi-
cating the effective use of copper for viral inactiva-
tion on surfaces. Furthermore, it may suggest higher 
copper content has stronger antiviral properties. This 
could have important implications when short turna-
round times are needed for cleaning and disinfecting 
rooms or equipment, especially in strained healthcare 
settings which are struggling to keep up with demand.
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Introduction

SARS-Coronavirus-2 (SARS-CoV-2), the etiologic 
agent of COVID-19, is primarily spread by respira-
tory droplets, but also through contaminated sur-
faces and aerosols (Govind et  al. 2021; Jin et  al. 
2020; Kraay et  al. 2020; Marquès and Domingo 
2021; Ren et  al. 2020; van Doremalen et  al. 2020; 
Ye et  al. 2020; Zuo et  al. 2020). To prevent spread 
of the virus, emphasis was initially put on basic pub-
lic health practices, including isolating, hand wash-
ing, and mask wearing (CDC, 2021, 2020; Gostin 
et  al. 2020; Johns Hopkins University, 2021). These 
mitigation efforts were largely aimed at stopping the 
spread of droplet-associated SARS-CoV-2 viral par-
ticles both in the context of human-to-human trans-
mission, as well as surface contamination. Even with 
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these efforts, SARS-CoV-2 spread across the globe, 
indicating a need for additional research on transmis-
sion prevention.

Recent research suggests that respiratory droplets 
from breathing, speaking, coughing, and sneezing 
can be carried distances greater than 2 m (Bahl et al. 
2020). These droplets often land on high-touch sur-
faces (e.g., doorknobs, elevator buttons, cell phones), 
which allows infectious virus to be mechanically 
transmitted to the mouth, nasal mucosa, or conjunc-
tiva of others. Droplet spread and pathogen survival 
depend on factors including surface porosity, tem-
perature, ventilation, and relative humidity, but some 
droplet-associated viruses remain infectious on com-
mon surfaces for days or weeks (Aboubakr et  al. 
2021; Bueckert et  al. 2020). Infectious pathogens 
have been found to survive and remain infectious 
for extended periods of time on high-touch surfaces, 
including those in healthcare settings (e.g., bed rails, 
IV poles) (CDC, 2021; Mantlo et al. 2020; Otter et al. 
2013; Zerbib et al. 2020). Specifically, SARS-CoV-2 
has been found to be viable on non-porous surfaces 
for days to weeks (Biryukov et  al. 2020; Chin et  al. 
2020; Liu et al. 2021; Riddell et al. 2020; van Dore-
malen et  al. 2020). Additionally, SARS-CoV-2 was 
found to have substantial transfer from non-porous 
solids to artificial skin through light touch when the 
droplet was wet (13–16% virus transfer) as well as 
after it had evaporated (3–9% virus transfer) (Behza-
dinasab et  al. 2021a). Consequently, disinfection of 
high-touch surfaces, particularly during a pandemic 
and in healthcare settings, provides an opportunity to 
decrease the spread of deadly pathogens (Bahl et al. 
2020; Otter et al. 2016).

Numerous studies have demonstrated the antibac-
terial and antiviral activity of copper against a wide 
range of pathogens including E. coli, Influenza A, 
Norovirus, SARS-CoV-1, herpes simplex, Junin, 
HIV-1, poliovirus, monkeypox, and Marburg and 
Ebola viruses (Champagne et  al. 2019; Cortes and 
Zuñiga 2020; Govind et  al. 2021; Grass et  al. 2011; 
Han et al. 2005; Imai et al. 2012; Mantlo et al. 2020; 
Manuel et  al. 2015; Michels et  al. 2015; Montero 
et al. 2019; Noyce et al. 2007; Rakowska et al. 2021; 
Rosenberg et al. 2018; Różańska et al. 2017; Warnes 
et  al. 2012; Wilks et  al. 2005). In addition, labora-
tory results have led to the use of copper materials 
in clinical trials in healthcare facilities and commu-
nity centers (Casey et  al. 2010; Colin et  al. 2018; 

