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Abstract

Recent genome-wide association studies (GWAS) and whole-exome sequencing of 

neuropsychiatric disorders, especially schizophrenia, have identified a plethora of common and 

rare disease risk variants/genes. Translating the mounting human genetic discoveries into novel 

disease biology and more tailored clinical treatments is tied to our ability to causally connect 

genetic risk variants to molecular and cellular phenotypes. When combined with the Clustered 

Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) nuclease-

mediated genome editing system, human induced pluripotent stem cell (hiPSC)-derived neural 

cultures (both 2D and 3D organoids) provide a promising tractable cellular model for bridging 

the gap between genetic findings and disease biology. In this review, we first conceptualize the 

advances in understanding the disease polygenicity and convergence from the past decade of iPSC 

modeling of different types of genetic risk factors of neuropsychiatric disorders. We then discuss 

the major cell types and cellular phenotypes that are most relevant to neuropsychiatric disorders in 

iPSC modeling. Finally, we critically review the limitations of iPSC modeling of neuropsychiatric 

disorders and outline the need for implementing and developing novel methods to scale up the 

number of iPSC lines and disease risk variants in a systematic manner. Sufficiently scaled-up 

iPSC modeling and a better functional interpretation of genetic risk variants, in combination with 

cutting-edge CRISPR/Cas9 gene editing and single-cell multi-omics methods, will enable the 

field to identify the specific and convergent molecular and cellular phenotypes in precision for 

neuropsychiatric disorders.
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1. Introduction

The last decade of psychiatric research has witnessed the success of genome-wide 

association studies (GWAS). Through unbiased genome-wide interrogation of millions of 

genetic markers, i.e., single nucleotide polymorphisms (SNPs), in large population case/

control samples, GWAS of schizophrenia (SZ) and other neuropsychiatric disorders have 

identified hundreds of risk loci with common genetic risk variants (Psychiatric Genomics 

Consortium-Schizophrenia, 2011; Psychiatric Genomics Consortium-Schizophrenia, 2014; 

Mullins et al., 2021; PGC3 et al., 2020; Purcell et al., 2009; Ripke and Concortium, 2013; 

Shi et al., 2009; Stefansson et al., 2009). Of these, SZ GWAS has the most successes: 

the recent Psychiatric Genomics Consortium (PGC) (PGC2) reported 145 genome-wide 

significant SZ risk loci (Psychiatric Genomics Consortium-Schizophrenia, 2014; Pardinas et 

al., 2018), which were further expanded by the upcoming PGC wave 3 (~270 SZ risk loci) 

(The Schizophrenia Working Group of the Psychiatric Genomics Consortium et al., 2020). 

The common disease risk variants implicated by these GWAS often have small population 

effect sizes (odds ratios, OR < 1.2) (Bassett et al., 2010; Levinson et al., 2011; Marshall 

et al., 2017; Szatkiewicz et al., 2014), hindering the mechanistic understanding of disease 

pathophysiology.

These genome-wide studies in large samples also revealed another side of the risk 

spectrum for neuropsychiatric disorders: rare copy number variants (CNVs, i.e., genomic 

segments that are duplicated or deleted) of higher penetrance. SZ has the largest number 

of reproducibly associated CNVs, which include deletions at 1q21.1, 2p16.3 (NRXN1), 

3q29, 15q13.3, distal 16p11.2, 22q11.2, and duplications at 7q11.23 and proximal 16p11.2 

(Bassett et al., 2010; Levinson et al., 2011; Marshall et al., 2017; Szatkiewicz et al., 2014). 

These rare and large (usually >100 kb) CNVs often show much larger effect sizes (OR of 

2–70) than common SNPs (OR < 1.2) (Bassett et al., 2010; Levinson et al., 2011; Marshall 

et al., 2017; Szatkiewicz et al., 2014). Besides these rare CNVs, recent large-scale whole-

exome sequencing (WES) studies have also unraveled rare protein-coding variants that are 

associated with SZ with relatively large effect sizes (Singh et al., 2017). By analyzing 

exome variants in 24,000 SZ patients and 97,000 controls, the SZ Exome Sequencing Meta-

Analysis (SCHEMA) Consortium reported ~10 genes with ultra-rare loss-of-function (LoF) 

mutations (or protein-truncating variants) that collectively reached genome-wide significant 

association with SZ (Singh et al., 2020). Together with common disease risk variants 

identified from GWAS, these genetic findings have provided unprecedented opportunities 

for the neuropsychiatric field to better understand disease biology.

Despite the tremendous progress made in identifying neuropsychiatric risk variants, effective 

treatments of these disorders remain scarce and largely rely on old drugs. For instance, 

most antipsychotic drugs for treating positive symptoms of SZ target dopamine D2 receptors 
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(DRD2), a discovery that was made almost half a century ago (Creese et al., 1976; Howes 

et al., 2012; Seeman and Lee, 1975; Snyder, 1976). Furthermore, their use has been 

impeded by side effects such as extrapyramidal symptoms and tardive dyskinesia (Nasrallah, 

2008). Although atypical antipsychotic drugs such as clozapine and risperidone can 

improve negative symptoms, and cognitive function with fewer extrapyramidal symptoms 

by targeting not only DRD2 but also non-dopamine targets such as serotonin and glutamine, 

such non-specificity of targets may contribute to a number of side effects of concern, 

e.g., weight gain, glucose dysregulation and dyslipidemia. Thus, translating these genetic 

findings of neuropsychiatry into novel disease biology and potentially more tailored clinical 

interventions is highly needed, which requires not only our conceptual understanding of the 

complexities of polygenic neuropsychiatric disorders but also a comprehensive approach that 

integrates knowledge from different experimental models.

Human postmortem brain tissues and animal models (Carlson et al., 2011; Dong et al., 2013; 

Jeong et al., 2006) have provided invaluable insights into plausible disease pathophysiology, 

but each model has its pros and cons. The postmortem brain is not living tissue and mostly 

does not capture changes at early neuronal developmental stages (Brennand et al., 2015). 

Furthermore, postmortem brain study is well-known for confounding factors related to 

tissue variability and some uncontrollable environmental factors (Lipska et al., 2006), and 

the postmortem brain is not amenable to genetic modification. Although rodent models 

can be genetically modified for studying psychiatric disorders, they often do not faithfully 

recapitulate human pathophysiology and behaviors. Moreover, because regulatory variants 

are often species-specific (Shen et al., 2012), animal models may not elicit the expected 

functional impact of human genetic variations (Johnson et al., 2009). Peripheral blood 

cells and B-cell transformed lymphoblastoid cell lines (LCLs) from psychiatric patients and 

controls of relatively large numbers have also been used as ex vivo models to reveal disease 

genetic effects on gene expressions (Arloth et al., 2015; Duan et al., 2018; Kos et al., 2018; 

Mostafavi et al., 2014). For instance, with LCLs of over 1000 SZ cases and controls, we 

found that the disease-associated differentially expressed genes upon cellular stimulation 

by dopamine (DA) were enriched for genes related to immune processes and apoptosis as 

well as mitochondrial oxidative phosphorylation, and interestingly, were overrepresented 

by those near genome-wide significant SZ loci and within SZ-associated CNVs (Duan et 

al., 2018; Kos et al., 2018). Although blood cells and LCLs may be useful in providing 

mechanistic insight for disease risk factors related to the long-standing immune hypothesis 

of the neuropsychiatric disorder (Heath and Krupp, 1967; Pouget, 2018; van Mierlo et al., 

2020), such a cellular model has its obvious limitations, i.e., further-removed from the brain 

that is presumably the most relevant tissue for neuropsychiatric disorders.

Compared with postmortem brains or animal models, stem cell-based cellular models 

provide a promising alternative for studying common and rare genetic risk factors of 

neuropsychiatric disorders (Panchision, 2016; Wen et al., 2016). Benefiting from the 

revolutionary induced pluripotent stem cell (iPSC) technology discovered by Dr. Yamanaka 

(Takahashi et al., 2007; Takahashi and Yamanaka, 2006), somatic cells such as fibroblasts 

or blood cells from patients or healthy controls can be reprogramed into pluripotent stem 

cells (i.e., human iPSCs) simply by exogenously expressing some transcription factors 

(i.e., Yamanaka factors: Oct3/4, Sox2, Klf4, c-Myc) (Takahashi et al., 2007; Takahashi and 
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Yamanaka, 2006). iPSCs can then be re-differentiated into different brain cell types that 

are relevant to neuropsychiatric disorders. iPSC model enables studying disease-relevant 

molecular and cellular phenotypic changes in a temporal and cell type-specific manner. 

More importantly, iPSC models are amenable to genetic modification or epigenomic 

perturbation, which is important for studying the functional impacts of disease risk variants. 

When combined with the Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR)/CRISPR-associated (Cas) nuclease-mediated genome editing system (Cong et al., 

2013; Fu et al., 2013; Mali et al., 2013; Sander and Joung, 2014; Shalem et al., 2014; Wang 

et al., 2013), iPSC-derived neurons represent a powerful cellular model for understanding 

disease biology underlying neuropsychiatric genetic findings. In light of previous reviews 

about using iPSC models for studying psychiatric disorders over the years (Das et al., 

2020; De Los Angeles et al., 2021; Dolmetsch and Geschwind, 2011; Duan, 2015; Duan 

et al., 2019; Durak and Tsai, 2014; Fernando et al., 2020; Hoffmann et al., 2019; Jacobs, 

2015; Michael Deans and Brennand, 2021; Miller and Kelsoe, 2017; Quadrato et al., 2016; 

Rajarajan et al., 2020; Soliman et al., 2017; Temme et al., 2016; Wen et al., 2016; Wright et 

al., 2014; Young-Pearse and Morrow, 2016), here we will focus on conceptualizing the key 

advances in the field (Fig. 1, Table 1 and Table S1), the validity of the model, interpretation 

of the results, limitations and new research opportunities.

2. What to model: rare vs. common disease risk variants

Translating the mounting human genetic discoveries into novel disease biology and more 

tailored clinical treatments is tied to our ability to causally connect genetic risk variants to 

molecular and cellular phenotypes. iPSC model has been used for studying the functional 

impacts of both rare and common disease risk variants. Depending on the effect size of 

a modeled variant, either patient-specific iPSC lines or CRISPR-engineered isogenic iPSC 

lines have been employed. However, because of the polygenic nature of neuropsychiatric 

disorders, regardless of the variant penetrance or the experimental design, the resulting 

molecular and cellular phenotypes may be confounded by the individual donor’s genetic 

background and need to be interpreted cautiously.

