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Abstract: Under the context of digital economy, agricultural production will be promoted by imple-
menting the strategy of digital rural construction and giving full play to the role of digital factor
productivity. This study systematically explains the mechanism of how digital rural construction
affects the efficiency of green transformation for cultivated land use. The panel data of 30 provinces
in China from 2011 to 2020 are analyzed through two-way fixed effect, spatial Dubin model and
other methods, so as to better understand the impact of digital rural construction on the efficiency of
green transformation for cultivated land use and its spillover effect. It is discovered in the study that
digital rural construction is effective in enhancing the efficiency of green transformation for regional
cultivated land use, and that this promoting effect stands multiple robustness tests. According to the
heterogeneity analysis, the promoting effect of digital rural construction is more significant in the
eastern region and among the samples with high green transformation efficiency of cultivated land
use. In addition to improving the efficiency of green transformation for cultivated land use in the
region, digital rural construction can also produce a positive spatial spillover effect to a significant
extent. On this basis, the targeted policy recommendations are made in this paper. The first one is to
improve the efficiency of green transformation for cultivated land use by accelerating the process of
digital rural construction. The second one is to pay close attention to the differences in the process of
digital rural construction. The third one is to better understand the “welfare sharing” characteristics
of digital rural construction. The last one is to establish a mechanism of regional cooperation.

Keywords: green transformation; digital village; land use transformation; land use efficiency

1. Introduction

For a long time, the extensive use of chemical fertilizers, pesticides, herbicides and
other chemicals in the process of farmland utilization in China has led to various problems,
such as the imbalance of soil nutrients, the decline of fertility and the reduction in organic
matter content, which makes soil and water pollution increasingly severe. Meanwhile, it
has seriously impaired the supply capacity of high-quality and safe agricultural products in
China [1,2]. This poses tough challenges to the protection of cultivated land resources, the
sustainable development of agricultural economy as well as the stability of society and the
economy [3], which hinders the comprehensive, coordinated and sustainable development
of economy and society. It is thus imperative to accelerate the transformation of mode
of agricultural development and actively promote the green transformation of cultivated
land utilization. Promoting the green transformation of cultivated land utilization is
considered an effective strategic solution to resolving the resource and environmental
crisis caused by agricultural development [4]. The green transformation of cultivated
land utilization can promote the sustainable development of agricultural systems, given
the limited water and soil resources carrying capacity, thus maintaining the health of
the earth. The green transformation of cultivated land use represents the core idea of
green agricultural development. With the promotion of green agricultural development,
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the complexity of the external environment and the evolution of the food consumption
structure, there also new challenges facing the green transformation of cultivated land
use [5]. Supported by such basic research as digital earth work and technology support
systems, digital technology is applied to construct an information network through software
development and hardware integration, which is conducive to agricultural production,
management, sustainable development, environmental protection, research and knowledge
dissemination [6]. Agricultural technology is expected to assist farmers in making wise
decisions, improving crop quality and yield, and reducing the impact of agricultural
production on the environment [7]. The digital village is classed as a new variety of
information technology, similar to the internet of things, cloud computing, big data and
mobile internet, the aim of which is to promote the comprehensive and profound integration
of digital and agricultural rural farmers’ production and life [8]. This is beneficial to the
improvement of efficiency in the green transformation of cultivated land utilization.

The existing research on the impact of digitization on agricultural and rural areas
mainly places focus on the impact of digitization on rural production and life. On the one
hand, the impact of digitization on rural life is reflected mainly in the improvement of the
cooperative relationship between rural construction subjects, the enhancement of rural
governance efficiency [9], the improvement of efficiency in public service supply [10] and
the upgrading of farmers’ consumption [11]. On the other hand, the impact of digitization
on agricultural production relates mainly to the utility of agricultural digitization. Through
data sharing, digital agriculture empowers farmers to make wise decisions, significantly
improve labor productivity and crop yield, reduce energy and material costs and mitigate
the impact on the environment [12]. In rural areas with low levels of digital infrastructure,
it makes up for other facilities [13]. With the support of basic digital earth work and
technology support systems, digital agriculture builds an information network through
software development and hardware integration, for practical application in various fields
such as detection, transmission and storage of information, artificial intelligence and cloud
technology, as well as the management decision-making based on robot technology [14].
This plays a positive role in the optimization of agricultural production process [15], the
improvement of management systems [16] and the expansion of product sales channels [17],
environmental protection [12], sustainable development and knowledge dissemination.
With digital technology adopted to monitor the use of agricultural subsidies, the efficiency
of fund use can be improved and government officials can be prevented from abusing
their power and misappropriating agricultural subsidies [18]. The practice of digital
agriculture contributes to the rapid development of agriculture in various countries [6],
which is a positive response from the relevant application subjects [19]. Gaining a better
understanding of land use and soil conditions can promote the development of agricultural
production [20]. The application of digital technology can make users fully understand the
impact of different use methods on ecosystem services, with useful information provided
for better decision-making on the improvement of land management and ecosystem service
quality [21].

Digitization facilitates the transformation of cultivated land use by improving the
management system of cultivated land use [22], optimizing crop rotation [23], estimating
agricultural irrigation water consumption [24] and improving the operability of agricultural
machinery [25]. The impact of digitization on cultivated land use is reflected mainly in the
use of digital soil maps, digital elevation models, satellite images and climate data, along
with the application of remote sensing and geographic information system technologies to
analyze the characteristics of soil quality [26,27], monitor the changes in cultivated land [28]
and environmental changes [29], as well as analyze and predict the impact of changes in
cultivated land use on natural landscapes [30]. This not only provides technical support
for preserving biodiversity, maintaining and strengthening ecosystem services [31,32], but
also creates opportunities for the green use of cultivated land. The green transformation of
cultivated land use represents a new trend under the context of agricultural green transfor-
mation. Prompted by the trend of green agricultural development, scholars have gradually



Int. J. Environ. Res. Public Health 2022, 19, 16159 3 of 18

paid attention to the adverse impact of cultivated land use on the environment [33], the sus-
tainability and stability of existing cultivated land use models, and other issues. Manifested
as the temporal change of regional cultivated land green use patterns, the green transforma-
tion of cultivated land use is the constant improvement and innovation of cultivated land
use system elements with green development as the premise, to guide cultivated land use
activities towards green development [34]. Emphasizing the trinity of “quantity, quality
and ecology” [35], the green transformation of cultivated land use aims to achieve the dual
goals of “green” and “transformation”. This provides an effective solution to achieving the
coordinated development of cultivated land use and the environment [36].

