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Abstract

Bi-allelic variants in Iron–Sulfur Cluster Scaffold (NFU1) have previously been

associated with multiple mitochondrial dysfunctions syndrome 1 (MMDS1)

characterized by early-onset rapidly fatal leukoencephalopathy. We report 19

affected individuals from 10 independent families with ultra-rare bi-allelic
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NFU1 missense variants associated with a spectrum of early-onset pure to com-

plex hereditary spastic paraplegia (HSP) phenotype with a longer survival (16/

19) on one end and neurodevelopmental delay with severe hypotonia (3/19) on

the other. Reversible or irreversible neurological decompensation after a febrile

illness was common in the cohort, and there were invariable white matter

abnormalities on neuroimaging. The study suggests that MMDS1 and HSP

could be the two ends of the NFU1-related phenotypic continuum.

Introduction

Iron–sulfur [Fe-S] clusters are important cofactors that

play a role in various cellular functions, including elec-

tron transfer along the respiratory chain, citric acid cycle,

heme biosynthesis, DNA replication and repair, as well as

iron homeostasis.1–3 Iron–Sulfur Cluster Scaffold (NFU1)

(MIM: 608100) is an [Fe-S] cluster biosynthesis factor

involved in the last steps of maturation and transfer of

[4Fe-4S] clusters into target proteins, including lipoic acid

synthetase, mitochondrial aconitase and some subunits of

respiratory chain complexes I and II.4,5 Bi-allelic variants

in NFU1 have previously been associated with multiple

mitochondrial dysfunctions syndrome 1 (MMDS1)6 char-

acterized by early-onset leukoencephalopathy leading to a

fatal outcome, typically before the age of 15 months.6

Recently, bi-allelic variants in NFU1 have been reported

in two individuals with a milder phenotype, presenting

with slowly progressive spastic paraplegia with a relaps-

ing–remitting course, long survival, and intact cognition

or mild intellectual disability (ID).7,8 Here, we report 19

affected individuals from 10 independent families with

ultra-rare bi-allelic NFU1 missense variants associated

with a phenotype ranging from early-onset pure to com-

plex hereditary spastic paraplegia (HSP) characterized by

a longer survival (16/19) and neurodevelopmental delay

(NDD) with severe hypotonia (3/19).

Methods

Participants and clinical investigations

Exome sequencing (ES) and genome sequencing (GS), data

sharing between international genetic centers, and the Gen-

eMatcher platform9 were employed to identify the 10 fami-

lies reported here. Clinical data were collected via a

uniform proforma. Parents/legal guardians of all affected

individuals consented to the publication of genetic and

clinical information. The study was approved by The

Research Ethics Committee Institute of Neurology Univer-

sity College London (IoN UCL) (07/Q0512/26) and the

local Ethics Committees of each participating center.

Exome sequencing and genome sequencing

Research/diagnostic solo or trio-ES/GS, variant filtering,

and variant confirmation by Sanger sequencing and segre-

gation analysis were performed on genomic DNA

extracted from blood in different genetic laboratories fol-

lowing the methods previously described (Table 1). Fam-

ily 10 had a mitochondrial panel test performed for the

proband and targeted genotyping for familial variants for

the sibling (further details in Table 1 and Supplementary

Table S1).

SDS-PAGE and western blot analysis

Human fibroblasts from an affected individual (F1-II:1)

were obtained and lysed and samples were subjected to

SDS-PAGE and western blotting as described previously15

and a list of primary antibodies is provided (Supplemen-

tary Methods).

Protein modeling and characterization, Fe-S
cluster transfer monitoring, and enzymatic
assays

Protein characterization by variable temperature circular

dichroism (CD) and analytical ultracentrifugation, Fe-S

cluster transfer monitored by circular dichroism, pyruvate

dehydrogenase and a-ketoglutarate dehydrogenase activity

assay studies were performed (Supplementary Methods).

Results

Clinical phenotype

The cohort comprises 19 affected individuals from 10 inde-

pendent families. There were 8 females and 11 males, 13 of

whom are currently alive with a mean age of 9.8 � 5.7 years

(range 2.1–25) at the study recruitment (Fig. 1A). Six affected

individuals succumbed to their rapidly progressive disease

course triggered by a febrile illness between the ages of 6–
36 months. Detailed clinical information is provided in Sup-

plementary Table S1 and Supplemental Case Reports.
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Prenatal features and neonatal periods were unremark-

able in all subjects. No delay in early developmental mile-

stones including head control, crawling, sitting, and

speech was reported in 14/19 individuals. Cognitive func-

tion was impaired in 5/18 individuals. Gait acquisition

was delayed due to either the insidious onset of limb

spasticity in 13/19 individuals or spasticity precipitated by

a deterioration in the context of a febrile illness in 4/19

individuals (Fig. 1B). The lower limb spasticity was

detected at a mean age of 12 � 6 months in the cohort.