Hinsa-Leasure et al. 2016; Ibrahim et al. 2018; Pog-
gio et  al. 2020; Zerbib et  al. 2020; Schmidt et  al. 
2012), with hospital intensive care units contain-
ing copper-coated appliances reporting 83–99.9% 
reduction in the burden of pathogens and infections 
(Montero et al. 2019; Salgado et al. 2013). The exact 
mechanism behind the ability of copper to inactivate 
or kill pathogens is believed to differ between patho-
gen types (Festa and Thiele 2011; Manuel et al. 2015; 
Rosenberg et al. 2018; Warnes et al. 2012, 2015). For 
viruses, the proposed mechanism is that copper ions 
disrupt viral envelopes, prevent cellular respiration, 
produce free radicals, and destroy the DNA/RNA 
of microbes when in contact with copper surfaces 
(Rakowska et al. 2021).

Copper inactivation of Coronavirus 226E, another 
common respiratory virus and close relative of 
SARS-CoV-2, has been successful, with inacti-
vation observed in 40  min or less (Warnes et  al. 
2015). Recent studies by Behzadinasab et al. (2020), 
Hutasoit et al. (2020), and Mantlo et al. (2020) exam-
ined Cu2O/PU film, 3D-printed copper-coated sur-
faces, and cold-spray copper coating, respectively, for 
SARS-CoV-2 inactivation capabilities. Behzadinasab 
et  al. (2020) reported 99.99% inactivation after 1-h 
incubation while Hutasoit et  al. (2020) and Mantlo 
et  al. (2020) found 96% and 99% inactivation after 
2  h. Another study by Behzadinasab et  al. (2021b) 
studied two transparent surface coatings, PDA/Cu and 
PDA/Cu2O, which also found 99.98% and 99.88% 
inactivation of SARS-CoV-2 after 1-h incubation, 
respectively. However, viability of the novel SARS-
CoV-2 virus immediately after contact with copper 
materials has not been adequately tested. It may be 
that, coating surfaces with copper infused materi-
als can more rapidly inactivate SARS-CoV-2 than 
we currently understand. Accordingly, in this study, 
we evaluated the inactivation of SARS-CoV-2 virus 
upon contact with two copper blend coatings from 1 
to 20 min.

Materials and methods

Viral strains and cell lines

Vero E6 (ATCC® CRL-1586™) cells were cul-
tured in 1× Dulbecco’s Modification of Eagle’s 
Medium with 4.5 g/l glucose supplemented with 1% 
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l-glutamine (DMEM; Corning, Corning, NY)  and 
10% (v/v) fetal bovine serum (FBS; Corning, Corn-
ing, NY). Vero E6 cells were grown in T175 flasks 
and passaged when the cells were 90% confluent. 
1.2 × 106 cells were plated in 6- well plates overnight 
before use.

The SARS-CoV-2 Chile strain was obtained from 
BEI (NR-52439). One hundred μl was added to a con-
fluent T75 flask of Vero E6 cells in serum-free media 
(SFM) with antibiotics. Forty-eight hours later, 100 μl 
of supernatant was added to a second flask with unin-
fected cells. If cytopathic effects were observed after 
48  h, the supernatant was removed and the flask 
containing the remainder of the cells were placed in 
a freezer for 5 min. The flask was then thawed, and 
the cells were collected using 5 ml of new media. The 
cell lysate was mixed with supernatant and centri-
fuged at 500×g for 5 min before aliquoting.