As for the existing studies on the transformation of cultivated land use, most of
them focus on the theory and research framework of the transformation of cultivated
land use [37], the transformation form of cultivated land use [38], the spatiotemporal
evolution characteristics and mechanism [39], as well as the transformation influencing
factors [40], with the emphasis placed more on the spatial transformation and functional
transformation of cultivated land use [41]. Despite some studies paying attention to the
impact of cultivated land use on green development, there are still few studies focusing on
the green use of cultivated land in combination with rural digitization. Therefore, this study
starts with the mechanism of how rural digitization affects the green transformation of
cultivated land use. Then, a discussion is conducted about the impact of rural digitization
on the efficiency of green transformation for cultivated land use from three perspectives:
the motivation of farmers, the opportunity to choose green transformation of cultivated
land use and the ability to do so. The proposed hypotheses are tested mathematically
to provide theoretical reference for improving the efficiency of green transformation of
cultivated land use. The contributions of this study are detailed as follows. Firstly, the
development effect of green use of cultivated land is accurately reflected by giving careful
consideration to the negative effects of carbon emissions and non-point source pollution
caused by cultivated land use. Secondly, some research assumptions are made under a
research framework on the motivation, opportunity and ability of rural digital construction
to affect the adoption of green transformation behavior of cultivated land use by farmers.
Furthermore, China’s provincial panel data are used to empirically explore the impact of
rural digital construction on the efficiency of green transformation of cultivated land use.
Lastly, by further analyzing the spatial factors, this study explores the spatial spillover
effect of rural digital construction on the efficiency of green transformation for regional
cultivated land use. This enriches the research on the efficiency of rural digital construction
and regional cultivated land use green transformation from a spatial perspective.

2. Theoretical Analysis and Research Hypothesis
2.1. Impact Mechanism Analysis

As a classic theory in behavioral organization theory, motivation opportunity ability
(MOA) theory [42] is proposed to explore the influencing factors for individual decision-
making. According to this theory, the decision-making of individual behaviors is influenced
by the three factors: motivation, opportunity and ability. Among them, motivation refers to
the driving force that motivates individuals to engage in certain activities. Opportunities
refer to the favorable conditions faced by individuals when they engage in certain activities,
such as advanced technology and equipment, favorable market environment and high
financial subsidies. Ability refers to the internal conditions required by individuals to
implement decision-making behaviors, such as knowledge reserves and material capital,
etc. Whether the production behavior of farmers, who are the direct decision-maker and
executor of cultivated land use, can be “green” is essential for improving the efficiency of
green transformation of cultivated land use. Therefore, the MOA theory is applied in this
section to construct a framework for analyzing the impact of digital rural construction on
the efficiency of green transformation for cultivated land use.

Firstly, the construction of the digital countryside can support the efforts to cultivate
the awareness and concept of green production among farmers, thus improving the ef-
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ficiency of green transformation of cultivated land use on motivation levels. There are
three factors that affect the green transformation of cultivated land utilization. One is
the innovation of agricultural technology and another is the upgrading of production
equipment. The last one is the transformation of farmers’ understanding about the relation-
ship between agricultural production and the ecological environment [43]. Therefore, the
concept of green development is crucial to the whole process of cultivated land use, so as
to promote the shift from the traditional extensive cultivated land use mode characterized
by “high input, high output and high pollution” [44] to the green cultivated land use mode
which is characterized by “resource conservation and environmental friendliness”. Digital
technology can provide farmers with diversified information, help them eradicate back-
ward thinking and enhance the recognition given to the green transformation of cultivated
land [45]. In addition, the main body of digital information dissemination tends to attract
the attention of netizens through negative news coverage. Compared with positive news,
negative news is more likely to trigger emotional resonance among netizens, cause tension
and anxiety and prompt netizens into riskier avoidance behaviors [46]. When farmers are
exposed to a lot of negative news about farmland pollution, food safety and other issues,
they will re-examine whether their mode of agricultural production is reasonable. The
formation of awareness and concept of green production among farmers will translate
into conscious behavior, which motivates farmers to engage in the green transformation of
cultivated land use, thus improving the efficiency of green transformation for cultivated
land use.

