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NFUI missense variants associated with a spectrum of early-onset pure to com-
plex hereditary spastic paraplegia (HSP) phenotype with a longer survival (16/
19) on one end and neurodevelopmental delay with severe hypotonia (3/19) on
the other. Reversible or irreversible neurological decompensation after a febrile
illness was common in the cohort, and there were invariable white matter

abnormalities on neuroimaging. The study suggests that MMDS1 and HSP

doi: 10.1002/acn3.51679

Introduction

Iron—sulfur [Fe-S] clusters are important cofactors that
play a role in various cellular functions, including elec-
tron transfer along the respiratory chain, citric acid cycle,
heme biosynthesis, DNA replication and repair, as well as
iron homeostasis.' Iron-Sulfur Cluster Scaffold (NFUI)
(MIM: 608100) is an [Fe-S] cluster biosynthesis factor
involved in the last steps of maturation and transfer of
[4Fe-4S] clusters into target proteins, including lipoic acid
synthetase, mitochondrial aconitase and some subunits of
respiratory chain complexes I and II.*° Bi-allelic variants
in NFUI have previously been associated with multiple
mitochondrial dysfunctions syndrome 1 (MMDS1)® char-
acterized by early-onset leukoencephalopathy leading to a
fatal outcome, typically before the age of 15 months.°

Recently, bi-allelic variants in NFUI have been reported
in two individuals with a milder phenotype, presenting
with slowly progressive spastic paraplegia with a relaps-
ing-remitting course, long survival, and intact cognition
or mild intellectual disability (ID).”® Here, we report 19
affected individuals from 10 independent families with
ultra-rare bi-allelic NFUI missense variants associated
with a phenotype ranging from early-onset pure to com-
plex hereditary spastic paraplegia (HSP) characterized by
a longer survival (16/19) and neurodevelopmental delay
(NDD) with severe hypotonia (3/19).

Methods

Participants and clinical investigations

Exome sequencing (ES) and genome sequencing (GS), data
sharing between international genetic centers, and the Gen-
eMatcher platform” were employed to identify the 10 fami-
lies reported here. Clinical data were collected via a
uniform proforma. Parents/legal guardians of all affected
individuals consented to the publication of genetic and
clinical information. The study was approved by The
Research Ethics Committee Institute of Neurology Univer-
sity College London (IoN UCL) (07/Q0512/26) and the
local Ethics Committees of each participating center.

could be the two ends of the NFUI-related phenotypic continuum.

Exome sequencing and genome sequencing

Research/diagnostic solo or trio-ES/GS, variant filtering,
and variant confirmation by Sanger sequencing and segre-
gation analysis were performed on genomic DNA
extracted from blood in different genetic laboratories fol-
lowing the methods previously described (Table 1). Fam-
ily 10 had a mitochondrial panel test performed for the
proband and targeted genotyping for familial variants for
the sibling (further details in Table 1 and Supplementary
Table S1).

SDS-PAGE and western blot analysis

Human fibroblasts from an affected individual (F1-II:1)
were obtained and lysed and samples were subjected to
SDS-PAGE and western blotting as described previously'”
and a list of primary antibodies is provided (Supplemen-
tary Methods).

Protein modeling and characterization, Fe-S
cluster transfer monitoring, and enzymatic
assays

Protein characterization by variable temperature circular
dichroism (CD) and analytical ultracentrifugation, Fe-S
cluster transfer monitored by circular dichroism, pyruvate
dehydrogenase and o-ketoglutarate dehydrogenase activity
assay studies were performed (Supplementary Methods).

Results

Clinical phenotype

The cohort comprises 19 affected individuals from 10 inde-
pendent families. There were 8 females and 11 males, 13 of
whom are currently alive with a mean age of 9.8 £ 5.7 years
(range 2.1-25) at the study recruitment (Fig. 1A). Six affected
individuals succumbed to their rapidly progressive disease
course triggered by a febrile illness between the ages of 6—
36 months. Detailed clinical information is provided in Sup-
plementary Table S1 and Supplemental Case Reports.