2.1. Rare CNVs

There are overwhelmingly more studies of iPSC modeling of rare disease-associated CNVs, 

of which autism and SZ are the two most commonly modeled disorders. The large effect 

sizes of these CNVs make them “low-hanging fruits” among other genetic findings, an 

ideal model for understanding disease biology and interpreting the disease relevance of 

cellular phenotypes. Of the CNVs with established reproducible associations with SZ and/or 

autism at 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.23, 15q13.3, 16p11.2, and 22q11.2 (Bassett 

et al., 2010; Levinson et al., 2011; Marshall et al., 2017; Szatkiewicz et al., 2014), all 

except for the SZ-associated 3q29 deletion (Sefik et al., 2020) have at least one iPSC 

modeling study that reported a cellular phenotype (Adamo et al., 2015; Avazzadeh et al., 

2021; Chailangkarn et al., 2016; Chapman et al., 2021; Crockett et al., 2021; Flaherty et 

al., 2019; Gillentine et al., 2017; Khan et al., 2020; Khattak et al., 2015; Lalli et al., 2016; 

Li et al., 2021a; Li et al., 2021b; Roth et al., 2020; Sundberg et al., 2021; Toyoshima 

et al., 2016; Zanella et al., 2019; Zhang et al., 2021b) (Table 1). Because of their large 
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effect sizes, these studies exclusively use patient-specific iPSC lines, i.e., directly derived 

from patients who carry the CNV, except for one that used CRISPR-Cas9 engineered 

16p11.2 duplication (16pdup) and 16p11.2 deletion (16pdel) (Sundberg et al., 2021). The 

patient-specific CNV carriers are then compared with matched population control lines 

to determine any meaningful molecular (i.e., often transcriptomic profile) and/or cellular 

phenotypic characteristics associated with a CNV. Because these CNVs tend to be extremely 

rare in the population, individual studies often have a very small sample size, ranging from 

1 to 15 patient lines. Not surprisingly, the largest study (n = 15 cases) was with 22q11.2 

deletion (Khan et al., 2020), the most prevalent CNV with the strongest association with SZ.

Likely due to the small and variable number of CNV carriers in each study, despite 

the high penetrance of these studied CNVs, iPSC modeling studies frequently yield 

discordant phenotypes. Even for the same CNV, different studies often test different 

hypotheses and report discordant molecular and cellular phenotypes. For instance, the 

largest study of 22q11.2 deletion (Khan et al., 2020) analyzed transcriptomic profiles 

at different developmental stages of patient-specific iPSC-derived cortical spheroids and 

identified a deficit gene pathway related to calcium channel activity. Interestingly, although 

neurons dissociated from the cortical spheroids of 22q11.2 deletion delayed spontaneous 

hyperactivity, their calcium transmission activity was found significantly impaired upon 

neuronal depolarization, which can later be reversed by antipsychotic drugs targeting DRD2 
(Khan et al., 2020). However, two other studies of patient-specific 22q11.2 deletions 

reported dysfunction of mitochondria biogenesis and blood-brain barrier (BBB), respectively 

(Crockett et al., 2021; Li et al., 2021b). For another commonly modeled CNV region, 

SZ-associated 16pdup and autism-associated 16pdel, one study using patient-specific CNV 

carriers revealed increased soma size and dendrite length in 16pdel neurons and reduced 

neuronal size and dendrite length in 16pdup neurons, and interestingly, both 16pdel and 

16pdup neurons (excitatory) displayed reduced synaptic density (Deshpande et al., 2017). 

Although seemingly consistent neuronal hyperactivity was reported for CRISPR-engineered 

16pdel, it was only observed in iPSC-derived dopaminergic neurons and no obvious 

phenotype was observed for 16pdup (Sundberg et al., 2021). Moreover, of the two other 

studies of patient-specific 16pdel, one reported that the overexpression of CD47 (a “don’t 

eat me” signal) in both neural progenitor cells (NPCs) and oligodendrocyte progenitor cells 

(OPCs) of 16pdel carriers may contribute to the reduced phagocytosis and brain overgrowth 

in autism-associated macrocephaly (Li et al., 2021a), while the other study found substantial 

transcriptional alterations associated with early neural development without any reported 

cellular phenotypic changes in 16del carriers (Roth et al., 2020).

Alternatively, such phenotypic discrepancies may be attributed to the fact that these large 

CNVs span multiple genes. However, even for 2pl6.3 deletion that only involves a single 

gene, NRXN1, there are still inconsistencies between different studies. A multi-center study 

of NRXIV1-deletion lines reported a large decrease of spontaneous synaptic events, evoked 

synaptic responses, and synaptic paired-pulse depression in excitatory neurons, regardless 

of genetic backgrounds (Pak et al., 2021). While the reduced neuronal activity in NRXIV1-

deletion lines was also observed in another study (Flaherty et al., 2019), a most recent study 

seemed to show larger sodium currents, higher AP amplitude, and accelerated depolarization 

time, i.e., increased excitability, in cortical neurons carrying NRXN1 deletion (Avazzadeh 
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et al., 2021). Therefore, the discrepancies across iPSC modeling of CNVs were likely 

due to the intrinsic clinical heterogeneity associated with each CNV and the effects of 

individual genetic backgrounds. Future iPSC modeling of CNVs with an increased number 

of patient-specific iPSC lines in combination with CRISPR-engineering of CNVs may help 

improve the consistency and identify more convergent disease-specific phenotypes.

Because these rare CNVs are usually long (>100 kb) and span multiple genes, it has been 

a challenge to identify which gene(s) within a CNV region are likely the driver(s) for 

disease-relevant phenotypes. The challenge is amplified by the possible effects of a CNV 

on local or distal chromatin architecture and, consequently, the expression of genes outside 

the CNV region (Franke et al., 2016; Redin et al., 2017). iPSC model in combination 

with CRISPR/Cas9 gene editing or CRISPRi/CRISPRoff (Kampmann, 2020; Nunez et al., 

2021) to knockdown (KD) individual gene expression within a CNV would be an effective 

approach to solve the problem. The only iPSC modeling study that made such a systematic 

effort was for 15q13.3 microdeletion by analyzing the transcriptomic similarity of individual 

gene KD with the entire CNV in day-6 (post neural induction) neurons, which however 

did not point to any specific gene (Zhang et al., 2021b). The imprecision of mapping the 

drive gene(s) in this study (Zhang et al., 2021b) may be improved by using more mature 

neurons (e.g., 4 weeks rather than day-6 neurons). Towards this end, in an independent 

study, combining with targeted resequencing of CNV genes in an SZ case/control cohort and 

iPSC modeling of the patient-specific loss-of-function (LoF) mutation of OTUD7A (OTU 

Deubiquitinase 7A), we found that OUTD7A LoF resulted in reduced dendrite complexities, 

synaptic protein puncta densities in spines, and impaired electrophysiology (Kozlova et al., 

2022), which recapitulates the cellular phenotypes of the CNV modeling in animals (Yin et 

al., 2018), supporting OUTD7A as a plausible driver gene for 15q13.3 microdeletion.

2.2. Rare protein-coding variants

Most iPSC modeling of rare protein-coding variants, including missense or protein-

truncating mutations, is for monogenic-like autism spectrum disorders. Both patient-specific 

iPSC lines carrying the modeled mutations or isogenic lines with CRISPR-engineered 

mutations were used. The modeled mutations tend to be extremely rare or de novo that have 

already been extensively studied in rodents or other model organisms, and iPSC modeling 

mostly recapitulates the known cellular phenotypes. Overall, the resulted cellular phenotypes 

in human neurons for these mutations can be classified into two categories: (1) hypofunction 

such as reduced calcium signaling and activity-dependent dendrite retraction for a missense 

mutation in the L-type calcium channel Ca(v)1.2 (Krey et al., 2013; Panagiotakos et al., 

2019; Pasca et al., 2011), reduced action potentials and peak inward currents for mutations 

in methyl-CpG-binding protein 2 (MECP2) (Farra et al., 2012); fewer synapses and defects 

in excitatory synaptic neurotransmission for mutations in postsynaptic SHANK3 (Kathuria 

et al., 2018; Shcheglovitov et al., 2013) and aberrant dendritic spines for CDKL5 mutations 

(Ricciardi et al., 2012); (2) hyperfunction such as increased neural progenitor proliferation 

and organoid overgrowth for protein-truncating LoF mutation in CNTNAP2 (de Jong et 

al., 2021), accelerated dendritic morphogenesis and enhanced excitatory synaptic strength 

for LoF variants in SYNGAP1 (Llamosas et al., 2020), and increased dendrite length, 
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complexity, synapse number, and frequency of spontaneous excitatory postsynaptic currents 

and hyper-connectivity for SHANK2 mutations (Zaslavsky et al., 2019).

Compared to autism risk variants/genes, very few rare risk variants of other neuropsychiatric 

variants have been modeled in iPSC-derived human neurons. This reflects the different 

genetic risk architecture of autism spectrum disorders from other psychiatric disorders: 

autism is more monogenic and has much more established disease-associated protein-coding 

variants. The most studied rare risk variant is a frame-shift mutation of disrupted in 

schizophrenia 1 (DISC1) that is co-segregated with major psychiatric disorders in a single 

family (Millar et al., 2000). Despite the lack of support from the SZ GWAS (PGC2, 2014; 

PGC3 et al., 2020) or other large-scale exome sequencing projects such as SCHEMA 

(Singh et al., 2020), the isogenic iPSC lines carrying the DISC1 mutation showed a deficit 

of synaptic vesicle release and dysregulated expression of genes related to synapses and 

psychiatric disorders in iPSC-derived forebrain neurons and brain organoids, when the 

iPSC-derived cells are cultured in a three-dimensional fashion instead of monolayers on 

a dish, which was also consistent with the results from humanized DISC1 mutant mouse 

model (Wen et al., 2014; Ye et al., 2017). Similarly lacking strong genetic association 

evidence, two rare missense mutations Chondroitin Sulfate Proteoglycan 4 (CSPG4) that 

showed familial segregation with SZ (de Vrij et al., 2019) and a missense mutation, E492K, 

in NTRK1 that showed familial segregation with bipolar disorder (BP) (Nakajima et al., 

2020) were also modeled in iPSC-derived neurons. Given that large exome sequencing 

projects such as SCHEMA (Singh et al., 2020) start to reproducibly identify rare protein-

coding variants associated with SZ and other neuropsychiatric disorders, we anticipate more 

iPSC modeling of rare protein-coding variants, which will help improve our mechanistic 

understanding of the contribution of rare protein-coding variants to neuropsychiatric 

disorders.

2.3. Common variants

Because common GWAS risk variants explain much more disease liability than rare risk 

variants of high penetrance, it is imperative to tie putative causal GWAS risk SNPs with 

functionality to understand disease causal mechanisms. iPSC model in combination with 

CRISPR-based precise SNP allele editing provides a powerful approach to bridge the GWAS 

findings to novel disease biology. However, modeling common GWAS risk variants is 

challenging for several reasons:

(1) for most GWAS risk loci, each has many common SNPs equally associated with 

disease and often spans multiple genes due to linkage disequilibrium (LD), it is difficult 

to determine which are the likely functional and causal variant/gene to model; (2) most 

common risk variants are in the noncoding part of the genome and do not change protein 

sequence, rather regulating gene expression; (3) more importantly, common risk variants 

have small population effect sizes, which may make it challenging to detect any biological 

function.