Secondly, the construction of digital countryside is conducive to improving the techni-
cal support for agricultural production and enhancing the efficiency of green transformation
for cultivated land utilization from the perspective of opportunity. The efficiency of culti-
vated land utilization is affected not only by natural factors such as landform, soil fertility,
climate and hydrology, but also by various social and economic factors such as production
technology and infrastructure level. Natural factors play an increasingly important role in
the practice of modern agricultural production [47]. Digital rural development is beneficial
to integrate modern production technology and infrastructure into the utilization of cul-
tivated land resources, upgrade the utilization mode of cultivated land [48] and enhance
the efficiency of green transformation for cultivated land utilization through technolog-
ical innovation. Specifically, through the agricultural big data system, farmers can take
advantage of the sensor nodes and information transmission network of agricultural pro-
duction sites, satellite remote sensing, unmanned aerial vehicles and other tools to collect
the data and images related to agricultural product planting conditions, growth status,
natural disaster prediction and other data. Remote real-time monitoring and tracking are
performed through the use of smart phones, computers and other devices for the intelligent
perception of agricultural production, which is required to formulate targeted production
decision-making schemes (such as appropriate input of chemical fertilizers, pesticides, etc.).
On the one hand, intelligent and precise agricultural production is conducive to lowering
factor input costs and improving the efficiency of agricultural production and resource
utilization. On the other hand, the input of agricultural factors, especially such agricultural
chemicals as chemical fertilizers and pesticides, is a major contributor to agricultural car-
bon emissions [49] and environmental pollution [50]. Intelligent and precise agricultural
production is effective in reducing the amount of chemicals used in the process of farmland
utilization, achieving clean production and waste recycling, reducing the negative external-
ities of agricultural production, and improving the efficiency of green transformation for
farmland utilization.

Finally, the construction of digital countryside supports farmers in increasing their
material capital and improving the efficiency of green transformation for cultivated land
use on the capacity level. As economic people, farmers have to make rational choices on the
adoption of green transformation behavior and the degree of transformation after carefully
weighing up their own existing material capital, which is stimulated by the change of green
development awareness and the innovation of production technology conditions. The
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efficiency of green transformation for cultivated land use may be constrained by the fact
that the material capital possessed by farmers cannot meet the needs of corresponding
behaviors, as a result of which they show a low level of willingness or exclusion [4]. There
are two ways that digital rural construction affects the material capital level of farmers:
the increase of financing capacity and the improvement of incomes. On the one hand, the
construction of digital countryside enables farmers to better understand and identify other
financing channels through the internet and other ways to improve financing efficiency [51].
With the updating of rural information technology, digital inclusive finance gains popularity
in rural areas. By reducing the cost of services offered by traditional financial institutions,
it improves the permeability of financial services and expands the coverage of financial
services. It provides more efficient channels of financing for the vulnerable groups in rural
areas who have been excluded from the financial market for a long time [52]. On the other
hand, digital rural construction can not only promote the integration and upgrading of rural
primary, secondary and tertiary industries, but also increase the income earned by farmers.
The construction of the digital countryside has given rise to many emerging economic
forms. For example, the construction of e-commerce platforms is promoted in some rural
areas to expand the channels of agricultural product sales, promote the integration and
development of traditional agriculture and manufacturing, service industry, logistics and
other industries, and facilitate the vertical extension of the agricultural industry chain [53].
Through the clustering effect and scale effect of industrial cooperation under the context
of high-level rural digitization, farmers have their income boosted. In addition, with the
rise of the internet economy, farmers can rely on the internet to develop sidelines, which
improves their incomes, enables them to engage in the green transformation of cultivated
land use and thus enhances the efficiency of green transformation for cultivated land use.
Based on the above analysis, the following hypothesis is proposed:

H1. Digital rural construction is conducive to improving the efficiency of green transformation for
cultivated land utilization.

2.2. Spatial Spillover Effect

Furthermore, while promoting the efficiency of green transformation for cultivated
land use in this region, digital rural construction can also produce a positive spillover effect
on the efficiency of green transformation for cultivated land use in the surrounding areas.
It is mainly reflected in the fact that the widespread application of digital technology in the
context of digital rural construction accelerates the transmission of information between
different regions. The increasing width and depth of interregional economic activities,
production and life enable knowledge, technology, systems and policies to break the
constraints of time and region, thus promoting the rapid flow and renewal of production
factors. In this context, the in-depth interaction and exchange between regions can be
achieved to promote the process of knowledge, technology, systems and policies. On the
one hand, it can optimize the production concept and production capacity of farmers, thus
improving the efficiency of green transformation for cultivated land use. On the other
hand, due to the demonstration effect, the regions with relatively insufficient systems and
policies follow suit in adopting the systems and policies related to the use of cultivated
land in the adjacent high efficiency areas to reduce the cost of system innovation. Based on
the above analysis, the following hypothesis is proposed:

H2. Digital rural construction has a positive spillover effect on the efficiency of green transformation
for cultivated land use.
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3. Materials and Methods
3.1. Analytical Methods

In order to test the overall impact of digital rural construction on the efficiency of
green transformation for cultivated land use, the following benchmark regression model
is constructed:

GTCLUit= β0+β1Digit+β2Controlsit+εit (1)

where GTCLU represents the efficiency of green transformation for cultivated l and use;
Dig indicates the level of digital rural construction; ε denotes a random disturbance term;
i refers to the province; and t represents the year.

From the spatial perspective, a spatial econometric model is further constructed to
explore the spatial spillover effect of digital rural construction on the efficiency of green
transformation for cultivated land utilization. The commonly used spatial econometric
models include the spatial error model (SEM), spatial autoregressive model (SAR) and
spatial Dubin model (SDM). The spatial Dubin model (SDM) is divided into endogenous
and exogenous interaction effect models. With careful consideration given to the spatial
correlation of the missing variables that have an impact on the dependent variables to some
extent, it improves the accuracy of results of empirical analysis, which makes it superior to
other models [54]. Therefore, the spatial Dubin model (SDM) is adopted in this study to
test the spatial spillover effect. The model is expressed as follows:

GTCLUit= β0 + ∂ ∑
j

wijGTCLUjt + β1 Digit +τ1 ∑
j

wijDigjt + β2zControlsit+

τ2 ∑
j

wijControlsjt + µi + γt + εit
(2)

where wij represents the spatial weight matrix, or the binary adjacency matrix used in this
study to be specific; µi indicates the fixed effect of the province; γt denotes the fixed effect
of the year. Other variables have the same meanings as Equation (1).