Surfaces tested

Two distinct copper blends were formulated by Alloi, 
with Copper Blend 1 containing 48.26% pure copper 
and Copper Blend 2 containing 75.07% pure copper. 
The composition of each blend’s inputs is character-
ized in Table 1. To create these materials, copper and 
zinc were ordered from a third-party and then mixed 
with a non-metal binder (styrene resin sold under 
COR75-AQ-010L [INTERPLASTICS Unsaturated 
Polyester Resin product code: SIL94BA-990]) and 
catalyst (Methyl ethyl ketone peroxide [MEKP]). 
Both blends consist of metallic components as well 

as the binder, to make the material as a whole not 
conductive, and the catalyst, to harden the binder. All 
materials were measured using a scale with an uncer-
tainty of ± 0.01 g. The two copper blends were then 
used to completely cover pieces of 2 cm × 2 cm poly-
carbonate plastic sheets with 0.1 mm thickness using 
cold-spray technology. These materials were then 
brought to the George Washington University Nano-
fabrication and Imaging Center and imaged using the 
GEI Teneo LV scanning electron microscope (SEM) 
with an EDAX Octane Pro detector for elemental 
analysis. SEM was done at 5000 × and energy-dis-
persive x-ray spectroscopy (EDS) was performed at 
30 kV for 100 s showing Copper Blend 1 to be mainly 
copper (Cu) 41.61% and zinc (Zn) 14.59%, and 
Copper Blend 2 to be predominately Cu 100%. Fur-
ther analysis of these coated materials by SEM and 
energy-dispersive X-ray spectroscopy (EDS) is shown 
in Fig. 1 and Table 2. The copper blend-coated sam-
ples arrived in sealed bags and were tested as is. The 
uncoated plastic samples arrived with a thin sheet of 
plastic adhesive covering one side. The plastic adhe-
sive was removed with 70% ethanol and allowed to 
dry before experimentation. The components of the 
copper blends were unknown to the researchers at the 
time of experimentation; however, composition was 
revealed to the researchers after analysis of results.

Infectivity assay for SARS‑CoV‑2

Viral stock solution was thawed and placed in ten 
1  μl droplets on two different copper blend-coated 

Table 1   Composition of the inputs for Copper Blend 1 and 2 by weight and percent of total weight

a Zinc weight and percent of total weight were calculated based on brass content. Total copper weight and percent of total weight 
were calculated based on brass and pure copper content

Material Copper Blend 1 Copper Blend 2

Weight (g) Percent of total 
weight

Weight (g) Percent 
of total 
weight

Binder (styrene resin [COR75-AQ-010L]) 45.0 24.13% 45.0 24.13%
Catalyst (methyl ethyl ketone peroxide [MEKP]) 1.5 0.80% 1.5 0.80%
Pure copper (without brass) 90.0 48.26% 140.0 75.07%
Brass (70% copper/30% zinc) 50.0 26.81% 0.0 0.00%
Total weight 186.5 – 186.5 –
Zinca 15.0 8.04% 0.0 0.00%
Total copper (pure copper + brass)a 125.0 67.02% 140.0 75.07%
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surfaces to simulate respiratory droplet contact (Lind-
sley et al. 2013; Warnes et al. 2015). The distinct 1 μl 
droplets were used instead of one 10  μl droplet to 
allow for more direct contact with the copper blend 
surfaces due to the surface tension of the solution 
(Mantlo et  al. 2020). The virus was removed from 
the test surfaces by washing with 490 μl EMEM sup-
plemented with 1% penicillin, streptomycin, ampho-
tericin B and non-essential nucleic acids after incu-
bation at room temperature for various time points: 

1  min, 5  min, 10  min, and 20  min. The virus and 
media mixture was assayed for infectious virus sur-
vival using a plaque assay, quantified as plaque form-
ing units (PFU). Serial dilutions of the virus mixture 
were prepared in infection medium before 200 μl ali-
quots were plated onto confluent monolayers of Vero 
E6 cells in Corning® 6-well plates. After 1 h, a 1:1 
agar and EMEM overlay was added and plates were 
incubated at 37  °C and 5% CO2 for 72  h. Follow-
ing incubation, the plates were fixed with 10% (w/v) 
formaldehyde, stained with 0.5% Crystal Violet and 
allowed to dry before plaques were counted.