2026 © 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
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Prenatal features and neonatal periods were unremark-
able in all subjects. No delay in early developmental mile-
stones including head control, crawling, sitting, and
speech was reported in 14/19 individuals. Cognitive func-
tion was impaired in 5/18 individuals. Gait acquisition
was delayed due to either the insidious onset of limb
spasticity in 13/19 individuals or spasticity precipitated by
a deterioration in the context of a febrile illness in 4/19
individuals (Fig. 1B). The lower limb spasticity was
detected at a mean age of 12 £ 6 months in the cohort.
Spasticity was progressive leading to contractures in 13/19
persons and necessitating Achilles’ tendon repair surgery
in 4/19 affected individuals.

Remarkably, febrile illness leading to metabolic decom-
pensation played a significant role in the disease course of
13/19 individuals. Thus, in F1-II:1 it led to febrile seizures
followed by the onset of lower limb spasticity and reversi-
ble cognitive and motor regression, and truncal hypoto-
nia. Similarly, F5-I:1, F6-II:3, and F8-II:5 developed
reversible truncal hypotonia and/or progressive lower
limb spasticity following several episodes of febrile illness.
Intermittent and reversible gait deterioration associated
with episodes of febrile illness was reported in F2-1I:1and
F9-1I:1, along the course of their disease, which was
described as waxing and waning. While the episodes of
febrile illness had not been fatal for these persons, the
other six affected individuals had regression and devel-
oped severe muscular hypotonia leading to early mortality
after a febrile illness.

The mean disease duration at the most recent examina-
tion for the living individuals was 8.8 + 5.7 years (range
1.5-24). Neuromuscular examination revealed lower limb
spasticity in all persons with increased deep tendon
reflexes, upgoing plantar reflexes, and mild symmetrical
muscle wasting. Muscle tone from the upper limbs was
uniformly intact. While two individuals were wheelchair-
bound, eight could ambulate using crouches or rollator
walker, and three could walk independently with spastic
gait. Ataxic gait was reported in 2/12 individuals, which
was intermittent in one person (F2-II:1). The oldest indi-
vidual in the cohort was aged 25 years and had a normal
cognitive function and could perform most activities of
daily living despite his slowly progressive lower limb spas-
ticity. Seven persons had results available of metabolic
screening, which were unremarkable in all.

Brain MRI DICOM files were available for six individu-
als (F1-II:1, F1-1I:2, F7-1I:1, F8-IL:5, F10-1I:1, and F10-
I1:2), low-resolution photos of brain MRI studies were
available for four individuals (F4-II:5, F4-1I:6, F5-II:2, and
F6-11:2), and photos of a head CT in one person (F5-
II:1). All available neuroimaging studies were indepen-
dently reviewed by a board-certified neuroradiologist.
Four additional individuals had neuroimaging studies that

© 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
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were reported as normal but not independently reviewed
(F2-1I:1, F3-1I:1, F3-1I:2, and F9-1I:1). Shared neuroimag-
ing findings included T2 hyperintense signal involving the
bilateral posterior centrum semiovale, corona radiata, and
periatrial regions (9/9, 100%); T2 hyperintense signal
involving the bilateral thalami (9/9, 100%), basal ganglia
(719, 78%), and pons and cerebellum (7/8, 88%),
hypoplastic corpus callosum (9/10, 90%), bilateral cere-
bral white matter volume loss (8/11, 73%), mega cisterna
magna (9/11, 82%), mild prominence of the lateral ven-
tricles and frontoparietal sulci (7/11, 64%), and scattered
areas of restricted diffusion which may represent active
demyelination, metabolic encephalopathy, or acute/suba-
cute ischemia (3/4, 75%). A single individual (1/11, 9%)
had areas of cystic degeneration/leukomalacia in the white
matter of the bilateral frontal lobes and another (1/11,
9%) had vermian hypoplasia. Figure 1D shows shared
neuroimaging findings and the Supplemental information
has case-based descriptions of the brain MRI/CT interpre-
tations.