3.2. Variables and Indicator System

(1) Explained variable: the green transformation efficiency of cultivated land use (GT-
CLU). Based on the connotation of green transformation of cultivated land use and
existing research results [47,55–57], an input and output evaluation index system is
established in this study (Table 1) that involves a composite system of “resources,
economy, society and ecological environment” to measure GTCLU. Among them,
the input indicators include land, labor, technology and capital, to reflect the green
“factor transformation” in the green transformation development of cultivated land
utilization. The land input adopts the indicator of the sown area of crops per worker,
to reflect the level of large-scale land management in the process of green transfor-
mation of cultivated land use. The labor input involves two indicators: the number
of employees in the planting industry and the number of agricultural technicians
in state-owned enterprises and institutions. The former reflects the input level of
general cultivated land labor force, while the latter reflects the input level of high-
quality agricultural talents in the green transformation of cultivated land utilization.
As for the technical input, it is represented by the comprehensive utilization rate of
agricultural machinery in the process of crop farming and harvesting, to reflect the
level of mechanization in the process of farming, planting, harvesting and other links
of production during the green transformation of cultivated land utilization. The
capital input is represented by the actual use of physical capital commonly used in the
process of farmland utilization, including the amount of chemical fertilizer converted,
the total power of agricultural machinery, the use of pesticides, the use of agricultural
film, the area of irrigation input and the use of diesel.
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Table 1. Evaluation index system of green transformation efficiency of cultivated land use.

Variable Variable Index Index Meaning

Input

Land The sown area of crops per worker
Total planting area of crops/number of

employees in planting industry
(hm2/People)

Labor force
Number of employees in planting industry Number of employees in planting

industry (10,000)

Number of agricultural technicians in
state-owned enterprises and institutions

Number of agricultural technicians in
state-owned enterprises and

institutions (person)

Technology Comprehensive utilization rate of crops
Weighted average value of machine

tillage rate, machine seeding rate and
machine yield (%)

Capital

Fertilizer input Amount of chemical fertilizer converted
into pure fertilizer (10,000 t)

Pesticide input Pesticide usage (10,000 t)

Input of agricultural film Amount of agricultural film
used (10,000 t)

Irrigation input area Effective irrigation area (thousand hm2)
Diesel input Diesel consumption (10,000 t)

Expected output Economic effect Agricultural output value Output value of planting industry
(100 million yuan)

Social effect grain yield Grain output (10,000 t)

Unexpected output Agricultural carbon emissions Total carbon emissions from cultivated
land use

Total agricultural carbon
emissions (10,000 t)

Agricultural non-point
source pollution

Agricultural non-point
source pollution emissions

Total agricultural non-point source
pollution (10,000 t)

The output indicators include expected output and unexpected output. The former
includes two elements. One is the economic benefits created by the cultivated land use
system given a certain level of factor input, which is expressed as the output value of the
planting industry. The other is the grain supply provided by the cultivated land utilization
system to ensure the national food security, which is expressed as grain output. Two
unexpected output indicators, agricultural carbon emissions and agricultural non-point
source pollution, are used to reflect the negative effects for the ecological environment in
the process of cultivated land use. Among them, agricultural carbon emissions are the
carbon emissions from five sources during the process of farmland utilization: chemical
fertilizer, pesticide, agricultural film, irrigation facilities and agricultural diesel input. Based
on reference [58], the IPCC carbon emission coefficient method is adopted in this study.
The emission coefficient of the above carbon emission sources is detailed as follows. It
is 0.8956 (kg/kg) for chemical fertilizer, 4.3941 (kg/kg) for pesticide, 5.18 (kg/kg) for
agricultural film, 0.18 (kg/kW) for agricultural machinery and 25 (kg/hm2) for irrigation.
Agricultural non-point source pollution mainly refers to the non-point source pollution
emissions caused during the use of cultivated land, as manifested in the excessive use and
residual pollution of various agricultural chemicals such as chemical fertilizers, pesticides
and agricultural film, etc. In the present study, the amount of nitrogen (phosphorus),
pesticide and agricultural film loss is used to characterize the emissions of pollutants from
the use of cultivated land. For the relevant loss coefficients, they are obtained from the
manual on agricultural pollution source coefficients published by the National Pollution
Source Census of China, with consideration given to the impact of regional differences as
much as possible for estimation [59].

To select the measurement methods suitable for the green transformation efficiency
of cultivated land use, scholars mainly rely on data envelopment analysis (DEA) and
stochastic frontier analysis (SFA). The DEA method is advantageous in processing data
with multiple inputs and outputs, and it removes the need to set specific production
function forms, thus reducing the subjective controversy of research. For this reason, it has
become a popular choice for scholars both at home and abroad. However, there are some
problems with the traditional DEA model, such as the relaxation of input and output and
the inability to fully consider the unexpected output factors. Therefore, the super-efficiency
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SBM model was proposed by Tone in 2003. This model not only solves the relaxation of
input and output, but also takes into account the unexpected output [60]. The model is
expressed as follows:

ρ = min
1− 1

N ∑N
n=1(Sx

n/x′k′n)

1− 1
M+1

{
∑M

m=1 Sy
m

yt′
k′m

+∑l
i=1 Sb

i /bt′
k′ i

}

s.t.
T
∑

i=1

K
∑

k=1
zt

kxt
kn + Sy

m = xt′
k′n′(n = 1, · · · , N)

T
∑

t=1

K
∑

k=1
zt

kxt
km − Sy

m = yt′
k′n′ , (m = 1, · · · , N)

T
∑

i=1

K
∑

k=1
zt

kbt
ki + Sb

i = bt′
k′i′(i = 1, · · · , N)

zt
k > 0; Sx

n > 0; Sy
m > 0; Sb

i > 0,

(k = 1, · · · , K)

(3)

where ρ represents the economic efficiency value of the evaluation unit; the evaluation unit
consists of input N, expected output M and unexpected output I; n, m and i represent the
type of indicators of investment, expected and unexpected output, respectively; T refers
to time; x, y and b denote the type of loose variables; Sx

n, Sy
m and Sb

i represent the loose
variables of input, expected output and unexpected output, respectively; xt′

k′n, yt′
k′n and bt′

k′i
indicate the input-output value at t′ prime time on the k′ prime unit, respectively; and zt

k
refers to the weight of the evaluation unit.

