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Abstract: Uterine leiomyosarcoma (uLMS) is the most frequent subtype of uterine sarcoma that
presents a poor prognosis, high rates of recurrence, and metastasis. Currently, the molecular mecha-
nism of the origin and development of uLMS is unknown. Class I histone deacetylases (including
HDAC1, 2, 3, and 8) are one of the major classes of the HDAC family and catalyze the removal
of acetyl groups from lysine residues in histones and cellular proteins. Class I HDACs exhibit
distinct cellular and subcellular expression patterns and are involved in many biological processes
and diseases through diverse signaling pathways. However, the link between class I HDACs and
uLMS is still being determined. In this study, we assessed the expression panel of Class I HDACs
in uLMS and characterized the role and mechanism of class I HDACs in the pathogenesis of uLMS.
Immunohistochemistry analysis revealed that HDAC1, 2, and 3 are aberrantly upregulated in uLMS
tissues compared to adjacent myometrium. Immunoblot analysis demonstrated that the expression
levels of HDAC 1, 2, and 3 exhibited a graded increase from normal and benign to malignant uterine
tumor cells. Furthermore, inhibition of HDACs with Class I HDACs inhibitor (Tucidinostat) de-
creased the uLMS proliferation in a dose-dependent manner. Notably, gene set enrichment analysis
of differentially expressed genes (DEGs) revealed that inhibition of HDACs with Tucidinostat altered
several critical pathways. Moreover, multiple epigenetic analyses suggested that Tucidinostat may
alter the transcriptome via reprogramming the oncogenic epigenome and inducing the changes in
microRNA-target interaction in uLMS cells. In the parallel study, we also determined the effect of
DL-sulforaphane on the uLMS. Our study demonstrated the relevance of class I HDACs proteins
in the pathogenesis of malignant uLMS. Further understanding the role and mechanism of HDACs
in uLMS may provide a promising and novel strategy for treating patients with this aggressive
uterine cancer.

Keywords: uterine leiomyosarcoma; leiomyoma; histone deacetylase; inhibitors; transcriptome
analysis; apoptosis; cell cycle; EMT; histone modifications; transcription factors; miRNAs

1. Introduction

Uterine leiomyosarcoma (uLMS) is a rare and aggressive uterine cancer, representing
1–2% of all uterine malignancies [1]. The annual incidence of uLMS is approximately
0.8 per 100,000 women [2]. The five years survival for all patients is between 25 and
76%, with survival for women with metastatic disease at the initial diagnosis approaching
only 10–15% [3]. Although irrespective of treatment, the uLMS is characterized by poor
prognosis [4], the present treatment for uLMS patients exhibits resistance to currently
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available therapies, as evidenced by high recurrence and progression rates [5]. The origin
and mechanism underlying driving its clinical and biological behavior remain unclear [6].

Histone deacetylases are a class of enzymes that remove acetyl groups from an ε-
N-acetyl-lysine amino acid on histone and govern the chromatin structural dynamics
of histones to wrap the DNA more tightly [7,8]. Its action is the opposite of histone
acetyltransferase, which neutralizes their positive charge by acetylation of histone tails,
thereby relaxing chromatin structure due to greater electrostatic repulsion from negatively
charged DNA. Accumulated studies demonstrated that HDACs are involved in many
biological events and pathological diseases [7,9–11], including varied types of cancer. Class
I (HDACs 1, 2, 3, and 8) are located mainly in the nucleus and play an important role
in cell proliferation, cell cycle progression, DNA damage response, development, and
establishment and maintenance of the abnormal phenotype of diseases, including cancer
progression [12–16]. HDACs 1, 2, and 3, as members of the class I HDAC family, are
of particular interest as they are recruited to multiprotein complexes to mediate gene
expression [17]. In addition, the modulation of these HDACs presents a specific possibility
of interfering with multiple signaling pathways that are hijacked by tumor cells [12].