Spasticity was progressive leading to contractures in 13/19

persons and necessitating Achilles’ tendon repair surgery

in 4/19 affected individuals.

Remarkably, febrile illness leading to metabolic decom-

pensation played a significant role in the disease course of

13/19 individuals. Thus, in F1-II:1 it led to febrile seizures

followed by the onset of lower limb spasticity and reversi-

ble cognitive and motor regression, and truncal hypoto-

nia. Similarly, F5-I:1, F6-II:3, and F8-II:5 developed

reversible truncal hypotonia and/or progressive lower

limb spasticity following several episodes of febrile illness.

Intermittent and reversible gait deterioration associated

with episodes of febrile illness was reported in F2-II:1and

F9-II:1, along the course of their disease, which was

described as waxing and waning. While the episodes of

febrile illness had not been fatal for these persons, the

other six affected individuals had regression and devel-

oped severe muscular hypotonia leading to early mortality

after a febrile illness.

The mean disease duration at the most recent examina-

tion for the living individuals was 8.8 � 5.7 years (range

1.5–24). Neuromuscular examination revealed lower limb

spasticity in all persons with increased deep tendon

reflexes, upgoing plantar reflexes, and mild symmetrical

muscle wasting. Muscle tone from the upper limbs was

uniformly intact. While two individuals were wheelchair-

bound, eight could ambulate using crouches or rollator

walker, and three could walk independently with spastic

gait. Ataxic gait was reported in 2/12 individuals, which

was intermittent in one person (F2-II:1). The oldest indi-

vidual in the cohort was aged 25 years and had a normal

cognitive function and could perform most activities of

daily living despite his slowly progressive lower limb spas-

ticity. Seven persons had results available of metabolic

screening, which were unremarkable in all.

Brain MRI DICOM files were available for six individu-

als (F1-II:1, F1-II:2, F7-II:1, F8-II:5, F10-II:1, and F10-

II:2), low-resolution photos of brain MRI studies were

available for four individuals (F4-II:5, F4-II:6, F5-II:2, and

F6-II:2), and photos of a head CT in one person (F5-

II:1). All available neuroimaging studies were indepen-

dently reviewed by a board-certified neuroradiologist.

Four additional individuals had neuroimaging studies that

were reported as normal but not independently reviewed

(F2-II:1, F3-II:1, F3-II:2, and F9-II:1). Shared neuroimag-

ing findings included T2 hyperintense signal involving the

bilateral posterior centrum semiovale, corona radiata, and

periatrial regions (9/9, 100%); T2 hyperintense signal

involving the bilateral thalami (9/9, 100%), basal ganglia

(7/9, 78%), and pons and cerebellum (7/8, 88%),

hypoplastic corpus callosum (9/10, 90%), bilateral cere-

bral white matter volume loss (8/11, 73%), mega cisterna

magna (9/11, 82%), mild prominence of the lateral ven-

tricles and frontoparietal sulci (7/11, 64%), and scattered

areas of restricted diffusion which may represent active

demyelination, metabolic encephalopathy, or acute/suba-

cute ischemia (3/4, 75%). A single individual (1/11, 9%)

had areas of cystic degeneration/leukomalacia in the white

matter of the bilateral frontal lobes and another (1/11,

9%) had vermian hypoplasia. Figure 1D shows shared

neuroimaging findings and the Supplemental information

has case-based descriptions of the brain MRI/CT interpre-

tations.

Genetic analysis reveals ultra-rare bi-allelic
variants in NFU1

A total of 9 different NFU1 missense variants were identi-

fied in this study (Figs. 2A to C). Exome sequencing car-

ried out in the proband F1-II:1 revealed a homozygous

likely pathogenic NFU1 variant: NM_001002755.4:

c.721G>C, p.(Val241Leu). In the third affected individual

F2-II:1, trio-ES identified compound heterozygous NFU1

variants: a variant of uncertain significance (VUS),

c.298G>C, p.(Ala100Pro) inherited from the father and a

VUS, c.301A>G, p.(Arg101Gly) inherited from the

mother.