(2) Core explanatory variables: digital rural construction level (Dig). The impact of digital
rural construction on agricultural production is manifested mainly in the dissemina-
tion and sharing of information, digital production and service application. Based on
literature [61,62] and the availability of data, the evaluation index system of digital
rural construction level is constructed in this study from two perspectives: the level
of digital rural infrastructure construction and the level of digital rural application
service. Among them, digital rural infrastructure is a precondition to the development
of digital countryside. In the digital era, the development of information infrastruc-
ture (premised on the new generation of information technology represented by the
Internet, and the integrated infrastructure developed by the digital and intelligent
transformation of traditional infrastructure using the new-generation information
technology) can provide the crucial support for rural digital transformation. There-
fore, it is measured by the average number of computers per 100 rural households,
the average number of mobile phones per 100 households and the number of rural
broadband access users. The level of service related to digital village application is
represented by the deepening development of digital village construction. Reflecting
the digital development of rural production and life, it is measured by the total index
of digital inclusive finance and the length of rural delivery route. The weight of the
evaluation index system is determined by using the entropy method. The evaluation
index system and the weight of the indexes are shown in Table 2. It can be seen from
the table that the weight of the number of rural broadband access users is the largest,
indicating that broadband networks have become the most significant driving force
for digital rural construction. At the same time, the weight of the average number of
mobile phones owned by rural households per 100 households is the least significant.
The possible reason for this is that the rate of mobile phone penetration is generally
high in China, which limits its contribution to digital rural construction.

(3) Control variables. In order to apply control on the impact of other factors on the green
transformation efficiency of cultivated land use, the following indicators are treated
as control variables in this study. The first one is disaster-affected area (Dis), which
is measured by the sum of disaster-affected area and disaster-affected area of crops.
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The second one is the rural medical facility level (Med) as measured by the number of
village clinics per 10,000 people in rural areas. The third one is measured by the ratio
of grain sown area to total crop sown area. The last one is the multiple cropping index
(Multi) as measured by the ratio of the total sown area of crops to the cultivated area.

Table 2. Digital rural construction level evaluation index system.

Variables Sub Level Variables Weight

Infrastructure construction of digital village Average computer ownership per 100 rural households 0.17147
Average number of mobile phones owned by rural

households per 100 households 0.07637

Rural broadband access users 0.43865
Service level of digital village Total digital inclusive finance Index 0.12209

Length of rural delivery route 0.19142

3.3. Data Resources

In the present study, the panel data of 30 provinces in China (excluding Tibet, Hong
Kong, Macao and Taiwan) from 2011 to 2020 are selected as the sample data. The input
and output data of cultivated land use are sourced from the “China Statistical Yearbook”,
“China Rural Statistical Yearbook”, “China Agricultural Machinery Industry Yearbook”
and “China Science and Technology Statistical Yearbook”. The data on the level of digital
rural construction are collected from the “China Statistical Yearbook” and the report on
digital inclusive finance index as compiled by the Digital Finance Research Center of Peking
University. Table 3 shows the descriptive statistics of each variable.

Table 3. Descriptive Statistics.

Variables Number of Samples Mean Std. Dev. Min Max

Green transformation efficiency of cultivated
land use (GTCLU) 300 0.295 0.145 0.037 0.751

Digital rural construction level (Dig) 300 0.309 0.161 0.042 0.832
Affected area (Dis) 300 6.313 1.709 0 8.838

Rural medical facility level (Med) 300 10.488 3.684 3.997 20.489
Planting structure (Plant) 300 0.649 0.140 0.355 0.971

Multiple crop index (Multi) 300 1.294 0.395 0.486 2.341

4. Analysis of Empirical Results
4.1. Benchmark Regression Analysis

Table 4 lists the benchmark regression results of digital village construction (Dig) on
green transformation efficiency of cultivated land use (GTCLU). POLS refers to a mixed
OLS model. The results show that the estimation coefficient of digital rural construction is
significantly positive at the 1% statistical level. OLS-FE1 indicates the fixed effect model.
Before that, the p value was 0.000 as calculated by the Hausman test, which supports
the use of the fixed effect model for parameter estimation. After control is applied on
the fixed effect of provinces and years, the estimated coefficient remains significantly
positive at the 1% statistical level. OLS-FE2 shows the estimated result as obtained after the
introduction of relevant control variables into the fixed effect model, and the conclusion
remains unchanged. It suggests that digital rural construction is conducive to improving
the efficiency of green transformation for cultivated land use. From the perspective of
control variables, the estimated coefficient of disaster affected area (Dis) is significantly
positive at the 1% statistical level. The possible reason for this is that the disaster suffered
by crops reduces the output of agricultural products, which is adverse to improving the
green transformation efficiency of cultivated land utilization. The estimated coefficient of
rural medical facility level (Med) is found significantly positive at the 5% statistical level.
This is because medical facilities are the typical public goods that can be used to improve
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the efficiency of agricultural production by ensuring the health of agricultural labor. The
estimation coefficient of the multiple cropping index (Multi) is also found to be significantly
positive at the 1% statistical level. The possible reason for this is that the increase of multiple
cropping index means the rising intensity of cultivated land use, which may increase the
output, thereby improving the efficiency of green transformation of cultivated land use.
The estimation coefficient of plant structure fails the significance test.

Table 4. Benchmark regression results.