Because of these challenges, modeling common GWAS risk variants often requires 

prioritization of putatively functional/causal SNPs by integrative computational fine 

mapping of causal SNP and/or functional genomics interrogation of their putative 
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functionality, e.g., by brain expression quantitative trait locus (eQTL) analysis or chromatin 

accessibility mapping (Dobrindt et al., 2020; Forrest et al., 2017; Schrode et al., 2019; 

Zhang et al., 2021a; Zhang et al., 2020). As regulatory variants are often cell-type and 

developmental stage-specific (Civelek and Lusis, 2014; Nica et al., 2013; Paul et al., 

2014), iPSC modeling of common risk variants may need to assay for temporal changes 

of transcriptional and cellular effects of common variants at different neural differentiation 

stages. With regard to the feasibility to detect meaningful biological function for common 

risk variants of small effect sizes, it is arguably proven that simple cellular models like 

iPSC-derived neurons may reduce the system’s “buffering” to genetic or environmental 

perturbations compared to the whole organism (Merkle and Eggan, 2013), and common 

GWAS risk variants can still elicit moderate or even strong effects on molecular/cellular 

phenotypes (Bauer et al., 2013; Corradin et al., 2014; Kulzer et al., 2014; Miller et al., 2014; 

Musunuru et al., 2010; Spieler et al., 2014). Furthermore, even assuming a homozygous 

common GWAS risk variant causes a 20–30% difference of gene expression, the magnitude 

of the functional impact is not too different from a theoretically 50% reduction of gene 

expression or protein function resulting from a heterozygous rare LoF mutation of high 

penetrance. Moreover, it is very likely a subtle expression change may result in an amplified 

downstream cellular phenotype alteration, for instance, ~ 15% KD of expression of an 

Alzheimer’s disease GWAS risk gene, PICALM, in astrocytes leads to >50% reduced 

endocytosis of neuron-derived lipids (Moulton et al., 2021).

We and others have recently successfully studied functional impacts of common GWAS 

risk variants of SZ in CRISPR-engineered isogenic iPSC-derived neurons. As a proof of 

concept, we prioritized putatively functional SZ GWAS risk variants through co-localization 

with open chromatin peaks, and for a leading SZ risk locus spanning M1R137, we 

showed that the risk allele of common GWAS risk SNP rs1198588 was associated with 

altered M1R137 promoter chromatin openness, reduced MIR137 expression, and accelerated 

neuronal maturation (Forrest et al., 2017). More recently, we systematically mapped 

putatively functional SZ GWAS risk variants that showed differential allelic chromatin 

accessibility (i.e., allele-specific open chromatin or ASoC) and affect gene expression in 

iPSC-derived NPCs, glutamatergic neurons, GABAergic neurons, and dopaminergic neurons 

(Zhang et al., 2020). For the strongest ASoC SNP (rs2027349) associated with SZ at the 

vacuolar protein sorting 45 homolog (VPS45) locus, we found rs2027349 editing altered the 

expression of VPS45, lncRNA AC244033.2, and a distal gene, C1orf54, in human neurons. 

Neurons carrying the risk allele exhibited increased dendritic complexity, synaptic puncta 

density, and hyperactivity, which were reversed by knocking-down distinct cis-regulated 

genes (VPS45, AC244033.2, or C1orf54), suggesting a phenotypic contribution from all 

three genes (Zhang et al., 2021a). Similar to our demonstrated compound non-additive 

effects from all three genes at the same GWAS locus (Zhang et al., 2021a), another earlier 

study elegantly showed that common GWAS risk variants/genes, prioritized by brain eQTL 

mapping, from several different risk loci (FURIN, SNAP91, TSNARE1, and CLCN3), may 

synergistically affect the expression of genes involved in SZ pathogenesis in iPSC-derived 

neurons (Schrode et al., 2019). These studies suggest that noncoding GWAS risk variants 

impact the neurodevelopmental aspect of SZ and show a detectable biological function in 

iPSC-derived neurons.

Muhtaseb and Duan Page 8

Schizophr Res. Author manuscript; available in PMC 2023 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite the initial success of iPSC modeling of common GWAS risk variants of 

neuropsychiatric disorders, functional interpretation of the cellular and molecular effects 

of individual variants in a small sample can be challenging. This is largely due to the small 

effect sizes of common risk variants and some confounding factors such as variable genetic 

backgrounds and intrinsic iPSC clonal variation. As a result of purifying selection against 

deleterious mutations in the population (Cvijovic et al., 2018; Gibson, 2012), the small 

effect sizes of common risk variants are expected to yield small magnitude of biological 

effects. In addition, buffering effects from genes in the same biological pathway and/or other 

allele(s) in the same haplotype background as the risk allele (Gibson, 2012; Hartman et al., 

2001) may further complicate the detection and interpretation of any biological effects of 

common risk variant/gene in iPSC modeling. In this regard, it is noteworthy that, Peng et al. 

recently showed that the GWAS eQTL variants associated with SZ can have an effect on the 

expression of some target genes that is inversely correlated with SZ risk (Peng et al., 2021). 

A systematic and unbiased massive parallel approach will be needed to overcome these 

limitations to better model common GWAS risk variants (Townsley et al., 2020). Moreover, 

given that common GWAS risk genes may often act together as part of gene networks, 

multiplex SNP/gene editing to perturb different genes at the network level will be needed for 

iPSC modeling of common GWAS risk variants.

2.4. Polygenic risk

Both GWAS of neuropsychiatric disorders (Psychiatric Genomics Consortium-

Schizophrenia, 2011; Psychiatric Genomics Consortium-Schizophrenia, 2014; Mullins et 

al., 2021; PGC3 et al., 2020; Purcell et al., 2009; Ripke and Concortium, 2013; Shi et 

al., 2009; Stefansson et al., 2009) and large-scale postmortem brain transcriptome studies 

(e.g., by PsychENCODE) (Fromer et al., 2016; Gandal et al., 2018; Wang et al., 2018) 

revealed the polygenic nature of neuropsychiatric disorders (Schizophrenia Working Group 

of the Psychiatric Genomics, 2014; Sullivan et al., 2018). Although modeling individual 

common GWAS risk variants or rare risk variants can help understand disease mechanisms 

at individual loci, it is also important to determine the convergent functional effects of 

polygenic risk on disease-relevant cellular and molecular phenotypes. One of the first iPSC 

modeling studies of the polygenic risk of neuropsychiatric disorders was with SZ using 4–5 

cases compared to matched controls (Brennand et al., 2011). Despite a very small sample, 

biologically meaningful transcriptomic differences were identified between the SZ case and 

control iPSC-derived neurons (Brennand et al., 2011). Due to the technical challenge of 

scaling up the iPSC work, the reported largest case/control sample size in studies aiming to 

model polygenic effects remains too small, with cortical interneurons of 14 SZ cases and 

14 controls (Shao et al., 2019). Likely because of the small sample size, only dysregulated 

expression of protocadherin genes and protocadherin relevant neuronal phenotypes were 

identified (Shao et al., 2019).

With small samples that do not reflect the polygenic risk spectrum of neuropsychiatric 

disorder, reducing the clinical heterogeneity of hiPSC lines by selecting subjects with 

common clinical manifestations or with rare genetic variants would be critical for drawing 

meaningful but limited insights (Brennand et al., 2014). Alternatively, because individual 

polygenic risk score (PRS) often correlates with the severity of disease symptoms or 
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resilience (Hess et al., 2019; Zhang et al., 2019), selecting iPSC lines from donors with 

extreme PRS may help improve the study power of iPSC modeling of neuropsychiatric 

disorders. For instance, with iPSC-derived neural progenitors and cortical neurons from 13 

SZ individuals with high PRS for SZ, along with 15 neurotypical individuals with low PRS, 

Page et al. identified neural electrophysiological measures associated with a diagnosis that 

implicated altered Na+ channel function and GABAergic neurotransmission (Page et al., 

2021). However, due to complex yet unclear interactions between rare risk variants and/or 

non-genetic risk factors (e.g., stress) with individual polygenic risk backgrounds, the results 

from such study design of comparing patient group of high PRS to control group of low 

PRS may not reflect the difference between patients of low PRS and healthy controls of 

high PRS. Regardless, the mechanistic insight on the polygenic risk effects from studies with 

small sample sizes remains limited. Investigating a sufficient number of samples from each 

PRS group, affected or healthy, on cellular and genomic/transcriptomic levels, may give us 

leads to what may be the reliable and valid cellular phenotypes relevant to neuropsychiatric 

disorders.

With a limited sample size at this time, the iPSC modeling of polygenic risk may benefit 

from a focused study of the effect of PRS on phenotypic expressivity of rare and highly 

penetrant risk variants. Patients who carry rare disease risk variants often have an excess 

burden of common GWAS risk alleles (Tansey et al., 2016). The field has started to 

understand the interplay between PRS and highly penetrant rare risk variants such as 

the well-known 22q11 deletion (Cleynen et al., 2020). Some top-ranking genes identified 

by SCHEMA to have rare but highly penetrant SZ-associated protein-truncating or LoF 

mutations (Singh et al., 2020) may also be such candidates for exploring PRS effects. 

For example, for the strongest SZ candidate gene in the SCHEMA study, SETD1A, its 

LoF mutations are highly penetrant (OR = 20; similar to that of SZ-associated 22q11 

deletion) (Singh et al., 2020). However, LoF-mutation-carriers do not always develop 

SZ rather show other neurodevelopmental phenotypes. Such incomplete penetrance or 

phenotypic heterogeneity may be explained by individual genetic risk backgrounds: the 

variable phenotypic expressivity may be modulated by common SZ risk loci, either through 

additive or synergistic effects, resulting in disease resilience (by low PRS) or vulnerability 

(by high PRS). iPSC lines with high or low extreme PRS of neuropsychiatric disorders 

would be very useful for modeling such polygenic risk effects.

In this regard, it is noteworthy that we have recently built a small cohort of iPSC lines 

with extreme SZ PRS (Dobrindt et al., 2020). These iPSC lines were selected from a 

few thousand donor lines at the California Institute of Regenerative Medicine (CIRM), 

representing the extreme PRS compared to the rest. These lines have been characterized 

for their pluripotency, cell growth, transfection efficiency, neuronal differentiation, and 

CRISPR-editing efficiencies (Dobrindt et al., 2020). Although a small sample, a cohort 

of well-characterized iPSC lines is expected to be useful for generating isogenic lines 

for the functional study of SZ risk variants in the context of high/low PRS backgrounds. 