HDAC inhibitors (HDACi) have been used in several clinical studies and approved by
the FDA for treating diseases and several types of cancer, including rare cancer [12,18–21].
Notably, treatments of tumor cells with HDAC inhibitors induce multiple effects, including
cell cycle arrest, apoptosis, differentiation and senescence, modulation of immune response,
altered angiogenesis, and restoration of sensitivity to drugs. The latter leads to the more
promising outcomes, when the strategy of using combination treatments of HDACi with
other chemotherapeutic agents is applied [22–26]. However, the role of HDACs in the
pathogenesis of rare cancer, uLMS, is mainly unknown. In this study, we assessed the
expression pattern of Class I HDACs in cells and tissues of uLMS and myometrium and
characterized the role and mechanism of class I HDACs in the pathogenesis of uLMS. Deep
diving into the molecular mechanism of uLMS pathogenesis linking to HDACs would help
improve the clinical management and health outcomes of these discriminated patients.

2. Materials and Methods
2.1. Uterine Leiomyosarcoma Samples

The uLMS tissues were obtained from the University of Chicago Tissue Bank. Ap-
proval from the Institutional Review Board (# 20-1820) at the University of Chicago was
obtained for the retrospective chart review of uLMS patients. Informed consent was ob-
tained from all the study participants before surgery. The cases with an initial diagnosis
of uLMS at the University of Chicago Hospital were reviewed, and the diagnosis was
confirmed by hematoxylin-eosin (H&E) evaluation and immunohistochemistry. A total of
nine cases with uterine uLMS were used as previously described [27].

2.2. Immunohistochemistry

Immunohistochemistry (IHC) was performed as described previously [27]. The pri-
mary antibodies used for IHC were shown in Table 1. To determine the percentage and in-
tensity of HDACs-positive cells, QuPath software (version 0.2.3) (https://qupath.github.io,
accessed on 27 October 2021) was used with the positive cell detection command. Thresh-
olds were set to categorize cells according to nuclei staining intensity: negative, weak,
moderate, and strong intensity. The histochemical scoring (H-score) captures both the
intensity and the proportion of the HDAC-positive cells from the IHC image and comprises
values between 0 and 300 [28], thereby offering a dynamic range to quantify HDACs abun-
dance between myometrium and uLMS. Human testis, bladder, and colon tissues were
used as positive tissues for HDAC1, HDAC2, and HDAC3, respectively.

https://qupath.github.io
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Table 1. Antibodies used in this study.

Antibodies Company Catalog
Number Host Application Dilution Size

HDAC1 Cell signaling 34589 Rabbit WB 1:1000 62 kd

HDAC2 Cell signaling 57159 Rabbit WB 1:1000 60 kd

HDAC3 Cell signaling 85057 Rabbit WB 1:1000 49 kd

HDAC8 Abcam ab187139 Rabbit WB 1:1000 42 kd

PCNA Abcam Ab18197 Rabbit WB 1:1000 29 kd

β-actin Sigma A5316 Mouse WB 1:8000 42 kd

HDAC1 Abcam Ab109411 Rabbit IHC 1:50

HDAC2 Abcam Ab32117 Rabbit IHC 1:500

HDAC3 Abcam Ab32369 Rabbit IHC 1:4000

Ki67 Abcam ab15580 Rabbit IHC 1: 3000

2.3. Cells and Reagents

The source and culture condition of human leiomyoma cell line (HuLM), uterine
smooth muscle (UTSM) cell line, SK-UT1 cell line (ATCC, Manassas, VA, USA), and MES-
SA cell line (ATCC, Manassas, VA, USA) were described previously [27].

Class I HDAC inhibitor Tucidinostat was purchased from Selleck Chemical (Cat#
S8567, Houston, TX, USA). DL-sulforaphane was purchased from Sigma-Aldrich (Cat#
S4441, Saint Louis, MO, USA). The range of doses tested was 1–25 µM.

2.4. Proliferation Assay

A trypan blue exclusion assay was performed for Cell proliferation measurement.
Cells were seeded into 12-well tissue culture plates and treated with the Tucidinostat and
DL-sulforaphane at a dose range of 1–25 µM for 48 hr. An equal amount of DMSO was used
as vehicle control. After treatment, the cells were trypsinized and collected by centrifuge.
The cells were resuspended in a serum-free medium. Equal volume of 0.4% trypan blue
and cell suspension was mixed and applied to a hemacytometer for cell counting. Viable
cells were unstained. This assay was performed three times in triplicate.