Exome sequencing of four unrelated Egyptian families,

F3 to F6, led to the identification of the same pathogenic

homozygous NFU1 variant: c.362T>C, p.(Val121Ala). A

homozygous VUS, c.295C>G, p.(Leu99Val) was also iden-

tified by ES of the proband of family 7. In family 8, a

homozygous VUS, c.263T>C, p.(Phe88Ser) was identified

by ES of the proband. Trio-ES in family 9 found com-

pound heterozygous NFU1 variants: a maternally inher-

ited likely pathogenic variant, c.629G>T, p.(Cys210Phe)

and a paternally inherited VUS, c.548C>G, p.(Pro183Arg).
In family 10, the combination of a mitochondrial gene

panel and Sanger sequencing revealed potential com-

pound heterozygous NFU1 variants: a VUS, c.629G>T,
p.(Cys210Phe) and a VUS, c.398T>C, p.(Leu133Pro).

Apart from, p.(Leu99Val), all the homozygous variants

are residing within sizeable regions of homozygosity. All

the variants are either absent or observed in extremely

low allele frequencies in numerous population variant fre-

quency databases (~2 mln alleles). They affect highly
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conserved residues across different species (Fig. 2D) and

segregated with the disease phenotype in all the families

(Fig. 2A). No other relevant variants associated with neu-

rological or neurodevelopmental disorders were identified

in the currently known monogenic disease-causing genes

in the ES data.

The characteristics of the variants are further summa-

rized in Table 1 and Supplementary Table S1.

Steady-state levels of OXPHOS complexes I,
II, III, and IV are decreased in homozygous
p.(Val241Leu) fibroblasts

Western blot analysis on fibroblast samples showed that

subunits of each complex of the electron transport chain

(CI-CIV) were decreased in the affected individual F1-II:1

compared to the heterozygous mother (F1-I:1) and a

pediatric control, whereas levels of complex V subunit

ATP5A remained relatively unchanged (Fig. 2E).

Functional study of the p.(Val241Leu)
variant

Protein modeling revealed all nine variants were located

in the NFU1 protein domains. Six variants, p.(Phe88Ser),

p.(Leu99Val), p.(Ala100Pro), p.(Arg101Gly),

p.(Val121Ala), and p.(Leu133Pro), were found in the

NifU N-terminal domain while the remaining three,

p.(Pro183Arg), p.(Cys210Phe), and p.(Val241Leu), lie in

the NifU C-terminal [Fe-S] cluster binding domain

(Figs. 2C,F, Supplementary Results). The p.(Val241Leu)

variant was further investigated via in vitro [Fe-S] cluster

reconstitution experiments, however, the results showed

no significant change in the protein’s secondary structure

(Supplementary Fig. S1C, Supplementary Results).

Additional discussion of the structural and functional

biochemistry of other variants is provided in the Supple-

mentary Material. As patient fibroblasts were available

only for the p.(Val241Leu) variant, the impact of the vari-

ant on the enzymatic activities of PDH and KGDHC was

measured only for this variant. Enzymatic activity assays

in fibroblasts derived from F1-II:1, homozygous for

p.(Val241Leu), showed decreased activity for PDH

(0.50 nmol/mg protein/min; normal range 0.6–0.9 nmol/

mg protein/min), while the mean activity in the heterozy-

gous mother was normal (0.82 nmol/mg protein/min;

normal range 0.6–0.9 nmol/mg protein/min). The

KGDHC activity was not impaired (Supplementary

Fig. S2, Supplementary Results).

Discussion

The bioenergetic function of the mitochondrion is depen-

dent on Fe-S cluster-containing proteins. Three distinctly

organized biosynthetic pathways are involved in the mat-

uration of Fe-S clusters in mammals with the last step

involving NUBPL, NFU1, BOLA3, IBA57, ISCA2, and

ISCA1. Bi-allelic pathogenic variants in five of them,

starting from NFU1 in the above-mentioned list, are cur-

rently associated with MMDS types 1 to 5 respectively,

and typically present with severe and fatal early onset

encephalopathy with multiple biochemical abnormalities.6

An atypical presentation of MMDS has been reported in

several individuals, mainly encompassing a slightly milder

disease course with a longer survival17–19 for NFU1 and

ISCA2, or a complex HSP phenotype for NFU1 and

IBA57.7,8,20 Our report expands the number of individuals

with bi-allelic NFU1 variants presenting with complex

HSP and also describes previously unreported pure HSP

phenotype, thereby suggesting that MMDS1 and HSP

could be the two ends of the NFU1-associated phenotypic

continuum.

Pyramidal symptoms in the form of spastic tetraparesis

have frequently been reported in individuals with typical

MMDS1 presentation, highlighting the role of mitochon-

dria and axonal transport in the corticospinal tract func-

tion.6 Currently, due to a large overlap between HSP and

other inherited neurological disorders, at least 28/81

genetic forms of HSP are assigned alternative phenotypes

on the Online Mendelian Inheritance in Man (OMIM)

database, resulting in a diagnostic challenge.21 Therefore,

delineating the full phenotypic spectrum of disease-

associated genes and accurate clinical classification are

important for diagnostic rates.