However, given the nature of phenotypic heterogeneity and the small population effect size 

of common variants, even with an isogenic approach the selection of PRS backgrounds 

in CRISPR-editing needs to be carefully considered. Because of additive effect from risk 

variants, although unproven, introducing a common risk variant on top of a healthy subject 
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with high SZ PRS may be more likely to yield disease relevant cellular phenotypes, which 

otherwise may be confounded by effects from non-genetic or rare genetic risk factors on a 

patient genetic background. Conversely, for modeling rare risk variants of high penetrance, a 

CRISPR-editing experiment may benefit from “correcting” a risk allele on a patient genetic 

background in addition to independently introducing a risk allele on a healthy genetic 

background of high SZ PRS. Nonetheless, CRISPR-editing on different type of genetic 

backgrounds is imperative for obtaining more reliable and interpretable disease-relevant 

cellular phenotypes.

3. Which model: 2D vs. 3D neuronal culture systems

Both 2D and 3D neuronal cultures (i.e., organoids) derived from human iPSCs of 

donors with different genetic backgrounds, or from CRISPR-engineered isogenic lines, 

are promising tractable cellular models for neuropsychiatric disorders (Duan et al., 2019; 

Kampmann, 2020; Townsley et al., 2020). Because these neural cultures only recapitulate 

early neurodevelopment processes, they are most suitable for modeling psychiatric disorders 

with neurodevelopmental aspects, i.e., autism and SZ. While the 2D culture has been widely 

used for modeling both common and rare risk variants, 3D cortical or brain organoids have 

been mainly used to model rare risk variants of large effect sizes.

3.1. 2D culture: monolayer neurons or co-culture system

All major brain cell types (NPCs, glutamatergic, GABAergic, dopaminergic, and cholinergic 

neurons, oligodendrocyte, astrocyte, and microglia) can now be efficiently differentiated 

from iPSC (Barretto et al., 2020; Butler Iii et al., 2020; Dobrindt et al., 2020; Douvaras and 

Fossati, 2015; Giacomelli et al., 2022; McQuade et al., 2018; Yang et al., 2017; Zhang et 

al., 2020; Zhang et al., 2013). Because of the relatively high efficiency of differentiation 

and high purity of each iPSC-derived cell type, the 2D culture system has been widely used 

for studying neuropsychiatric, neurodevelopmental, and neurodegenerative disorders. For 

instance, forced exogenous expression of NGN2 gives rise to near 100% excitatory neurons 

(NGN2-iNs) in about 4 weeks (Vierbuchen et al., 2010; Zhang et al., 2013), which makes 

NGN2-iNs the most commonly used cellular model for studying both common and rare risk 

factors of neuropsychiatric disorders (Table 1). The relatively homogenous population of 

differentiated cells also makes it straightforward for transcriptomic analysis by RNA-seq, 

morphological and electrophysiological analyses. Compared to the postmortem brain, which 

is well-known to be confounded by tissue variability and environmental factors (Lipska et 

al., 2006), hiPSC differentiation into neurons can be better controlled, thus making the data 

more reproducible.

The wide use of 2D culture systems often comes with methodological variations, which may 

yield different cellular phenotypes that need careful interpretation. For instance, Compared 

to NGN2-INs directly derived from iPSC, excitatory neurons differentiated from iPSC-

derived NPCs represent a slower process but better recapitulates normal neurodevelopmental 

processes (Wang et al., 2019; Wen et al., 2014). Moreover, on some occasions of modeling 

neuropsychiatric risk variants, the neural electrophysiological phenotype may be observed 

in NPC-differentiated excitatory neurons but not in NGN2-INs (personal communication 
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with Dr. Zhiping Pang). By comparing the inhibitory neurons directly derived from iPSC 

(Yang et al., 2017) and those derived from NPCs (Barretto et al., 2020), we also noted their 

different electrophysiological characteristics (Dobrindt et al., 2020). Such discrepancies may 

be due to the variable maturation stages and/or regional identity of the seemingly pure iPSC 

neurons, a reasoning that was supported by some recent single-cell RNA-seq analysis of 

the seemingly pure cell populations of NGN2-INs (based on immunofluorescence staining) 

contain cells of different maturity and even not the expected cortical identify (Wang et al., 

2021; Zhang et al., 2021a).

Although 2D culture has the advantage of being relatively homogenous, it is not reminiscent 

of in vivo neural environment. An improved 2D culture system is the co-culture of 

excitatory and inhibitory neurons, or at a defined ratio, i.e. 80:20%, that is similar to the 

neuronal composition of the forebrain (Sahara et al., 2012). Human neurons will then be 

co-cultured with monolayer glial cells to facilitate maturation and synaptogenesis (Pang 

et al., 2011; Ullian et al., 2001; Vierbuchen et al., 2010). The cellular phenotypes can be 

assayed by differentially labeling excitatory and inhibitory neurons in the co-culture and the 

transcriptomic changes can be interrogated by scRAN-seq. With such a co-culture design, 

Wang et al. elegantly demonstrated that human knock-in neurons carrying the autism risk 

variant (R451C) in the NLGN3 gene decreased NLGN3 protein level and enhanced the 

strength of excitatory synapses without affecting inhibitory synapses (Wang et al., 2021).

3.2. 3D culture: spheroids or organoids

Brain organoids have anatomical structures reminiscent of the developing human brain thus 

presenting a promising approach for studying early neurodevelopment and for modeling 

risk factors for neurodevelopmental disorders (Pasca et al., 2015; Paşca, 2019; Quadrato 

et al., 2016; Rigamonti et al., 2016). Among different types of methods for generating 

brain organoids or spheroids, cortical spheroids as part of the assembloids have been more 

commonly used due to their relatively better reproducibility and simplicity (Paşca, 2019). 

However, for most methods, because of the cellular stress and cell death posed by the 

lengthy process of organoid development (months), cortical layer expansion and the size 

of cortical plate of the differentiated brain organoids are usually not reminiscent of the 

human cortical structure. This limitation can be mitigated by a recently developed method, 

a sliced neocortical organoid (SNO) system (Qian et al., 2020). This method is based on 

a previously established protocol using bioreactors (Qian et al., 2018; Qian et al., 2016) in 

generating cortical organoids, now combined with brain organoid slicing and culturing in 

vitro, resulting in sustained neurogenesis and radial migration of newborn neurons (Qian 

et al., 2020). Consequently, SNO forms an expanded cortical plate that establishes distinct 

upper and deep cortical layers, with diverse subtypes of neurons and astrocytes. The SNO 

largely resembles the third-trimester embryonic human neocortex (Qian et al., 2020), which 

will be ideal for studying neurodevelopment and for quantifying the morphological and 

cellular compositional changes associated with neuropsychiatric risk factors.

Besides the anatomical or morphological resemblance of brain organoids to developing 

human brains, at a molecular level, what is the validity of the 3D organoid model or 

how well it can faithfully recapitulate human neurodevelopmental trajectory? To address 
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this question, Gordon et al. performed genome-wide epigenomic and transcriptomic 

analyses at different stages of cortical organoid differentiation and compared that to 

human brain development (Gordon et al., 2021). They found the transcriptional profiles 

of cortical organoids before 250–300 days are more like that of prenatal brains, while the 

transcriptional patterns of cortical organoids beyond 250–300 days are more like that of 

postnatal human brains. They also confirmed several known developmental milestones in 

cortical organoids such as the well-known switches of NMDA receptor subunits in the 

brain before and after birth (Paoletti et al., 2013), suggesting that cortical organoids, if 

successfully cultured for a long time, can model not only early neurodevelopment but also 

mid- to later-fetal stages (Gordon et al., 2021).

Cortical organoids, combined with scRNA-seq of tens of thousands of cells, provide an 

unprecedented opportunity to dissect the spatial and temporal early neuronal development 

in a cell-type-specific manner (Khrameeva et al., 2020; Pollen et al., 2019). Despite 

the single-cell transcriptomic similarities between brain organoids and developing brains 

(Tasic et al., 2016; Tasic et al., 2018; Zizhen Yao et al., 2020a), the functionality, 

i.e., electrophysiological properties of different types of neurons in brain organoids 

remain unexplored. This is largely due to the heterogeneity of different neuronal cells at 

variable stages of maturity. A promising approach is to generate a cell census map of 

cortical organoid neuronal subtypes with different functional dimensions by conducting a 

multimodal analysis of neurons in the 3D cortical organoid system (Personal communication 

with Dr. Zhiping Pang). To do so, a patch-seq technique (Bakken et al., 2020; Bardy et 

al., 2016; Cadwell et al., 2016; Cadwell et al., 2017; Chen et al., 2016; Fuzik et al., 2016; 

Scala et al., 2020; Zizhen Yao et al., 2020b) may be used to collect multimodal profiles, 

including electrophysiology, morphology, and transcriptomics from the same single cell of 

3D organoids. The cellular taxonomy of neurons based on their functional, morphological, 

and transcriptomics features may be used as a general model to predict the functional 

identity of any neurons in 3D organoids.

Despite the advantages of using 3D organoids to model neurodevelopment, morphological 

variability and uneven cellular composition across organoids make the 3D organoid model 

more suitable for studying rare risk variants of highly penetrance rather than common 

risk factors of small effect sizes. Cortical organoids have been used to model autism- and 

SZ-associated 16p11.2 deletion and duplications (Urresti et al., 2021) and SZ-associated 

22q11.2 deletion (Khan et al., 2020), illuminating temporal neurodevelopmental deficits in 

CNV-carriers that can be studied in 2D cell cultures. Using the method to generate cortical 

spheroids (Paşca, 2019), we also started to model the SETD1A LoF mutation associated 

with SZ, and the preliminary results showed that SETD1A LoF resulted in precocious 

neurogenesis (West et al., 2019). There are also attempts to model polygenic effects for SZ 

(Kathuria et al., 2020a) and BP (Kathuria et al., 2020b), each with cerebral organoids of 8 

patents and 8 controls. However, the striking transcriptomic and phenotypic changes in SZ 

or BP organoids in these studies need to be interpreted cautiously, given the relatively small 

sample size and the known challenges of analyzing the bulk RNA-seq data and ascertaining 

the morphological differences in brain organoids.
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4. Which cell type: disease relevance and region identify

Human iPSC can be differentiated into different brain cell types. For modeling 

neuropsychiatric risk variants, the cell type of interest can be informed by the known brain 

expression profiles and function of the risk gene and in general, by the disease-relevant cell 

types for each neuropsychiatric disorder.

Disease-relevant cell types and brain region identity for most neuropsychiatric disorders 

are not well defined. For instance, animal studies, human postmortem brain, and clinical 

brain imaging studies of SZ implicate almost every part of the brain, leaving the most 

disease-relevant or vulnerable cell types and their region identities unknown. Recent 

brain scRNA-seq transcriptomic profiling enables a global view of cell-type-specific gene 

expression patterns of each cell type/region at single-cell resolution (Habib et al., 2017; 

Zeisel et al., 2018). By mapping GWAS loci onto each specific brain cell type based on 

the cellular taxonomy of single-cell gene expression profiles, cortical inhibitory interneurons 

and excitatory neurons from the cerebral cortex and hippocampus (pyramidal and granule 

cells) as well as inhibitory medium spiny neurons (in the striatum) were found to be the 

most genetically vulnerable cell types for SZ (PGC3 et al., 2020; Skene et al., 2018). 