2.5. Protein Extraction and Western Blot

Protein extraction and specific protein bands visualization were performed as de-
scribed previously [27]. The information about usage of primary antibodies is listed in
Table 1. The antigen-antibody complex was detected with Trident Femto Western HRP sub-
strate (GeneTex, Irvine, CA, USA). Specific protein bands were visualized using ChemiDoc
maging system (Bio-Rad, Hercules, CA, USA).

2.6. RNA-Sequencing

The uLMS cell line (SK-UT-1) was treated with 5 µM Tucidinostat or 5 µM DL-
Sulforaphane for 48 hr. Cells were subjected to RNA isolated using Trizol. RNA and
library quality and quantity were assessed as described previously [27]. An Illumina
NovaSEQ6000 was used for library sequencing.

2.7. Transcriptome Profiles Analysis

We designed the bioinformatics analyses on the basis of the flow diagram, as shown
in Figure 1.
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2.7.1. Transcriptome Data Analysis

The classical alignment-based mapper STAR, version 2.6.1d (GitHub, Inc., San Fran-
cisco, CA, USA) (23) was used to map sequencing reads to a human reference transcriptome.
The results of STAR mapping were quantified by Salmon, version 1.4.0. Then, Bioconductor
(https://bioconductor.org/packages/release/bioc/html/tximport.html, accessed on 27
October 2021) was used to read Salmon outputs into the R environment. Downstream
analyses were performed as described previously [27].

2.7.2. Differential Gene Expression Analysis

To identify the differentially expressed genes (DEGs) between treatment and con-
trol groups, three count-based algorithms were implemented in R packages DESeq2 [29],
edgeR [30], and Limma + voom [31]. For each of these three methods, we used a cutoff
−1.5 > fold-change > 1.5 and a p-value of 0.05. In addition, Benjamini and Hochberg’s (BH)
method was performed to control the false discovery rate of all the genes with adjusted
P-value less than 0.05.

2.7.3. Gene List Enrichment Analysis

Comprehensive gene set enrichment analysis for regulation machinery was carried
out using the enrichR (version 3.1) [32] package in R (https://maayanlab.cloud/Enrichr/
(accessed on 27 October 2021). We used ENCODE Histone Modifications 2015 for histone
modification enrichment, ENCODE and ChEA Consensus TFs for transcription factor
enrichment and TargetScan microRNA for microRNAs enrichment in EnrichR to determine
the mechanisms underlying the regulation of DEGs.

2.7.4. Drug Similarity Analysis

The L1000CDS2 is a pharmacogenetic search engine which enables users to find
consensus L1000 small molecule signatures that match user input signatures. On the other
hand, L1000CDS2 provides prioritization of thousands of small-molecule signatures, and
their pairwise combinations. We performed drug similarity analysis using L1000CDS2 to

https://bioconductor.org/packages/release/bioc/html/tximport.html
https://maayanlab.cloud/Enrichr/
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investigate whether Tucidinostat and DL-sulforaphane induce the similar transcriptional
changes with well-known HDAC inhibitors or not.

2.7.5. Visualization of Aggregates and Intersection DEGs on UpSet Plot

The UpSet plot was constructed to explore the interactive gene sets among different
drug-induced expression profiles using R package UpSetR (version 1.4.0) [33]. For up-
regulated and down-regulated genes in all treatment, an eigengenes was calculated using
the function module Eigengenes from WGCNA R package. Eigengenes is the vector that
best describes the expression behavior of all genes within the module in the samples
included in the analysis. To deep dive into pathways and relevant mechanisms of drugs,
we integrated the present drugs (Tucidinostat and DL-sulforaphane) with our previous
drug (TP472) to compare drug-induced expression profile.

2.7.6. Epithelial–Mesenchymal Transition Score Calculation

We used 76GS [34], KS [35], and ssGSEA [36] methods to calculate the Epithelial–
mesenchymal transition (EMT) scores for samples in the data set to investigate whether the
drugs induced EMT or not.

2.7.7. Co-Expression Network Analysis

The WGCNA R package was applied to construct co-expression network [37]. The top
10% most variable genes were selected for co-expression analysis. Cluster tree sampling
was calculated using the flashCust function in R to find out and exclude outlier samples in
which Z.K values were under −2.5. Scale-free topology criterion was used to choose the
power value in which degree of independence fits 0.85. WGCNA has detected modules
with high correlation, which a minimum number of genes in each module determined as
30, a cut height of 0.25, and a deep split level of 2.