Variables POLS OLS—FE1 OLS—FE2

Dig 0.204 *** (0.065) 0.162 *** (0. 048) 0.215 *** (0.055)
Dis −0. 114 *** (0.013)

Med 0.016 ** (0.008)
Plant 0.155 (0.242)
Multi 0.133 *** (0.042)

Constant 0.955 *** (0.026) 1.037 *** (0.022) 0.719 *** (0.175)
Province NO YES YES

Year NO YES YES
R2 0.513 0.641 0.754

OBS 300 300 300
Note: ** and *** are significant at 5% and 1% levels respectively, and the standard error values are in brackets.

4.2. Robustness Test

(1) Replace the model. Considering that all the values of cultivated land use green
transformation efficiency (dependent variable) measured in this study reach above
0, which conforms to the conditions required for the restricted dependent variable
model, the Tobit model of the restricted variable model is applied for re-estimation.
By comparing the estimated results of Tobit model and benchmark model, it can
be found out that there is no change to the direction of influence exerted by the
estimated coefficient of digital rural construction level, and that the estimated results
are consistent with the conclusions of benchmark results after the model is replaced.

(2) The samples collected from municipalities are excluded. Considering that the agricul-
tural production and operation activities of municipalities directly under the Central
Government are significantly different from those of other provinces, the sample data
of Beijing, Tianjin, Shanghai and Chongqing are further excluded from this study, with
the remaining (260-count) sample data used for re-estimation. After the introduction
of control variables and adopting fixed effects, the estimated coefficient of digital rural
construction level remains significantly positive at the 1% statistical level, and the
research conclusion remains valid.

(3) Lagging independent variable. Since the digital rural construction may show a lag
effect, lagging one period of the digital rural construction level (L. Dig) as a new
independent variable are re-estimated. After the introduction of control variables
and considering the fixed effect, the estimated coefficient of the level of digital rural
construction remains significantly positive, indicating the “snowball effect” of digital
rural construction. That is to say, the current digital rural construction contributes
to improving the green transformation efficiency of cultivated land utilization in the
next phase.

(4) Endogenous treatment. There are two reasons for the endogenous problem encoun-
tered in this study. On the one hand, despite the control applied on several variables
for modeling, there remain some missing variables, which leads to the deviation in
the regression results. On the other hand, although the digital rural construction
has a promoting effect on the green transformation efficiency of cultivated land use,
the demand for digital rural construction also increases with the improvement of
efficiency in the green transformation of cultivated land use. That is to say, a two-way
causal relationship may exist between the two. Therefore, the instrumental variable
method is adopted in the present study to reduce endogenous problems. When
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the tool variable method is used to make an estimation, it is necessary to select the
appropriate tool variables. In this study, the number of postal service outlets per
million people in rural areas is used and the natural logarithm (ln. Post) is taken
as the instrumental variable [63]. This is because digital information technology is
the continuation of traditional communication technology, and the distribution of
traditional postal services affects the early development of digital rural construction,
which meets the requirements on the “relevance” of tool variables. Furthermore, the
frequency of applying traditional information tools represented by postal services
declines gradually, and it has little impact on cultivated land use, thus meeting the
“exogenous” requirements of tool variables. Table 5 shows the results of estimation
based on instrumental variable method. The p value of endogenous test is 0.004,
which rejects the hypothesis that there is no endogenous problem. That is to say, there
is an endogenous problem in the model. The result of the weak identification F test
shows that the tool variable rejects the hypothesis at the level of 1%. That is to say,
there is no weak tool variable problem. The test results demonstrate the estimation
results as reliable and the research conclusions as valid. Thus, the hypothesis H1
proposed in this study is supported.

Table 5. Robustness Test.

Variables Tobit Model Municipalities Are
Excluded from Samples

Lagging One Period of
Core Explanatory Variables Tool Variable Method

Dig 0.216 ***
(0.036)

0.208 ***
(0.044)

0.307 ***
(0.099)

L. Dig 0.217 ***
(0.053)

Dis −0.114 ***
(0.017)

−0.157 ***
(0.030)

−0.163 ***
(0.012)

−0.192 ***
(0.028)

Med 0.016 **
(0.008)

0.009 *
(0.005)

0.011 ***
(0.005)

0.008 **
(0.004)

Plant 0.153
(0.214)

0.175
(0.183)

0.177
(0.283)

0.200
(0.375)

Multi 0.130 ***
(0.013)

0.187 ***
(0.052)

0.149 ***
(0.045)

0.135 ***
(0.029)

Constant 0.719 ***
(0.188)

0.833 ***
(0.267)

0.763 ***
(0.252)

0.884 ***
(0.391)

Province YES YES YES YES
Particular year YES YES YES YES

Weak identification F test 65.410 ***
Endogenous test p 0.004

R2 0.742 0.750 0.685
OBS 300 260 270 300

Note: *, ** and *** are significant at 10%, 5% and 1% levels respectively, and the standard error values are
in brackets.

4.3. Heterogeneity Analysis

(1) Regional heterogeneity. Considering the different geographical conditions, there
may be regional heterogeneity in the impact of digital rural construction level on the
green transformation efficiency of cultivated land use. According to the distribution
characteristics of China’s geographical location, the sample data can be divided into
three regions: the east, the middle and the west. Therefore, the fixed effect model is
used to test regional heterogeneity, and the regression results by region are shown
in Table 6. According to the results, the estimated coefficients of the digital rural
construction level in the three regions are significantly positive, indicating that the
improvement of the digital rural construction level is accompanied by a significant
improvement to the green transformation efficiency of cultivated land use in each
region. In addition, the estimated coefficient is higher in the eastern region than in the
central and western regions, because the higher economic level of the eastern region
is conducive to digital rural construction and can enhance regional advantages.
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Table 6. Results of regional heterogeneity.