Across 265 cell types in the mouse central and peripheral nervous systems (Zeisel et al., 

2018), glutamatergic (excitatory) neurons in the deep layers of the cortex, amygdala, and 

hippocampus showed the strongest enrichment for SZ heritability, which was followed by 

both inhibitory and excitatory neurons from the midbrain, thalamus, and hindbrain (PGC3 

et al., 2020). In contrast, major depression disorder (MDD) and neurodegenerative disorders 

did not show such GWAS risk enrichment in these cell types (PGC3 et al., 2020; Skene 

et al., 2018). A more systematic analysis of all the most recent neuropsychiatric GWAS 

datasets with large samples would yield a more informative view of the most relevant brain 

cell types/regions for each neuropsychiatric disorder.

There has been no comprehensive neuropsychiatric GWAS risk enrichment analysis for 

iPSC-derived brain cell types to ascertain their disease relevance. Based on the GWAS risk 

enrichment analysis of open chromatin peaks and allele-specific open chromatin variants 

in iPSC-derived NPCs, glutamatergic, GABAergic, and dopaminergic neurons, we found 

all these cell types showed significant enrichment for SZ GWAS risk and to a less extent 

for BP and MDD (Zhang et al., 2020). Using Bulk RNA-seq data of iPSC-derived NPCs 

and microglia (iMG), our MAGMA analysis but not LDSC analysis showed enrichment of 

GWAS risk of SZ and BP in NPCs, while both analyses showed enrichment of GWAS risk 

of Alzheimer’s disease (AD) in the iMG (Butler Iii et al., 2020). A more systematic analysis 

of each iPSC-derived pure cell type in both 2D and 3D neural culture systems by scRNA-seq 

will better inform the genetic relevance of each iPSC-derived cell type to neuropsychiatric 

disorders.

It is worth noting that the disease-relevant cell type based on genome-wide gene expression 

and genetic association may not be applicable to some specific set of genes or pathways. 

For instance, for microRNA-137 (MIR137), a leading neuropsychiatric risk gene and a 

post-transcriptional master regulator, we conducted a cell type-specific gene set (MIR137 

target genes) PRS analysis in both European and Han Chinese SZ samples (Yao et al., 
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2021). Although the MIR137 target gene set expressed iPSC-derived glutamatergic neurons 

showed the greatest enrichment of SZ GWAS risk, which was consistent with the notion 

that glutamatergic neuron is the most disease-relevant cell types for SZ (PGC3 et al., 2020), 

we also found significant SZ risk enrichment in MIR137 target genes expressed in iPSC-

derived NPC or dopaminergic neurons (Yao et al., 2021). Specifically, we found that PRS 

derived from the predicted MIR137 target genes that are expressed in hiPSC-derived NPCs, 

GABAergic neurons, dopaminergic neurons, or glutamatergic neurons explains greater SZ 

risk variance than PRS derived from genes expressed in hiPSCs or other less relevant cell 

types (Yao et al., 2021). The cell-type-specific enrichment of SZ GWAS risk in different 

iPSC-derived cell types was further supported by an independent LDSC analysis (Yao et al., 

2021).

It is also noteworthy that cell types not enriched for disease GWAS risk may still be 

important for some specific pathophysiological processes of SZ and other neuropsychiatric 

disorders. For instance, brain microglia or iPSC-derived microglia are not genetically 

vulnerable cell types for SZ (Butler Iii et al., 2020; PGC3 et al., 2020); however, 

dysregulation of synaptic pruning mediated by microglia has been hypothesized to be 

pathogenic to SZ (Sellgren et al., 2019; Sellgren et al., 2017). Excessive synapse pruning 

by microglia during adolescence may lead to the reduced synaptic density in the SZ 

brain, which is correlated with decreased gray matter thickness and reduced overall brain 

volume (Cannon et al., 2015; Glausier and Lewis, 2013; Lewis and Gonzalez-Burgos, 

2008). The role of microglia in dysfunctional synaptic pruning in SZ was also partially 

supported by SZ GWAS: common SZ risk variants within the complement component 

4 (C4) locus are associated with increased neuronal complement deposition and synapse 

uptake (Sellgren et al., 2019). Some other brain cell types may also play an important 

role: for example, astrocytes derived from BP patients are functionally less supportive of 

neuronal excitability and this effect is partially mediated by IL-6, suggesting a potential role 

of astrocyte-mediated inflammatory signaling in BP.

5. Which phenotype: disease-relevant cellular phenotypes

Disease-relevant specific cellular phenotypes for neuropsychiatric disorders remain largely 

undefined. Although for some brain cellular phenotypic changes have been observed 

for certain neuropsychiatric disorders, for instance, the reduced synaptic density in the 

SZ postmortem brain (Cannon et al., 2015; Glausier and Lewis, 2013; Lewis and 

Gonzalez-Burgos, 2008), the causal link between genetic risk factors, the observed cellular 

phenotypes, and clinical features of a neuropsychiatric disorder is lacking. Because 

of the neurodevelopmental aspects of autism and schizophrenia, compared to other 

neuropsychiatric disorders, the field has a better understanding of the postulated cellular 

phenotypes that are associated with neurodevelopmental abnormalities observed from 

postmortem brain studies and/or clinical brain imaging. The lack of defined disease-relevant 

cellular phenotypes poses a challenge to the iPSC modeling of neuropsychiatric disorders. 

On the other hand, well-powered studies of patient-specific iPSC lines, in combination with 

CRISPR gene editing to engineer specific disease risk variants, will help define disease-

relevant cellular phenotypes and establish causal links with genetic risk factors.
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Abnormal proliferation of iPSC-derived NPC has been implicated for autism and to a 

less extent, for SZ. The disease relevance of abnormal NPC proliferation is supported by 

known clinical features of autism, where either accelerated brain growth (i.e., macrocephaly) 

(Butler et al., 2005; Chawarska et al., 2011) or reduced brain size (i.e., microcephaly) 

can be seen in early brain development of some patients (Miles, 2011; van Bon et al., 

2016). iPSC modeling microcephaly showed loss of NPCs and premature differentiation 

(Lancaster et al., 2013), while modeling macrocephaly showed rapid proliferation of NPCs 

(Marchetto et al., 2017). These opposite clinical phenotypes can be associated with different 

genetic risk factors, for instance, 16p11.2 duplication is associated with microcephaly while 

deletion is associated with large head size/macrocephaly (Steinman et al., 2016). However, 

iPSC modeling of 16p11.2 deletions and duplications did not show significant effects on 

NPC proliferation, rather recapitulated the opposite effects on neuron size and dendrite 

length (Deshpande et al., 2017), suggesting NPC proliferation may not be the only cellular 

phenotype associated with the early brain outgrowth in autism. Abnormal NPC proliferation 

has also been associated with SZ, but only in iPSC modeling. SZ iPSC-derived NPCs were 

found to have aberrant migration and increased oxidative stress (Brennand et al., 2015), 

while our iPSC-derived cortical organoids with SZ-associated SETD1A LoF mutation 

showed reduced NPC proliferation and precocious neurogenesis at early-developmental 

stage (West et al., 2019).

Most disease-associated cellular phenotypes are at the neuron level, often involving dendritic 

length, branches, synaptic puncta density, sodium/potassium/calcium channel activity, 

electrophysiology properties, and/or neural network activities. Dendrites and spines are the 

main neuronal structures that receive input from other neurons. For autism, both human 

postmortem brain and animal studies suggest a reduction of dendrite numbers and spine 

density (Martínez-Cerdeño, 2017). For schizophrenia, the most consistent findings are the 

reduced dendritic spine density and dendritic arborization in postmortem brains, and the 

accelerated adolescent gray matter reduction from brain imaging studies (Moyer et al., 

2015). At the level of neuronal function, animal models of autism mutations reported 

both hyper- and hypoactivity associated with autism-like behaviors (Peça et al., 2011; 

Sacai et al., 2020; Schmeisser et al., 2012; Tabuchi et al., 2007; Won et al., 2012), while 

both pharmacology and genetic animal models of schizophrenia converge on hypofunction 

of glutamatergic synapse despite the reasonable skepticism as to how accurately animal 

behaviors can be reflective of schizophrenia (Coyle et al., 2020).

However, these cellular phenotypes of autism and SZ postulated from human postmortem 

brain, brain imaging, and animal studies were not fully recapitulated by the recent iPSC 

modeling of common or rare risk factors of both disorders (see above section “what to 

model”). For instance, contrary to the expected reduced dendritic complexities and synaptic 

function (Duan et al., 2019; Penzes et al., 2011), some iPSC modeling observed the 

increased dendritic complexities and neuronal hyperexcitability (Blizinsky et al., 2016; 

Forrest et al., 2017; Schrode et al., 2019; Yi et al., 2016; Zhang et al., 2020). These studied 

SZ risk variants include both common variation (e.g., a GWAS SNP at M1R137 locus) 

(Forrest et al., 2017) with small effect sizes and rare risk alleles with high penetrance 

(e.g., 16p11 duplication or loss-of-function of SHANK3) (Blizinsky et al., 2016; Yi et al., 

2016). Our recent modeling of a chromatin accessibility-altering common SZ risk variant 
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rs2027349 at the VPS45 locus in isogenic NGN2-iNs further added another example 

that risk allele is associated with the increased dendritic complexity, synaptic puncta 

maturation, and neuronal firing rate (Zhang et al., 2021a). Such seemingly inconsistent 

cellular phenotypes may be the result of genetic pleiotropy across major psychiatric 

disorders (Ruderfer et al., 2018). Alternatively, hypo- and hyperfunction for the same 

disorder may reflect different temporal functional characteristics of neurons at different 

maturing stages. For instance, for patient-derived human hippocampal neurons carrying a 

rare autism-associated missense mutation A350V in gene IQSEC2, the immature dentate 

gyrus (DG) granule neurons are extremely hyperexcitable, while the aged neurons are 

hypoexcitable (Brant et al., 2021). However, neural maturity may not explain some of the 

observed increase of dendritic complexities and synaptic puncta in SZ neurons, e.g., the 

effect of the common risk allele at MIR137 locus (Forrest et al., 2017), which was confirmed 

by a mouse model of the MIR137 risk allele (i.e., with haploinsufficiency of MIR137) 

(Cheng et al., 2018). Finally, among other plausible interpretations, the reported both neural 

hyperfunction (Blizinsky et al., 2016; Forrest et al., 2017, a; Schrode et al., 2019; Yi et al., 

2016; Zhang et al., 2020) and hypofunction (Duan et al., 2019; Penzes et al., 2011) in SZ 

iPSC models provide further support for a neuronal homeostatic model of neuropsychiatric 

disorders where either excess or inadequate synaptic signaling output may contribute to 

pathophysiology (Landek-Salgado et al., 2016; Ramocki and Zoghbi, 2008).