Genetic analysis reveals ultra-rare bi-allelic
variants in NFU1

A total of 9 different NFUI missense variants were identi-
fied in this study (Figs. 2A to C). Exome sequencing car-
ried out in the proband F1-II:1 revealed a homozygous
likely ~pathogenic NFUI variant: NM_001002755.4:
¢.721G>C, p.(Val241Leu). In the third affected individual
F2-1I:1, trio-ES identified compound heterozygous NFUI
variants: a variant of uncertain significance (VUS),
¢.298G>C, p.(Alal00Pro) inherited from the father and a
VUS, ¢.301A>G, p.(Argl01Gly) inherited from the
mother.

Exome sequencing of four unrelated Egyptian families,
F3 to F6, led to the identification of the same pathogenic
homozygous NFUI variant: ¢.362T>C, p.(Vall21Ala). A
homozygous VUS, ¢.295C>G, p.(Leu99Val) was also iden-
tified by ES of the proband of family 7. In family 8, a
homozygous VUS, ¢.263T>C, p.(Phe88Ser) was identified
by ES of the proband. Trio-ES in family 9 found com-
pound heterozygous NFUI variants: a maternally inher-
ited likely pathogenic variant, c.629G>T, p.(Cys210Phe)
and a paternally inherited VUS, ¢.548C>G, p.(Prol83Arg).
In family 10, the combination of a mitochondrial gene
panel and Sanger sequencing revealed potential com-
pound heterozygous NFUI variants: a VUS, c.629G>T,
p-(Cys210Phe) and a VUS, ¢.398T>C, p.(Leul33Pro).
Apart from, p.(Leu99Val), all the homozygous variants
are residing within sizeable regions of homozygosity. All
the variants are either absent or observed in extremely
low allele frequencies in numerous population variant fre-
quency databases (~2 mln alleles). They affect highly
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Figure 1. Clinical features of the individuals reported in this study and NFUT-associated phenotypic continuum. (A) Ages of the affected individu-
als at the study recruitment. (B) Clinical features of the present cohort. (C) NFUT-associated phenotypic continuum. HSP, hereditary spastic para-
plegia. (D) Representative brain MRI features of the present cohort. Individual F1-Il:2 (A, D, G, L), individual F4-Il:5 (B), individual F10-I1:1 (C, F, I,
M, N), individual F5-I:2 (E, K), individual F7-Il:1 (H), individual F4-Il:6 (J), and individual F10-11:2 (O, P, Q, R). T2/FLAIR hyperintense signal involving
the bilateral posterior centrum semiovale (Q), corona radiata, and periatrial regions (A-C). T2 hyperintense signal involving the bilateral thalami
and basal ganglia (D-F), pons, and cerebellum (G-l). Hypoplastic corpus callosum and mega cisterna magna (J-L). Bilateral cerebral white matter
volume loss (A-F, Q, R). Areas of restricted diffusion involving the bilateral subcortical white matter and cerebral peduncles (M-P). Areas of cystic
degeneration/leukomalacia in the white matter of the bilateral frontal lobes (Q, R). Vermian hypoplasia (K).

conserved residues across different species (Fig. 2D) and
segregated with the disease phenotype in all the families
(Fig. 2A). No other relevant variants associated with neu-
rological or neurodevelopmental disorders were identified
in the currently known monogenic disease-causing genes
in the ES data.

The characteristics of the variants are further summa-
rized in Table 1 and Supplementary Table S1.

Steady-state levels of OXPHOS complexes |,
I, 1ll, and IV are decreased in homozygous
p-(Val241Leu) fibroblasts

Western blot analysis on fibroblast samples showed that
subunits of each complex of the electron transport chain
(CI-CIV) were decreased in the affected individual F1-1I:1
compared to the heterozygous mother (FI-I:1) and a
pediatric control, whereas levels of complex V subunit
ATP5A remained relatively unchanged (Fig. 2E).