Module membership (MM) and module-clinical trait relationship was calculated using
a correlation between module eigengene (ME) -the best summary of module expression
based on the first principal component- and the special phenotype (EMT score, etc.) that
can lead to discover key biological functions (BP) and recognize associated key biomarkers.
MM calculation was used to choose the module for further analysis.

The EnrichR web server (version 3.1) was used to perform pathway enrichment anal-
yses (https://maayanlab.cloud/Enrichr/ (accessed on 27 October 2021)). First, STRING
database (https://string-db.org/ (accessed on 27 October 2021)), which is the online search
tool to protein–protein network (PPI) construction, was used to reconstruct the modules net-
work (A combined score ≥ 0.4 of PPI pairs was considered significant), then the Cytoscape
software [38] was employed to analyze and visualize the network.

2.8. Identification of the Potential Drugs
2.8.1. Drug-Gene Interaction Network

The Drug Gene Interaction Database (DGIdb, v4.2.0) was used to identify potential
drugs for EMT inhibition [39]. This database contains drug–gene interaction informa-
tion from 22 source databases. To identify drug–gene interactions, only the approved
interactions were considered.

2.8.2. Module-Based Drug Prediction

As an alternative approach, we used L1000CDS2 to identify candidate drugs for
inhibition of EMT module. With the L1000CDS2 tool, we prioritized small molecules that
can potentially reverse gene expression [40]. In this study, the L1000CDS2 were applied
to prioritize small molecules that are predicted to reverse the expression profile of the
EMT module.

https://maayanlab.cloud/Enrichr/
https://string-db.org/
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2.9. Statistical Analysis

A comparison of the two and multiple groups were carried out as described pre-
viously [27]. Data were presented as mean ± standard error (SE), and the significant
difference was defined as p < 0.05.

3. Results
3.1. The Expression Levels of Class I HDACs Members Are Upregulated in uLMS Tissues
Compared to Adjacent Myometrium from Women with uLMS

To determine the differential expression levels of Class I HDAC proteins between
uLMS (n = 9) and MM+LMS(n = 7), IHC staining for HDAC1, 2, and 3 was performed. We
examined the IHC images of three HDAC proteins in uLMS tissues vs. myometrium (MM).
Figures 2 and 3 showed that the HDAC1 and HDAC2 positive cells were significantly
higher in uLMS compared to MM+LMS. The H-score of HDAC1 and HDAC2 was also
significantly increased in uLMS (n = 9) compared to MM (n = 7). Although HDAC3- positive
cells showed no significant difference between uLMS vs. MM+LMS, the H-score of HDAC3
was significantly increased in uLMS compared to MM (Figures 2 and 3), indicating the
critical role of class I HDACs in the pathogenesis and progression of uLMS. Figure 2 (right
column) revealed an increase in expression density of HDAC1, 2, and 3 in uLMS compared
to MM+LMS.
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Figure 2. IHC staining of HDAC1, 2, and 3 in human uLMS tissues and adjacent myometrium.
IHC staining for HDAC1, 2, and 3 is presented with three representative cases. The right column
showed the density map of HDAC1, 2, and 3 for the same representative case. Blue color: negative;
Yellow color: low expression; brown color: moderate expression; red color: strong expression. Scale
bars in black color: 100 µm; Scale bars in red color: 1mm.
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Figure 3. Percentage of HDACs positive cells and H-score of HDACs expression in uLMS vs. my-
ometrium. (A) Percentage of HDAC1, HDAC2, and HDAC3 positive cells in uLMS and myometrium
tissues; (B) H-score of HDAC1, HDAC2, and HDAC3 in uLMS and myometrium tissues. * p < 0.05.
*** p < 0.001. ns: no significant difference.