As a possible mechanistic link to dendritic and synaptic dysfunction as described above for 

SZ and autism, the abnormal microglia-mediated synapse pruning may also be considered 

as a cellular phenotype relevant to neurodevelopmental disorders. For SZ, the hypothesis is 

that excess synaptic pruning could trigger the disease during the active period of synapse 

elimination in adolescence; while for autism, human and animal studies imply a deficit of 

pruning that may lead to excessive synaptic connections (Sakai, 2020). The idea has gained 

empirical support from iPSC modeling of synaptic pruning in SZ (Sellgren et al., 2019; 

Sellgren et al., 2017). With an in vitro model of microglia-mediated synapse engulfment, 

the excessive synaptic pruning in SZ lines was found to result from abnormalities in both 

microglia-like cells and synaptic structures (Sellgren et al., 2019). However, although the 

SZ-associated C4 allele is correlated with synapse uptake (Sellgren et al., 2019), a causal 

relationship between the C4 risk variant and the increased synapse engulfment is lacking. 

Moreover, because the activated-microglia-conditioned medium has been found to alter 

metabolism differentially in SZ iPSC-derived cortical interneurons, neural synaptic deficit 

may play a major role in microglia-mediated synaptic pruning (Park et al., 2020). Therefore, 

it remains uncertain whether the increased phagocytosis by microglia is a cellular phenotype 

genetically relevant to SZ.

6. What next: challenges, opportunities, and new research frontier

iPSC modeling of neuropsychiatric risk factors is becoming more popular in the field. 

However, some limitations of the model and challenges remain to be appreciated: (1) 

The sample size is relatively small in almost all the iPSC modeling studies, while it is 

becoming clear that donor genetic background and iPSC clonal variation are common 

confounding factors. (2) Modeling common risk variants and genes remains challenging 

simply because functional interpretation and causal inference of noncoding risk variants 
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are not as straightforward as protein-coding variants. (3) Disease risk variants may only 

manifest their functional effects at a specific cellular state and in a context-specific manner, 

e.g., neural activation-dependent effects. (4) Nonnuclear DNAs such as mitochondrial DNA 

(mtDNA) may play a significant role in the etiology of neuropsychiatric disorders.

6.1. Scaling up the iPSC modeling

Confounding factors in iPSC modeling often arise from the line-to-line variation due 

to the effects of different donor genetic backgrounds, iPSC clonal-to-clone variation 

originated from cellular reprogramming and/or iPSC cell passaging processes, and technical 

variations resulted from cell culturing and neuronal differentiation procedures. Compared 

to 2D culture, 3D organoids show even more variations during the lengthy culture 

process (months). For instance, although the cell type diversity is quite producible across 

organoids (Velasco et al., 2019), the cellular composition and subtype specification vary 

substantially between organoids and across protocols, especially at later stages of cortical 

organoid maturation (Bhaduri et al., 2020; Velasco et al., 2019). Although line-to-line 

variation can be mitigated by using CRISPR editing-based isogenic approach to enable the 

experimental comparison virtually on the same genetic background between isogenic pairs, 

the phenotypic expressivity can still be influenced by the genetic background of each donor. 

Furthermore, the iPSC clonal variation often makes transcriptomic data difficult to interpret, 

even with isogenic design and in a setting with multicenter and cross-lab validation (Pak et 

al., 2021). As such, when the sample size is small, these potential confounding factors can 

substantially limit the interpretation of molecular and cellular phenotypes associated with 

psychiatric risk variants in iPSC modeling.

It is becoming increasingly recognized that the iPSC modeling needs scaling up, both on 

the number of iPSC lines to be used and the variant numbers to be studied. The current 

situation in iPSC modeling is somewhat reminiscent of the early stage of the candidate 

gene association study of neuropsychiatric disorders when a small sample size and a 

small number of interrogated genetic markers often yield false-positive associations and 

evidence hanging in the balance (Sanders et al., 2008). A larger sample size can alleviate 

the experimental variations and produce more rigorous results. However, scaling up iPSC 

modeling is currently not only associated with higher cost but also needs conceptual and 

technical innovations on how to delineate the molecular and cellular phenotypes more 

effectively for a large number of iPSC lines and risk variants/genes (Fig. 2).

To scale up the number of iPSC lines, one straightforward way is to culture individual iPSC 

lines in separate wells on a multi-well plate, followed by high-content imaging of neuron 

morphology, synaptic maturation, and electrophysiological properties (Fig. 1)a. With this 

setting, for each individual line, a co-culture system may be used to differentially label 

excitatory (e.g., by GCaMP) and inhibitory (e.g., by RCaMP) neurons, which will enable 

the morphometric analyses of different types of neurons simultaneously. The high-content 

imaging system (e.g., ImageXpress) can auto-segment the images, which can be analyzed 

for dendritic complexity and synaptic puncta density using built-in methods or some 

customized machine learning-based methods such as Intellicount (Fantuzzo et al., 2017). 

Taking advantage of high-performance Ca2+ sensors (GCaMP and RCaMP) for imaging 
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neuronal activity (Chen et al., 2013; Dana et al., 2019), the cellular electrophysiology 

property of both types of neurons can also be assayed by high-throughput Ca2+ imaging with 

a two-photon microscope.

Alternatively, iPSC sample scaling up can be done by an innovative approach “cell village” 

(Mitchell et al., 2020). With this setting, 10s to 100s iPSC lines can be co-cultured together 

in a cell culture dish and differentiated into neurons together, followed by cell sorting to 

groups neurons based on a specific cell surface marker or antigen (i.e., cellular phenotype) 

and then by Census-seq to associates cellular phenotypes to donors’ genotypes in cell 

“villages” (Fig. 1)b. Although this approach measures cellular phenotypes in cells from 

many donors simultaneously, it would be challenging to establish a customized “village” 

where all the iPSC lines may grow in balance, i.e., without a few overgrowing others. 

Furthermore, with many co-cultured lines, cell non-autonomous effects may confound the 

analysis and data interpretation. Nonetheless, “cell village” has been proved to be effective 

in mapping common genetic variants affecting some cellular phenotypes such as SMN 

protein levels in spinal muscular atrophy (SMA) (Mitchell et al., 2020).

In a sense, “cell village” (and census-seq) also scales up the variant number, because it 

assays the effect of many common alleles on a specific phenotype (e.g., SMN protein level) 

at a cell population level (Mitchell et al., 2020). However, it is still an association-based 

approach to establish a correlation between genotype and phenotype rather than directly 

modeling function/causal variant en masse. In a proof-of-concept experiment, Cederquist 

et al. carried out a multiplex iPSC screening, in which 30 isogenic lines carrying different 

autism mutations are pooled in a single dish and differentiated into the prefrontal cortex 

(PFC) lineages to test early developmental hypotheses of autism (Cederquist et al., 2020). 

With PFC neurogenesis as a cellular phenotype for pooled screening, mutations were 

sub-grouped into those that enhance or suppress neurogenesis (Cederquist et al., 2020), 

providing a framework to disentangle genetic heterogeneity associated with autism and 

identify converging molecular and cellular phenotypes of diverse disease variants. However, 

the number of modeled variants here remains small, and the way to individually CRISPR-

engineer the mutations would not be suitable to further scale up the number of assayed 

variants.

To substantially increase the number of variants/genes (100s or 1000s) to be modeled, 

pooled, or multiplex CRISPR/Cas9 SNP/gene editing or epigenome editing will be needed. 

The editing will be mediated by low-MOI (multiplicity of infection) lentivirus infection 

to introduce single guide RNAs (sgRNAs) into each cell, followed by molecular and 

phenotypic screening at a single-cell resolution (F 2c). For modeling LoF mutation, 

CRISPR/Cas9 editing can be used to systematically create small indels in protein-coding 

regions through non-homologous end joining (NHEJ) repair of double-strand breaks (DSBs) 

(Ran et al., 2013), resulting in protein-truncating mutations. Alternatively, LoF mutation 

can be efficiently generated by introducing premature protein stop codon using CRISPR 

cytosine base editors (CBE) without creating DSBs (Cuella-Martin et al., 2021; Xu et al., 

2021). To mitigate the cell-toxic DSBs and off-target editing of DNAs associated with 

CRISPR/Cas9 editing (Ran et al., 2013), or the possible off-target RNA editing associated 

with CBE editing (Cuella-Martin et al., 2021; Xu et al., 2021), CRISPRi (Holtzman and 
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Gersbach, 2018) or its more effective version, CRISPRoff (Nunez et al., 2021) can be used 

to transcriptionally repress the expression of the sgRNA-targeted genes by rewriting the 

epigenomic state without changing DNA sequences (i.e., epigenome editing). Compared to 

modeling LoF mutation, precisely editing many risk SNPs in iPSCs remains challenging 

due to the low homology-directed repair (HDR) efficiency in CRISPR/Cas9 editing (Ran 

et al., 2013). However, the rapidly evolving high-efficiency SNP base editing system (CBE 

or ABE) (Cheng et al., 2021; Cuella-Martin et al., 2021; Hanna et al., 2021; Richter et al., 

2020) may enable massive parallel assessment of hundreds or thousands of SNPs in iPSCs.

For the above-described pooled editing of many risk variants/genes, it is essential that 

sgRNA barcodes individual cells for molecular and cellular phenotyping at single-cell 

resolution. Molecular phenotyping (e.g., transcriptomic level) is relatively easy because 

scRNA-seq can distinguish individual cells barcoded by single gRNAs thus allowing to 

assess SNP/gene editing effect on cis-target gene expression or transcriptomic changes. 

However, cellular phenotyping can be challenging depending on whether the cellular 

phenotype can be subject to cell sorting. For a phenotype that can be distinguished by 

cell sorting, cells that underwent the pooled editing can be sorted into two groups and 

the effects of genetic variants can be analyzed as described for CRISPRi pooled screening 

(Nunez et al., 2021). For morphological phenotype such as neuron dendritic branches, a 

combination of Pro-Code technique to barcode each gRNA/edited cell (Wroblewska et 

al., 2018) with CODEX multiplex imaging of single cells (Goltsev et al., 2018) may be 

needed (Fig. 2c). In this setting, each gRNA, and thus each cell infected by the gRNA, 

will be tagged by a combination of 3 or more genetic barcodes detectable as protein 

tags (Pro-Codes) (Wroblewska et al., 2018). Then, each pro-code barcoded cell can be 

imaged sequentially for each protein tag using the CODEX technique that also allows 

interrogating the immunofluorescence staining of cell-specific markers (e.g., PSD95) as part 

of the CODEX detection panel (Goltsev et al., 2018). The obtained single-cell imaging data 

can be used for ascertaining the cellular phenotypic effects of each risk variant/gene in a 

pooled or multiplexed CRISPR SNP/gene editing.