Variables The Eastern Region The Central Region The Western Region

Dig 0.241 ***
(0.031)

0.147 ***
(0.052)

0.177 ***
(0.043)

Dis −0.089 ***
(0.008)

−0.075 **
(0.006)

−0.103 ***
(0.002)

Med 0.027 ***
(0.014)

0.014 **
(0.007)

0.008 **
(0.004)

Plant 0.186
(0.287)

1.025
(1.412)

0.068 *
(0.040)

Multi 0.067 ***
(0.028)

0.104 ***
(0.031)

0.142 ***
(0.039)

Constant 0.840 ***
(0.329)

0.619 ***
(0.235)

0.868 ***
(0.305)

Provinces YES YES YES
Year YES YES YES
R2 0.735 0.587 0.694

OBS 110 80 110
Note: *, **, *** are significant at 10%, 5% and 1% levels respectively, and the standard error values are in brackets.
The eastern region includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong,
Guangdong and Hainan; the central region includes Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei and
Hunan; the western region includes Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi,
Gansu, Qinghai, Ningxia and Xinjiang.

(2) Heterogeneity of distribution. In addition, panel unconditional quantile regression
model is used in this study to explore the impact of digital rural construction level on
the green transformation efficiency of cultivated land use at different quantile levels.
Table 7 and Figure 1 show the estimated coefficients of the impact of digital rural
construction level on the green transformation efficiency of cultivated land use at the
quantile of 25%, 50%, 75% and 90%, respectively. The estimation coefficients at each
quantile are positive, passing the 1% significance level test. However, considering the
size of the estimation coefficient, the improvement of the quantile level is coupled
with a gradual increase in the estimation coefficient of the digital village construction
level on the green transformation efficiency of the cultivated land use. It indicates
that the promotion of the digital village shows an increasing trend of marginal utility.

Table 7. Distribution Heterogeneity Results.

Variables 25% 50% 75% 90%

Dig 0.200 ***
(0.027)

0.241 ***
(0.038)

0.268 ***
(0.060)

0.316 ***
(0.109)

Dis −0.078 ***
(0.008)

−0.117 ***
(0.014)

−0.160 ***
(0.051)

−0.216 ***
(0.074)

Med 0.009 *
(0.006)

0.012 *
(0.007)

0.120 ***
(0.018)

0.146 ***
(0.022)

Plant 0.124
(0.179)

0.287
(0.235)

0.437
(0.368)

0.469
(0.387)

Multi 0.116 ***
(0.014)

0.163 ***
(0.024)

0.198 ***
(0.054)

1.002 ***
(0.032)

Constant 0.433 **
(0.210)

0.382 ***
(0.122)

0.305 ***
(0.110)

0.473 ***
(0.137)

Provinces YES YES YES YES
Year YES YES YES YES
OBS 300 300 300 300

Note: *, **, *** are significant at 10%, 5% and 1% levels respectively, and the standard error values are in brackets.
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5. Discussion
5.1. Spatial Autocorrelation Test

The results of the global spatial autocorrelation test are shown in Table 8. It can be
seen from the table that the global spatial autocorrelation coefficient of the digital rural
construction level and the green transformation efficiency of cultivated land utilization are
significantly positive in 2011–2020, indicating the significant spatial autocorrelation between
the two. Therefore, it is sensible to conduct research by using spatial econometric models.

Table 8. Spatial autocorrelation test.

Variables 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Dig 0.333 *** 0.379 *** 0.389 *** 0.380 *** 0.376 *** 0.298 *** 0.274 *** 0.258 *** 0.256 *** 0.235 ***
GTCLU 0.193 *** 0.292 *** 0.339 *** 0.298 *** 0.171 *** 0.391 *** 0.302 *** 0.380 *** 0.407 *** 0.416 ***

Note: *** means significant at 1% level.

5.2. Regression Analysis of Spatial Dubin Model

As shown in Table 9, the regression coefficient of the digital rural construction level
is positive, passing the test at the 1% statistical level. It is demonstrated that the higher
the level of digital rural construction in the province, the greater the efficiency of green
transformation of cultivated land use in the province. In the meantime, the regression
coefficient of the spatial lag term of the digital rural construction level is also positive,
passing the test under the significance level of 1%. That is to say, the level of digital rural
construction produces a significant spatial effect, and the level of digital rural construction
in this province also plays a significant positive role in the green transformation efficiency
of cultivated land use for neighboring provinces. Given the inability of the regression
coefficient of the SDM model to reflect the direct effect of the independent variable on the
dependent variable and the actual spatial spillover effect, the partial differential method
proposed by Le Sage and Pace [64] is used in this study to divide the impact coefficient of
the digital rural construction level on the efficiency of green transformation of cultivated
land use into direct effect, indirect effect and total effect. Among them, the direct effect
is defined as the impact of the level of digital village construction in the province on the
efficiency of green transformation of cultivated land use in the province, and the indirect
effect is referred to as the impact of the level of digital village construction in the province
on the efficiency of green transformation of cultivated land use in neighboring provinces,
as reflected in the spatial spillover effect of the level of digital village construction. The
total effect is defined as the sum of direct effect and indirect effect. Table 9 shows the
decomposition results of spatial effects. The direct effects, indirect effects and total effects of
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the digital rural construction level all pass the 1% significance test and have positive values.
It suggests that the level of digital rural construction in this province not only improves the
green transformation efficiency of cultivated land use in this province, but also enhances
the green transformation efficiency of cultivated land use in neighboring provinces. Thus,
the hypothesis H2 proposed in this study is supported.

Table 9. Regression results of spatial Dubin model.