Functional study of the p.(Val241Leu)
variant

Protein modeling revealed all nine variants were located
in the NFU1 protein domains. Six variants, p.(Phe88Ser),
p-(Leu99Vval), p-(Alal00Pro), p-(Argl01Gly),
p-(Vall21Ala), and p.(Leul33Pro), were found in the
NifU N-terminal domain while the remaining three,
p-(Pro183Arg), p.(Cys210Phe), and p.(Val241Leu), lie in
the NifU C-terminal [Fe-S] cluster binding domain
(Figs. 2C,F, Supplementary Results). The p.(Val241Leu)
variant was further investigated via in vitro [Fe-S] cluster
reconstitution experiments, however, the results showed
no significant change in the protein’s secondary structure
(Supplementary Fig. S1C, Supplementary Results).
Additional discussion of the structural and functional
biochemistry of other variants is provided in the Supple-
mentary Material. As patient fibroblasts were available
only for the p.(Val241Leu) variant, the impact of the vari-
ant on the enzymatic activities of PDH and KGDHC was
measured only for this variant. Enzymatic activity assays
in fibroblasts derived from F1-II:1, homozygous for
p-(Val241Leu), showed decreased activity for PDH

(0.50 nmol/mg protein/min; normal range 0.6-0.9 nmol/
mg protein/min), while the mean activity in the heterozy-
gous mother was normal (0.82 nmol/mg protein/min;
normal range 0.6-0.9 nmol/mg protein/min). The
KGDHC activity was not impaired (Supplementary
Fig. S2, Supplementary Results).

Discussion

The bioenergetic function of the mitochondrion is depen-
dent on Fe-S cluster-containing proteins. Three distinctly
organized biosynthetic pathways are involved in the mat-
uration of Fe-S clusters in mammals with the last step
involving NUBPL, NFUI, BOLA3, IBA57, ISCA2, and
ISCAI. Bi-allelic pathogenic variants in five of them,
starting from NFUI in the above-mentioned list, are cur-
rently associated with MMDS types 1 to 5 respectively,
and typically present with severe and fatal early onset
encephalopathy with multiple biochemical abnormalities.®
An atypical presentation of MMDS has been reported in
several individuals, mainly encompassing a slightly milder
disease course with a longer survival'’ "'’ for NFUI and
ISCA2, or a complex HSP phenotype for NFUI and
IBA57.%?° Qur report expands the number of individuals
with bi-allelic NFUI variants presenting with complex
HSP and also describes previously unreported pure HSP
phenotype, thereby suggesting that MMDS1 and HSP
could be the two ends of the NFUI-associated phenotypic
continuum.

Pyramidal symptoms in the form of spastic tetraparesis
have frequently been reported in individuals with typical
MMDSI presentation, highlighting the role of mitochon-
dria and axonal transport in the corticospinal tract func-
tion.® Currently, due to a large overlap between HSP and
other inherited neurological disorders, at least 28/81
genetic forms of HSP are assigned alternative phenotypes
on the Online Mendelian Inheritance in Man (OMIM)
database, resulting in a diagnostic challenge.”’ Therefore,
delineating the full phenotypic spectrum of disease-
associated genes and accurate clinical classification are
important for diagnostic rates.