6.2. Functional and mechanistic interpretation of noncoding risk variants

Functional interpretation of noncoding variants is important, because most GWAS risk 

variants of neuropsychiatric risk variants, like for other complex disorders, are in the 

noncoding part of the genome. Furthermore, as whole genome-sequencing data in large 

samples become available, it is conceivable that some rare noncoding variants may be 

found associated with disease similarly to those rare coding variants identified by SCHEMA 

(Singh et al., 2020). However, it is challenging to study the function of common noncoding 

risk variants in primary human tissues and at early development stages, particularly for 

brain disorders. Although brain eQTL, chromatin-accessibility QTL (caQTL) and chromatin 

interaction (Hi-C) data from PsychENCODE (Gandal et al., 2019; Gandal et al., 2018; Li 

et al., 2018; Rajarajan et al., 2018; Wang et al., 2018) are instrumental for prioritizing 

functional noncoding risk variants, iPSC-based models can provide additional regulatory 

dimension at early neurodevelopment stage that may not be captured by brain QTL 

mapping. Furthermore, because iPSC models are amenable to genetic manipulation, they 
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can provide mechanistic insight on how noncoding risk variants may affect disease risk 

genes.

eQTL can inform noncoding regulatory variants that are associated with one or more target 

genes in cis or in trans. The only eQTL mapping study in an iPSC model is for dopaminergic 

neurons differentiated from 215 iPSC lines, a sizable sample for iPSC study (Jerber et 

al., 2021). Leveraging the scRNA-seq profiling at a single-neuron resolution, eQTLs were 

identified for both relatively pure dopaminergic neurons and another intermediate subtype 

of cells at different differentiation stages. Although iPSC-derived eQTL maps mimic in 

vivo GTEx brain eQTL maps, about 2366 eQTL were detected only in iPSC models. Of 

the 1284 eQTL colocalized with known neurological trait risk loci, 46% are not found in 

the GTEx catalog (Jerber et al., 2021), highlighting the added value of mapping eQTLs in 

iPSC models. Identifying eQTLs in other brain cell types relevant to major neuropsychiatric 

disorder, e.g., glutamatergic and GABAergic neurons co-cultured and differentiated from a 

moderate number of iPSC lines, is warranted.

There has been no available caQTL dataset for iPSC-derived neurons. Chromatin 

accessibility precedes gene transcription and can help interpret regulatory noncoding 

variants. Similar to the concept of caQTL, we have recently mapped putatively functional 

noncoding variants that showed differential allelic chromatin accessibility, as we designated 

as allele-specific open chromatin (ASoC), in NPC, glutamatergic (including both NPC-

derived and NGN2-induced), GABAergic and dopaminergic neurons derived from 20 iPSC 

lines (Zhang et al., 2021a; Zhang et al., 2020). Because ASoC directly compares the 

two alleles within an individual, it is expected to be a more sensitive assay of chromatin-

regulating variants than traditional QTL analysis using cross-sample variation (i.e., caQTL) 

(Calderon et al., 2019; Zhang et al., 2020). ASoC SNPs frequently alter expression (Forrest 

et al., 2017; Zhang et al., 2020) but act upstream of transcription, thus complementing eQTL 

analysis. Importantly, neuronal ASoC SNPs, compared to open chromatin peak regions, 

exhibited much stronger enrichment for SZ risk variants (Zhang et al., 2021a; Zhang et al., 

2020). The neuronal ASoCs were partially driven by altered transcription factor binding, 

overrepresented in brain gene enhancers and eQTLs, and frequently associated with distal 

genes through chromatin contacts. We also identified abundant neuronal open chromatin 

peaks not detected in brains. Our ASoC analysis in iPSCs highlights ASoC as a functional 

mechanism of noncoding neuropsychiatric risk variants, providing a powerful framework for 

identifying disease causal variants and genes.

eQTL mapping is association-based and does not directly inform which is the functional 

SNP among its LD proxies (R2 >0.8). ASoC may directly point to a functional SNP but still 

needs orthogonal functional validation as we demonstrated (Zhang et al., 2020). Massive 

parallel reporter assay (MPRA) provides a powerful approach to systematically test the 

regulatory potential of tens of thousands of noncoding GWAS risk variants, thus enabling 

to cross-validate or screen for the putatively functional variants prioritized from QTL 

mapping and GWAS. MPRA has been used to test GWAS risk variants of neuropsychiatric 

and neurological disorders in non-neuronal cells (Myint et al., 2019; Myint et al., 2020), 

where both alleles of each SNP along with the ~ 100-bp flanking sequence at each side 

are synthesized and cloned next to a minimal promoter, sequence-based barcode, Kozak 
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consensus sequence, and the GFP gene, into a construct for transducing or transfecting 

mammalian cells. The level of expression of the barcodes in the RNA of both alleles will 

be compared to determine whether the targeted sequences of both alleles differentially 

drive gene expression. Among several variations of MAPR such as STARR-seq (Arnold et 

al., 2013) and capSTARR-seq (Vanhille et al., 2015), a lentivirus-based MPRA approach, 

as described by Gordon et al. (2020), may be most suitable for systematically efficiently 

infecting neuronal cells. Despite its limitation of only testing SNP function on a very short 

surrounding sequence without the intact genomic sequence context, MPRA in iPSC-neurons 

will be invaluable in providing direct functional evidence for noncoding risk variants of 

neuropsychiatric disorders.

To gain mechanistic insight on disease GWAS associations, it is imperative to tie the 

functional noncoding risk variants to their cis- or trans-regulated target genes. While 

eQTL mapping can help make the connection, chromatin contact mapping (Hi-C) provides 

direct evidence for physical interaction between a risk variant and its target gene(s). With 

iPSC-derived NPCs, neurons, and astrocyte-like glial cells as in vitro models of human 

brain development, Rajarajan et al. mapped genome-wide chromatin contacts, or “three-

dimensional genome” (3DG), in different cell types using Hi-C (Rajarajan et al., 2018). It 

was found that many SZ risk loci showed 3DG connections with genes outside the risk 

loci, representing long-range distal gene regulation and expanding the putative disease risk 

genes by 50 to 150% (Rajarajan et al., 2018). Although most 3DG connections involved in 

these disease risk loci still need orthogonal validation, the concept of long-range regulation 

was independently confirmed by a recent mapping of cis-regulatory chromatin contacts in 

neural cells using promoter capture-HiC (Song et al., 2019). Hundreds of thousands of 

long-range cis-interactions between promoters and distal promoter-interacting regions, many 

of which are cell type-specific, were identified in iPSC-derived excitatory neurons, lower 

motor neurons, hippocampal dentate gyrus-like neurons, and in primary astrocytes, enabling 

to link regulatory elements to their target genes (Song et al., 2019).

In support of the widespread long-distance cis-target genes, our focused study of a SZ 

risk variant rs2027349 showing strong ASoC near VPS45 found that CRISPR editing 

of rs2027349 altered the expression of VPS45, lncRNA AC244033.2, and a distal gene, 

Clorf54, in human neurons. Notably, we found all three cis-target genes of rs2027349 

contribute to the cellular phenotype change in a non-additive manner, which was supported 

by chromatin contacts between the risk variant and all three cis-target genes, including the 

distal Clorf54 (Zhang et al., 2021a). The compound effects of all three cis-genes in the 

same GWAS locus (VPS45) (Zhang et al., 2021a) resemble the synergistic transcriptional 

effects of multiple SZ risk loci that were recently demonstrated in iPSC-derived neurons 

(Schrode et al., 2019), albeit the lack of 3DG chromatin contacts between those different SZ 

risk loci (Rajarajan et al., 2018). Thus, iPSC modeling provides mechanistic insight on how 

noncoding risk variants function and confer disease risk.

6.3. Cellular state- or context-specific effects of risk variants

Context-specific regulatory variants can unmask hidden disease heritability, which has 

been well demonstrated for immune disorders (Calderon et al., 2019; Farh et al., 2015; 
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Kim-Hellmuth et al., 2017; Lee et al., 2014; Ramos-Rodriguez et al., 2019). Many 

risk variants of immune disorders are functional only in stimulated cells; for instance, 

cytokine stimulation of pancreatic β-cell unmasks abundant novel regulatory sequences, 

and remarkably, only stimulated enhancers are enriched for type 1’ GWAS variants (Ramos-

Rodriguez et al., 2019). For neuropsychiatric disorders, the commonly used postmortem 

brains tissues (e.g., by PsychENCODE) (Amiri et al., 2018; Gandal et al., 2018; Li et 

al., 2018; Rajarajan et al., 2018), cannot capture the effects of disease variants in specific 

biological contexts, e.g., developmental stages and responses to stimuli (Calderon et al., 

2019; Farh et al., 2015; Kim-Hellmuth et al., 2017; Lee et al., 2014) (Calderon et al., 

2019; Farh et al., 2015; Kim-Hellmuth et al., 2017; Lee et al., 2014). In mice, neuronal 

activity in response to neurotransmitters leads to Ca2+ influx, activating early response genes 

(ERGs; e.g., FOS) and late response genes (LRGs; e.g., BDNF), regulating dendritic growth, 

synapse development, and neuronal plasticity (Yap and Greenberg, 2018). Some cytokines 

(e.g., IL-4, IL-17, and IFN-r) also affect neuronal activity, leading to neurodevelopmental 

abnormality and behavioral changes in animal models (Filiano et al., 2016; Reed et al., 

2020; Ribeiro et al., 2019; Vogelaar et al., 2018). At a molecular level, neural activity in 

mouse brain induced drastic alterations of OCRs, accompanied by expression changes of 

2000–5000 genes within 4–6 h (Fernandez-Albert et al., 2019; Su et al., 2017).

iPSC-derived neurons provide a cellular model suitable for testing neural activity-dependent 

changes and the effects from disease risk variants. In vitro, a variety of stimuli like 

membrane-depolarizing levels of potassium chloride (KCl) can induce neuronal activity 

that mimics the in vivo effects of visual and social experiences, stress, or drugs of abuse 

in mice (Yap and Greenberg, 2018). With a small sample size (iPSC lines from 4 SZ 

cases vs. 4 controls), Roussos et al. identified >1000 differentially expressed genes in 

iPSC-derived neurons in response to KC1 depolarization (Roussos et al., 2016). The robust 

activity-dependent gene expression may be partially due to activity-dependent secretion 

of catecholamines—dopamine (DA), norepinephrine (NE), and epinephrine (Epi), which 

was found elevated in SZ cases (Hook et al., 2014). A recent comprehensive activity-

dependent transcriptional and epigenetic profiling of iPSC-derived GABAergic neurons 

further identified a genome-wide profile of activity-dependent enhancers and promoters 

(Boulting et al., 2021), and the inducible promoters were found significantly enriched for 

heritability of ASD, suggesting the sequence variants within activity-inducible promoters of 

developing human forebrain GABAergic neurons contributes to ASD risk (Boulting et al., 

2021).