SDM Direct Effect Indirect Effect Total Effect

Dig 0.163 ***
(0.014)

0.192 ***
(0.021)

0.240 ***
(0.062)

0.432 ***
(0.075)

Dis −0.088 ***
(0.007)

−0.126 ***
(0.021)

−0.194
(0.137)

−0.320 ***
(0.047)

Med 0.007 **
(0.004)

0.008 **
(0.004)

0.011
(0.009)

0.019 **
(0.008)

Plant 0.116
(0.126)

0.164
(0.118)

0.290
(0.167)

0.454
(0.402)

Multi 0.104 **
(0.051)

0.143 ***
(0.030)

0.086 *
(0.044)

0.229 ***
(0.013)

W * Dig 0.227 ***
(0.042)

W * Dis −0.147
(0.093)

W * Med 0.015
(0.009)

W * Plant −0.178
(1.002)

W * Multi 0.073 **
(0.032)

Spatial rho 0.260 ***
Note: *, **, *** are significant at 10%, 5% and 1% levels respectively, and the standard error values are in brackets.

5.3. Digital Rural Construction and Green Transformation of Regional Cultivated Land Utilization

According to the above analysis, there is a spatial spillover effect caused by the impact
of digital rural construction on the efficiency of green transformation of cultivated land use.
With the constant improvement of digital infrastructure and the further development of
digital technology, regional information communication and economic exchange become
increasingly convenient and faster. Digital technology can be applied to break the limits
of time and space, promote the cross regional flow of various production factors such as
capital, labor and advanced production technology, and optimize the allocation of resources
among different regions. By strengthening the construction of the digital countryside, not
only can the efficiency of green transformation of cultivated land use be improved in
this region, but the efficiency of green transformation of cultivated land use can also be
enhanced in surrounding areas through the spillover of production factors. This leads to
the improvement of efficiency in the green transformation of cultivated land use in a wider
range. Digital technology can improve the efficiency of green transformation of cultivated
land utilization, which to some extent reduces the contradiction between the enhancement
of cultivated l and utilization intensity and environmental protection. Through the scale
effect of green transformation of regional cultivated land utilization, regional ecological
protection can be promoted and the scale economy of regional cultivated land utilization
can be strengthened.

6. Conclusions

In this study, the impact mechanism of digital rural construction on the green trans-
formation efficiency of cultivated land use is described in detail for the comprehensive
measurement of China’s inter provincial digital rural construction level and green trans-
formation efficiency of cultivated land utilization from 2011 to 2020. On this basis, the
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promoting effect of digital rural construction on green transformation efficiency of culti-
vated land rate is empirically tested. Furthermore, a discussion is conducted around the
spatial spillover effect of digital rural construction through the spatial Dubin model. The
conclusions of this study are as follows. Firstly, digital rural construction plays a positive
role in the efficiency of regional cultivated land use green transformation. This result
remains valid after various robustness tests are carried out, such as the replacement model,
the elimination of municipal samples, the lag of independent variables and endogenous
treatment. Secondly, the digital rural construction shows significant regional heterogeneity
and distribution heterogeneity in improving the efficiency of green transformation for
regional cultivated land use. This promoting effect is more significant in the eastern region
than in the central and western regions. As the efficiency of green transformation of culti-
vated land utilization improves, the promoting effect of digital village shows an increasing
trend in terms of marginal utility. Thirdly, the level of digital rural construction and the
efficiency of green transformation of cultivated land use show a significant positive spatial
autocorrelation. Apart from improving the green transformation efficiency of cultivated
land use in this region, digital rural construction also enhances the green transformation
efficiency of cultivated land use in the surrounding regions. That is to say, the promotion
of digital rural construction produces a positive spatial spillover effect. Based on the above
research conclusions, the following policy recommendations are made.

Firstly, the process of digital rural construction should be accelerated. By increasing
investment in the access, operation and maintenance of digital technology facilities in rural
areas, the construction of digital villages can be effectively promoted. It is necessary to
promote the comprehensive and in-depth integration and application of new generation
digital information technology and agricultural production and operation. Through a
precise agricultural production mode, the construction of digital countryside can provide
a crucial driving force for the transformation of green cultivated land use. Secondly, it is
worth paying attention to the differences in the process of digital rural construction. Due to
the level of economic development, geographical conditions and other factors, there is a
significant heterogeneity in the level of digital rural construction across China. The “digital
gap” between different regions can be reduced by promoting the construction of digital
villages in the eastern developed regions and increasing support for the construction of
digital villages in the less developed regions in the central and western regions. Thus, the
construction of digital villages can promote the transformation of green use of cultivated
land in an all-round way. Finally, a regional cooperation mechanism should be established
by preserving the “welfare sharing” characteristics of digital rural construction. Digital
rural construction can not only enhance the efficiency of green transformation of cultivated
land use in this region, but also produces a positive spatial spillover effect. The internet and
other digital media should be taken advantage of to promote the full flow of agricultural
green production concepts. New technologies and high-quality talents reinforce the resul-
tant force of agricultural green development across regions and promote the coordinated
level of green cultivated land utilization in various provinces.

In this study, there are certain limitations. Firstly, the evaluation system for the green
transformation efficiency of cultivated land use is not as comprehensive as required. As
a complex process, the green transformation of cultivated land use system involves not
only the green transformation of material elements, but also the green transformation
of non-material elements such as the production concept and labor quality of farmers.
However, due to the availability of data, this paper excludes the non-material elements in
the evaluation index system. Therefore, they can be included in the evaluation index system
in the future to better reflect the connotation of green transformation of cultivated land
use. Secondly, due to the space limit, this paper is limited to analyzing the spatial spillover
effect of digital rural construction on the green transformation efficiency of cultivated land
use from a macro perspective. As a result, the influence of social and economic factors
in different regions is ignored. This spatial spillover effect may vary as well. In order to
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obtain more practical results, this spatial spillover effect can be tested from the perspective
of regional heterogeneity in the future.
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