Another remarkable aspect of the present cohort is the
presence of neurological decompensation after a febrile
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Figure 2. Overview of the genetic and biochemical characteristics of NFUT variants. (A) Pedigrees and segregation results of the ten families
included in this study. (B) NFUT gene structure with the localization of all previously known mutations (black, above) and mutations reported in
this cohort (colored, below). The corresponding amino acid changes is shown in (C) with known protein domains in NFU1 (NifU N-terminal
domain, residue 59 to 155, and NifU C-terminal domain, residue 162 to 247) depicted in the illustration. The variant, p.(Val241Leu), was the only
mutation discovered in this study to have been located outside of the NFU1 protein domains. Regions are not drawn to scales and both illustra-
tions were created from the program.’® (D) Conservation of the nine mutations reported in the present cohort across 10 species. (E) Western blot
analysis of structural subunits from each OXPHOS complex (Cl [NDUFB8], Cll [SDHB], Clll [UQCRC2], CIV [COXII], and CV [ATP5A]) in fibroblasts
from F1-II:1 (affected individual), F1-1:1 (mother) and a pediatric control. GAPDH and VDAC1 were used as cell and mitochondrial loading con-
trols, respectively. (F) Protein model of the NifU N-terminal domain and NifU C-terminal domain of the NFU1 structure. Positions of amino acids

affected by NFUT missense variants are indicated in orange.

illness. Interestingly, three distinct responses to episodes
of febrile illness were observed in our cohort: (1) fatal
outcome after the first or consecutive episode in six indi-
viduals; (2) onset of spasticity with variably reversible
motor and cognitive regression in three individuals; and
(3) intermittent and fully reversible gait deterioration in
four other individuals. The episodes of neurological dete-
rioration, most likely caused by acute illness-induced
metabolic decompensation, is common in mitochondrial
diseases*> but have rarely been reported in the mitochon-
drial causes of HSP.>>**

A remarkable inter-and intrafamilial phenotypic vari-
ability was observed in the present cohort and the same
amino acid substitutions of the NFUI protein have been
observed in both MMDSI1 and HSP cases (Supplementary
discussion for details). The relatively milder course and
phenotypic variability of the most commonly reported
MMDS]1-associated NFU1 variant, c.565G>A,
p-(Gly189Arg), was further supported in reports by Uzun-
han et al. (2020) and Tonduti et al. (2015),”® who
described individuals with the same NFUI variant and
presenting with HSP, with one individual reaching the
age of 30 years. Defects in NFUI seem to present with a
range of phenotype severities suggesting the clinical spec-
trum of NFUI-associated disease (Fig. 1C). The constella-
tion of shared neuroimaging findings noted in individuals
for whom images were available is similar to the findings
reported by Tonduti et al. (2015),” including white matter
abnormalities of the periventricular regions and thinning
of the corpus callosum. Similarly, neuroimaging features
present in our cohort overlap with some of those
reported by Uzunhan et al. (2020).® These include white
matter hyperintensity, which was present in most of the
individuals in the present series, cystic degeneration and
cavitation in the frontal regions, which was noted in indi-
vidual F10-11:2, and areas of restricted diffusion involving
the bilateral subcortical and periventricular white matter,
noted in three out of four individuals with available
diffusion-weighted imaging.

Apart from the possible epigenetic factors,”® we suspect
that the variants observed in the present study might be

causing milder defects for the NFUI1 structure and func-
tion compared to the MMDS1-linked variants. The differ-
ent variants might affect, for example, partner protein
binding in a distinct way leading to high phenotypic vari-
ability connected to NFUI variants (Supplementary Dis-
cussion for further details). The residual PDH activity
and the normal KGDHC activity in F1-1I:1 might be con-
sistent with a less severe form of the disease with pro-
longed survival. The decreased OXPHOS protein levels
and the only slightly affected PDH and normal KGDHC
activity results in FI-II:1 fibroblasts might be explained
by the changed affinity of the mutated NFU1 for the dif-
ferent partner proteins (Supplementary Discussion for
further details). The disparity between plasma and CSF
metabolites levels has been shown in an individual with
MMDS, suggesting the manifestation of biallelic NFUI
variants with tissue-specific phenotypes.”’In summary, we
report 16 affected individuals with an HSP presentation
of bi-allelic NFUI variants and 3 affected individuals with
GDD, hypotonia, longer survival, and fatal response to
metabolic decompensation, which contrasts with the typi-
cal MMDSI1 presentation of NFUI deficiency and high-
lights the NFUI-associated disease continuum.
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