3.2. Class I HDAC Protein Levels Are Upregulated in uLMS Cell Lines

The constitutive (basal) expression levels of Class I HDAC components in UTSM,
HuLM, and uLMS cell lines were evaluated by immunoblot analysis. We demonstrated that
the protein levels of HDAC1, 2, and 3 exhibited a graded increase from normal and benign
UF tumor cells to malignant uLMS cells (p < 0.05) (Figure 4A–C). In addition, although the
protein levels of HDAC8 were not increased in uLMS compared to HuLM cells, a significant
upregulation of HDAC8 was observed in two uLMS cell lines compared to the UTSM cell
line (p < 0.05) (Figure 4D).
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Figure 4. The expression of Class I HDACs in UTSM, HuLM, MES-SA, and SK-UT-1 cell lines.
The protein levels of Class I HDACs (HDAC1 [(A), 2 (B), 3 (C), and 8 (D)] were measured by Western
blot. β-actin was used as an endogenous control. Quantitative analysis of relative levels of HDAC1, 2,
3, and 8 (A–D) was performed using Image J (1.53t version) (NIH, Bethesda, MD, USA). *** p < 0.001.

3.3. Inhibition of HDACs Decreased the Cell Proliferation in uLMS Cells

Abnormal cell proliferation is common in many types of cancer. We detected the
proliferation in UTSM, HuLM, and SK-UT-1 cell lines by Western blot using the antibody
against PCNA, the cell proliferation marker. As shown in Figure 5A, the levels of PCNA
in SK-UT-1 were highest among the three cell lines, suggesting that the uLMS cell line
SK-UT-1 grew fastest. In addition, the PCNA levels in HuLM cell line are higher than in
UTSM cell lines. In addition, we detected the Ki67-positive cells in uLMS and adjacent
myometrium tissues. As shown in Figure 5B, a significant increase in Ki67-positive cells
was observed in uLMS tissues compared to myometrium tissues.
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Figure 5. Treatment with Tucidinostat and DL-sulforaphane decreases uLMS cell proliferation.
(A): Abnormal cell proliferation in uLMS cells validated by Western blot using anti-PCNA antibody;
(B): IHC staining revealed the increased Ki67-positive cells in uLMS tissues compared to the my-
ometrium. Lower panel is the quantitative analysis of Ki67-positive cells between uLMS and adjacent
myometrium (n = 3) using QuPath software. (C): Cell proliferation in SK-UT-1 cells in the presence
or absence of Tucidinostat; (D): Cell proliferation in MES-SA cell line in the presence or absence of
Tucidinostat; (E): Cell proliferation in SK-UT-1 cell line in the presence or absence of DL-Sulforaphane;
(F): Cell proliferation in MES-SA cell line in the presence or absence of DL-Sulforaphane.* p < 0.05;
** p < 0.01; *** p < 0.001.

Tucidinostat (chidamide), as a Class I HDAC inhibitor, has been shown to inhibit
a variety of cancer growth [41–46]. Therefore, we selected Tucidinostat in our in vitro
cell model to assess its effect on uLMS cell growth. The trypan blue exclusion assay was
performed in SK-UT-1 and MES-SA cell lines treated with dose ranges from 1–25 µM.
Treatment with Class I HDAC inhibitor (Tucidinostat) for 48 h showed a dose-dependent
inhibitory effect on the proliferation of both SK-UT-1 and MES-SA cells (Figure 5C,D).

Sulforaphane is an isothiocyanate present naturally in widely consumed vegetables
and has been shown to have an inhibitory effect on various cancers [47–53]. In addition,
DL-sulforaphane occurs naturally as L-isomer in edible cruciferous vegetables such as broc-
coli [54,55]. This study tested the effect of DL-sulforaphane on uLMS cell growth. Similarly,
treatment of uLMS cell lines with DL-sulforaphane exhibited a dose-dependent cell growth
inhibition for 48 h (Figure 5E,F). Therefore, both Tucidinostat and DL-sulforaphane elicit
the anti-proliferation effect on uLMS cells.