Statistical analyses

All statistical analyses were performed in R Stu-
dio (version 1.3.1093) with base R (version 3.6.3) 
and significance was assessed at the α = 0.05 level. 
We first wanted to compare whether the recovery 
of viable SARS-CoV-2 was differentially affected 
by incubation on three different materials (Copper 
Blend 1, Copper Blend 2, and plastic) at four differ-
ent time points. Median rank titers (Log PFU/ml) 
across the three materials were compared using the 

Fig. 1   Photographs of the appearance of: A) Copper Blend 1 
from left to right: tested material in a 2 × 2  cm square, scan-
ning electron microscopy (SEM) done at 5000x, energy-dis-
persive X-ray spectroscopy (EDS) at 30 kV for 100 s showing 
composition of Copper Blend 1 Spot 2 to be predominately 
copper (Cu) 41.61% and zinc (Zn) 14.59%; B) Copper Blend 

2 from left to right: tested material in a 2 × 2 cm square, SEM 
done at 5000x, EDS at 30 kV for 100 s showing composition 
of Copper Blend 2 Spot 1 to be predominately Cu 100% (back-
ground analysis of Copper Blend 2 Spot 2 and Spot 3 were pre-
dominantly carbon, 57.64% and 43.18%, respectively)

Table 2   Composition of Copper Blend 1 and 2 products by 
percent weight using energy-dispersive x-ray spectroscopy 
(EDS)

a EDS spot locations are displayed in Fig. 1 above

Copper Blend 1 (spot 2)a Copper Blend 2 (spot 
1)a

Element Weight % Error % Weight % Error %

Copper 41.61 1.34 100 0.99
Zinc 14.59 1.45 – –
Carbon 33.98 8.96 – –
Oxygen 9.82 9.90 – –
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Kruskal–Wallis non-parametric analysis of variance 
(kruskal.test) after determination that data were not 
distributed normally (shapiro.test, p < 0.05). When 
warranted, post-hoc tests for pairwise differences 
were performed using the Dunn Test (dunnTest, pack-
age FSA). We next wanted to compare the perfor-
mance of each blend compared to the baseline mate-
rial of plastic. We took the difference of recovered 
viral titer (log PFU/mL) for each trial-blend com-
bination and calculated the percent reduction from 
the corresponding trial’s plastic control at each time 
point. We then used a t-test to determine whether 
these calculated differences were significantly greater 
from select null values; namely, 50%, 75%, and 98%. 
A rejection of the null in this case would indicate that 
an blend had at least or greater reduction than the null 
value tested.

Results

Comparison of recovered titer from each type of 
material

At 1-min exposure time, there was no significant dif-
ference in the recovered viral titer (PFUs/mL) among 

the three materials. At 5, 10, and 20 min contact with 
Copper Blend 2, there were significantly lower recov-
ered titers of SARS-CoV-2 than both Copper Blend 
1 and plastic. The viral titer recovered from Copper 
Blend 1 was not significantly different from the plas-
tic control at any time point measured (Fig. 2).

Percent reduction of recovered titer of Copper Blend 
1 or Copper Blend 2 compared to the plastic control

When the recovered viral titer of each copper blend 
was compared to that of the plastic control, Copper 
Blend 1 did not result in a SARS-CoV-2 titer reduc-
tion that was significantly greater than 50% at any 
timepoint. However, for Copper Blend 2, the per-
cent reduction in titer compared to the plastic control 
was significantly higher. Reduction was significantly 
greater than a maximum of 50% at time point 5 min, 
75% at 10 min, and 98% at 20 min (Fig. 3).