Another remarkable aspect of the present cohort is the

presence of neurological decompensation after a febrile

Figure 1. Clinical features of the individuals reported in this study and NFU1-associated phenotypic continuum. (A) Ages of the affected individu-

als at the study recruitment. (B) Clinical features of the present cohort. (C) NFU1-associated phenotypic continuum. HSP, hereditary spastic para-

plegia. (D) Representative brain MRI features of the present cohort. Individual F1-II:2 (A, D, G, L), individual F4-II:5 (B), individual F10-II:1 (C, F, I,

M, N), individual F5-II:2 (E, K), individual F7-II:1 (H), individual F4-II:6 (J), and individual F10-II:2 (O, P, Q, R). T2/FLAIR hyperintense signal involving

the bilateral posterior centrum semiovale (Q), corona radiata, and periatrial regions (A-C). T2 hyperintense signal involving the bilateral thalami

and basal ganglia (D-F), pons, and cerebellum (G-I). Hypoplastic corpus callosum and mega cisterna magna (J-L). Bilateral cerebral white matter

volume loss (A-F, Q, R). Areas of restricted diffusion involving the bilateral subcortical white matter and cerebral peduncles (M-P). Areas of cystic

degeneration/leukomalacia in the white matter of the bilateral frontal lobes (Q, R). Vermian hypoplasia (K).
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illness. Interestingly, three distinct responses to episodes

of febrile illness were observed in our cohort: (1) fatal

outcome after the first or consecutive episode in six indi-

viduals; (2) onset of spasticity with variably reversible

motor and cognitive regression in three individuals; and

(3) intermittent and fully reversible gait deterioration in

four other individuals. The episodes of neurological dete-

rioration, most likely caused by acute illness-induced

metabolic decompensation, is common in mitochondrial

diseases22 but have rarely been reported in the mitochon-

drial causes of HSP.23,24

A remarkable inter-and intrafamilial phenotypic vari-

ability was observed in the present cohort and the same

amino acid substitutions of the NFU1 protein have been

observed in both MMDS1 and HSP cases (Supplementary

discussion for details). The relatively milder course and

phenotypic variability of the most commonly reported

MMDS1-associated NFU1 variant, c.565G>A,
p.(Gly189Arg), was further supported in reports by Uzun-

han et al. (2020) and Tonduti et al. (2015),7,8 who

described individuals with the same NFU1 variant and

presenting with HSP, with one individual reaching the

age of 30 years. Defects in NFU1 seem to present with a

range of phenotype severities suggesting the clinical spec-

trum of NFU1-associated disease (Fig. 1C). The constella-

tion of shared neuroimaging findings noted in individuals

for whom images were available is similar to the findings

reported by Tonduti et al. (2015),7 including white matter

abnormalities of the periventricular regions and thinning

of the corpus callosum. Similarly, neuroimaging features

present in our cohort overlap with some of those

reported by Uzunhan et al. (2020).8 These include white

matter hyperintensity, which was present in most of the

individuals in the present series, cystic degeneration and

cavitation in the frontal regions, which was noted in indi-

vidual F10-II:2, and areas of restricted diffusion involving

the bilateral subcortical and periventricular white matter,

noted in three out of four individuals with available

diffusion-weighted imaging.

Apart from the possible epigenetic factors,7,8 we suspect

that the variants observed in the present study might be

causing milder defects for the NFU1 structure and func-

tion compared to the MMDS1-linked variants. The differ-

ent variants might affect, for example, partner protein

binding in a distinct way leading to high phenotypic vari-

ability connected to NFU1 variants (Supplementary Dis-

cussion for further details). The residual PDH activity

and the normal KGDHC activity in F1-II:1 might be con-

sistent with a less severe form of the disease with pro-

longed survival. The decreased OXPHOS protein levels

and the only slightly affected PDH and normal KGDHC

activity results in F1-II:1 fibroblasts might be explained

by the changed affinity of the mutated NFU1 for the dif-

ferent partner proteins (Supplementary Discussion for

further details). The disparity between plasma and CSF

metabolites levels has been shown in an individual with

MMDS, suggesting the manifestation of biallelic NFU1

variants with tissue-specific phenotypes.25In summary, we

report 16 affected individuals with an HSP presentation

of bi-allelic NFU1 variants and 3 affected individuals with

GDD, hypotonia, longer survival, and fatal response to

metabolic decompensation, which contrasts with the typi-

cal MMDS1 presentation of NFU1 deficiency and high-

lights the NFU1-associated disease continuum.
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