To systematically identify neuronal activity-dependent functional variants in major neuronal 

cell types relevant to neuropsychiatric disorders, we have designed an experiment that 

combined the co-culture of iPSC-derived excitatory and inhibitory neurons and scRNA/

ATAC-seq in about 100 iPSC lines (See NIH RePORTER, PI: Duan) (Fig. 3). iPSC lines of 

different donors in the co-culture can be demultiplexed (Kang et al., 2018) based on their 

genotypes. Stimulated neurons co-cultured with glial cells will be assayed by scRNA-seq 

and by scATAC-seq (or by using 10 x Genomics’ Multiome kit), followed by mapping 

of stimulation-specific eQTLs and ASoC SNPs or caQTLs different time points of neural 

activation (Fig. 3). The neural activity-dependent regulatory variants will complement our 
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previous ASoC (Zhang et al., 2020) and existing brain eQTL datasets (Amiri et al., 2018; 

Gandal et al., 2018; Girdhar et al., 2018; Psych et al., 2015; Rhie et al., 2018; Wang et al., 

2018), expanding the repertoire of regulatory neuropsychiatric risk variants that may affect 

chromatin accessibility and gene expression only in activated/stimulated hiPSC neurons.

6.4. Dysfunctional mitochondria in neuropsychiatric disorders

There is a growing body of evidence that supports the role of mitochondrial dysfunction 

in neuropsychiatric disorders (Andreazza and Nierenberg, 2018; Ben-Shachar, 2017; Kato 

et al., 2011; Kim et al., 2019; Morava and Kozicz, 2013; Pei and Wallace, 2018). The 

reasoning behind the hypothesis was that since the mitochondria are the powerhouse of 

the cells, and the brain consumes a significant proportion of the bodies energy evident in 

the abundance of mitochondria in brain cells, individuals whose mitochondria functions 

suboptimally are more prone to stress-associated pathologies, thus, are more susceptible 

to neuropsychiatric disorders (Andreazza and Nierenberg, 2018; Kim et al., 2019; Morava 

and Kozicz, 2013; Pei and Wallace, 2018). Multiple mtDNA deletions have been associated 

with BD and SZ (Kato, 2011; Mancuso et al., 2008) or depression (Gardner et al., 2003). 

Some reports also show a higher prevalence of neuropsychiatric disorders in people with 

mitochondrial diseases compared to patients with other metabolic disorders and their 

relatives or the general population (Grover et al., 2006; Kato, 2011; Levey et al., 2020; 

Oexle and Zwirner, 1997). In one mtDNA association study on 50,000 individuals, including 

cases of eleven different diseases as well as controls, SZ was among the top diseases that 

had a significant association with certain mtDNA polymorphisms (Hudson et al., 2014). 

Moreover, alterations in complex I and complex IV in the respiratory chain could be found 

in SZ patients that had mtDNA deletions in their brain tissues (Whitehurst and Howes, 

2022). In addition to evidence from studies on human patients and cells, multiple studies 

on mice support the theory that mitochondrial dysfunction may be directly involved in the 

pathology of neuropsychiatric disorders (Hovatta et al., 2010; Kato et al., 2011; Salim et al., 

2010).

More recently, the role of mitochondrial dynamics in iPSCs has become of interest (Sercel 

et al., 2021), and iPSC models of dysfunctional mitochondria in neuropsychiatric disorders 

are being used to understand the pathogenic aspects that cannot be explained by the nuclear 

DNA (Zilocchi et al., 2020). Compared to other neuropsychiatric disorders, more focus 

has been given to studying mitochondrial dysfunction of SZ using iPSC models (Ni and 

Chung, 2020). iPSC-derived neural cells from SZ patients showed alterations in oxidative 

phosphorylation (OXPHOS) and ROS levels (Brennand et al., 2015; Li et al., 2019; Li et al., 

2021b; Ni et al., 2020), disruption in mitochondrial membrane potential and respiration 

(Robicsek et al., 2013) (Brennand et al., 2015), and affected biochemical and protein 

networks in mitochondria in neurons (Li et al., 2019; Ni et al., 2020; Robicsek et al., 2013; 

Sullivan et al., 2019). One study found that co-culturing iPSC-derived neurons from SZ 

patients with activated microglia results in disruption in mitochondrial function that was not 

observed in controls (Park et al., 2020). Specific genetic risk factor of SZ, e.g., 22qdeletion, 

has also been linked to dysfunctional mitochondria in patient-specific iPSC models (Li et al., 

2019). However, it remains to be established whether mitochondria dysfunction is the causal 

factor or consequence of neuropsychiatric disorders.

Muhtaseb and Duan Page 24

Schizophr Res. Author manuscript; available in PMC 2023 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite the lack of a causal mechanistic link between dysfunctional mitochondria and 

neuropsychiatric disorders, iPSC modeling may help establish mitochondria as a potential 

therapeutic target for some neuropsychiatric disorders (Marazziti et al., 2012; Pei and 

Wallace, 2018). For instance, studies on animals and cellular models found that some current 

mood-stabilizing drugs and antidepressants, including lithium, valproate, and selective 

serotonin reuptake inhibitors, are known to affect mitochondrial energy metabolism and 

antioxidant activity in patients and animal models (Jou et al., 2009; Wu et al., 2013; 

Zilocchi et al., 2020). Other studies of SZ patients’ iPSC-derived neurons found that 

stimulating mitochondrial biogenesis by treating cells with bezafibrate and antioxidants 

(e.g., α-lipoic acid and acetyl-L-carnitine) can reverse mitochondrial deficits and abnormal 

arborization in SZ patients’ neurons (Li et al., 2021b; Ni et al., 2020; Park et al., 2020). Even 

some over-the-counter antioxidant supplements, such as mitoquinones, show anxiolytic and 

neuroprotective effects (Cocheme et al., 2007; Filiou and Sandi, 2019; Nussbaumer et al., 

2016; Snow et al., 2010). In this regard, it is noteworthy that treating iPSC-derived neurons 

of familial Parkinson’s disease (PD) patients with small molecules that target mitochondrial 

stress can rescue PD-relevant neuronal deficits (Cooper et al., 2012).

Studying mitochondrial dysfunction in iPSCs also has general implications for iPSC 

modeling of neuropsychiatric risk factors. This is because mtDNA is prone to mutations, 

which can affect the cell’s survival, health, and pluripotency of iPSCs (Sercel et al., 

2021; Tian et al., 2021). To that point, only very few known mtDNA polymorphisms 

have been studied in hiPSCs (Sercel et al., 2021), which means that controlling cell 

culture conditions, proliferation, and differentiation in hiPSCs with mtDNA heteroplasmy 

(and related mutations) is a necessary subject of investigation. Resolving such issues is 

important for minimizing any mtDNA mutation-caused potential poor reproducibility and 

functional discrepancies from different iPSC clones in disease modeling. New advances in 

mtDNA gene editing (Mok et al., 2020) can open the door to better modeling mitochondrial 

dysfunction in hiPSCs.

7. Conclusion

Tractable and reproducible experimental models are pivotal for bridging the gap between 

genetic findings and disease biology. For modeling genetic risk factors of neuropsychiatric 

disorders, because of the inherent limitation on drawing causal inferences about psychiatric 

disease mechanisms, it is critical to clearly define the research question, carefully select 

the most appropriate experimental system, and rigorously design a well-powered study (see 

guidelines in a recent review (Alexander Arguello et al., 2019)). With iPSC-derived 2D 

and 3D models, studying both common and rare risk variants of neuropsychiatric disorders 

has provided valuable mechanistic insights on how genetic risk factors contribute to disease 

risks. However, the exact cellular phenotypes and causal molecular mechanisms for each 

neuropsychiatric disorder remain poorly understood. Most iPSC modeling studies focus on 

single variants/genes and use a small number of iPSC lines, which may have contributed 

to the inconsistencies across studies. To improve the robustness and reproducibility of 

disease variant modeling, it is critical to implement or develop novel methods to scale 

up the number of iPSC lines and disease risk variants in a systematic manner. Enough 

cell lines and variants, in combination with cutting-edge CRISPR/Cas9 gene editing and 
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single-cell multi-omics methods, will enable the field to identify convergent molecular 

and cellular phenotypes that are relevant to a specific disorder or reflective of cross-

disorder genetic pleiotropy. It is equally important to further improve the fidelity of 

iPSC models, especially the brain organoids, by minimizing the stochastic developmental 

processes and increasing the spatial and temporal control to better recapitulate the in vivo 

neurodevelopment and brain function. To account for the functional effects from “missing 

heritability,” it is imperative to consider cellular state or context-specific regulation, gene 

x environmental interaction, and mtDNA mutations. Finally, neuropsychiatric disorders are 

polygenic, or even “omnigenic” where thousands of peripheral genes confer disease liability 

by perturbing a core set of genes (Boyle et al., 2017), it is thus increasingly clear that 

most risk genes function as gene networks controlled by master regulators (MRs) such 

TFs (Doostparast Torshizi et al., 2019). Instead of modeling individual risk variants/genes, 

network perturbation of MRs and other core genes by multiplex CRISPR/Cas9 editing in 

iPSCs may be needed to more faithfully recapitulate the molecular and cellular phenotypes 

that are relevant to neuropsychiatric disorders.
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Fig. 1. 
The type of neuropsychiatric risk variants and the disease relevant cellular phenotypes in 

iPSC modeling. Red, blue or black arrow indicates iPSC modeling for rare variants/CNV, 

common variants, or polygenic risk factors, respectively. LoF = loss of function; CNV 

= copy number variants; Ex = excitatory neurons; Inh = inhibitory neurons; iMG = iPSC-

derived microglia. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 2. 
Approaches for scaling up the number of iPSC lines and/or genetic risk variants/genes 

as well as cellular phenotyping. (a) Individually cultured iPSC lines on multi-well plates 

assayed by high-content imaging, (b) iPSC lines co-cultured on a dish, i.e., a “cell village” 

approach, combined with a pooled phenotype screening. (c) Scaling up the number of 

genetic risk variants for iPSC modeling by employing a ProCode approach combined with 

CODEX multiplex imaging at single-cell resolution.
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Fig. 3. 
A schematic design of assaying neural activity-dependent functional noncoding SNPs in a 

co-culture system. The co-cultured excitatory and inhibitory neurons can be stimulated by 

KCl, followed by scATAC-seq/scRNA-seq to separate Ex and Inh neurons, astrocytes (Ast), 

and residual NPCs (middle). Cell type-specific regulatory SNPs that affect gene expression 

(reQTL) and chromatin (ASoC) are identified (right).
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