Discussion

Basic infection prevention and control practices 
are important to prevent the rapid spread of novel 
viruses, such as SARS-CoV-2. Part of this strategy 

Fig. 2   At 5, 10, and 
20 min, contact with 
Copper Blend 2 produced 
significantly (*) lower titers 
(Log PFU/ml) than expo-
sure to either Copper Blend 
1 or plastic (p < 0.05). Pre-
sented are data points and 
boxplot data summaries
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includes timely and consistent disinfection of sur-
faces, especially in high-trafficked spaces where res-
piratory droplets may contain viruses capable of 
surviving for extended periods of time on commonly 
used surfaces. Reducing environmental contamina-
tion is particularly important during pandemics and 
in health care settings. Previous studies found copper 
is an effective option to combat fomite transmission 
both in laboratory and in clinical settings (Behzadi-
nasab et al. 2020; Hutasoit et al. 2020; Mantlo et al. 
2020; Warnes et al. 2015). This current study sought 
to build on the growing body of knowledge regarding 
the uses of copper and copper materials as deterrents 
of surface-mediated transmission of viruses.

Our results indicate that contact with a high cop-
per-content material inactivated SARS-CoV-2 as 
compared to a plastic control in a time-dependent 
manner. There was no significant difference in recov-
ered titer between Copper Blend 1, Copper Blend 2, 
and the plastic control after 1 min of contact, suggest-
ing a minimum time of contact is needed for efficacy. 
Copper Blend 2 begins to significantly reduce the 
viability of SARS-CoV-2 at 5 min of contact with at 
least 98% reduction in recovered virus at 20  min of 
contact.

Copper Blend 2 is 75.07% pure copper composi-
tion by weight compared to Copper Blend 1, which 
has a pure copper composition of 48.26%. The dif-
ference in recovered virus between the two suggests 
that higher copper content may have stronger anti-
viral properties. It is important to note that Copper 
Blend 1 also contained brass, which is a copper alloy 
with 70% copper/30% zinc, meaning Copper Blend 
1 has a total copper content of 67.02%. Our results 
are similar to a study that demonstrated copper was 
efficacious at inactivating a human Alphacoronavirus, 
HuCoV-229E (Warnes et al. 2015). Pure copper and 
90% copper materials were able to inactivate HuCoV-
229E in 20  min (Warnes et  al. 2015). Interestingly, 
inactivation efficiency began to decrease when the 
pure copper content was reduced to 85%. As SARS-
CoV-2 is more stable on surfaces than HuCoV-229E, 
determining the efficacy of a specific material’s cop-
per content is critical to evaluate further (Rabenau 
et al. 2005; van Doremalen et al. 2020).

Other studies have reported greater than 96% inac-
tivation of SARS-CoV-2 after an hour of contact 
with different copper formulations (Behzadinasab 
et al. 2020; Hutasoit et al. 2020; Mantlo et al. 2020). 
Accordingly, our experimental limit of 20 min of con-
tact between the viral inoculum and copper blends 

Fig. 3   For each copper 
blend material, points 
represent percent reduc-
tion from matching plastic 
control. Lines represent 
the mean percent reduc-
tion with ± standard error. 
*Indicates significantly 
greater reduction than 50%, 
**Indicates significantly 
greater reduction than 75%, 
***Indicates significantly 
greater reduction than 98%
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may offer a conservative estimate of the ultimate 
effectiveness of such materials. We cannot rule out 
the possibility that Copper Blend 1 may have more 
effectively inactivated SARS-CoV-2 or that Copper 
Blend 2 may have achieved even greater reduction at 
contact times exceeding 20 min. However, the effec-
tiveness of Copper Blend 2 at such a short interval 
may prove beneficial during periods of high commu-
nity transmission and healthcare stress, when shorter 
turnaround times for cleaning and disinfecting rooms 
or equipment is needed to keep pace with demand.

In conclusion, this study has found that over the 
course of 20 min, copper blend coatings can signifi-
cantly reduce the recovery of infectious SARS-CoV-2 
compared to uncoated controls. Our results indicate 
the continued use of copper as a viral inactivator for 
surfaces at-risk for contamination. Furthermore, it 
may be that there is an important percentage of cop-
per content in materials that is needed for effective-
ness against SARS-CoV-2.
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