3.4. Tucidinostat and DL-Sulforaphane Sculpt the Transcriptome of uLMS Cells

To characterize the Tucidinostat and DL-sulforaphane-induced transcriptional changes
in uLMS cells, RNA-sequencing analysis was performed in control (DMSO, n = 4), Tucidinostat-
treated uLMS cells (n = 4), and DL-sulforaphane-treated uLMS cells (n = 4). Tucidinostat
yielded 6639 DEGs (2846 down, 3793 up), and DL-sulforaphane yielded 3908 DEGs (2226
down, 1682 up). Tucidinostat and DL-sulforaphane upregulated 28% and 12.4% of gene
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expression and downregulated 21% and 16.4% of gene expression. Differential gene
expression analysis was done by three algorithms: limma-voom, DESeq2, and edgeR. The
highest number of DEGs between Tucidinostat and control samples (11,269) and DL and
control samples (5894) was identified using Limma + voom. EdgeR identified 8120 and 5403
DEGs, respectively (Figure 6A,B). DESeq2, on the other hand, identified the lowest number
of DEGs (6639 and 3908). A set of 5496 and 3141 genes was common in the three differential
gene expression analysis methods (Figure 6A,B). Figure 6C,D revealed the distribution of
DEGs between treatments and DMSO control. Figure 6E,F exhibited distinct expression
patterns between DMSO control vs. Tucidinostat and DL-sulforaphane, respectively.

Cells 2022, 11, x FOR PEER REVIEW 10 of 28 
 

 

hand, identified the lowest number of DEGs (6639 and 3908). A set of 5496 and 3141 genes 
was common in the three differential gene expression analysis methods (Figure 6A,B). 
Figure 6C,D revealed the distribution of DEGs between treatments and DMSO control. 
Figure 6E,F exhibited distinct expression patterns between DMSO control vs. Tucidinostat 
and DL-sulforaphane, respectively. 

 

 

Figure 6. Treatment with Tucidinostat and DL-sulforaphane sculpts the transcriptome of uLMS 
cells. Venn diagrams to demonstrate the DEGs identified by three methods of Limma + voom, 
edgeR and DESeq2 at Adjusted P-value cut off 0.05 and −1.5 > log2FC > 1.5 for (A) Tucidinostat vs. 
Control (B) DL-sulforaphane vs. Control. Volcano plots of the gene expression profiles of (C) 
Tucidinostat vs. Control (D) DL-sulforaphane vs. Control. The blue points represent upregulated 
genes, and the green points represent downregulated genes. The vertical dotted black lines 
represent the log (FC) cutoff, and the horizontal black line represents the logarithmic transformed 
Adjusted P-value cutoff. (E) Heat map; Pearson correlation was used to cluster DEG (Tucidinostat 
vs. Control), which were then represented as a heatmap with the data scaled by Z score for each 
row. (F); Heat map. Pearson correlation was used to cluster DEG (DL-Sulforaphane vs. Control), 
which was then represented as a heatmap with the data scaled by Z score for each row. DEGs: 
differentially expressed genes, FC: fold-change. 

3.4.1. Pathway Analysis of DEGs upon Tucidinostat and DL-Sulforaphane Treatment 
To gain insight into the biological changes by HDAC inhibition, gene set enrichment 

analysis (GSEA) was performed. We demonstrated that several gene sets were enriched 
in Tucidinostat vs. control group (Figure 7A–F). 

GSEA analysis also revealed that DL-sulforaphane altered the expression of several 
gene sets (Figure 8A), including UV response (Figure 8B), TNFa signaling via NFkB 
(Figure 8C), interferon alpha/Gamma response (Figure 8D,E), MTORC1(Figure 8F), 
xenobiotic metabolism, reactive oxygen species pathway, P53 pathway, oxidative 
phosphorylation, MYC targets, KRAS, among others. Notably, Tucidinostat and DL-
sulforaphane shared altered common pathways, including UV response, MYC targets, 
KRAS signaling, interferon alpha/Gamma response, and inflammatory response (Figures 
7A and 8A). 

A B 

C D 

E 

F 

Figure 6. Treatment with Tucidinostat and DL-sulforaphane sculpts the transcriptome of uLMS
cells. Venn diagrams to demonstrate the DEGs identified by three methods of Limma + voom, edgeR
and DESeq2 at Adjusted P-value cut off 0.05 and −1.5 > log2FC > 1.5 for (A) Tucidinostat vs. Control
(B) DL-sulforaphane vs. Control. Volcano plots of the gene expression profiles of (C) Tucidinostat
vs. Control (D) DL-sulforaphane vs. Control. The blue points represent upregulated genes, and the
green points represent downregulated genes. The vertical dotted black lines represent the log (FC)
cutoff, and the horizontal black line represents the logarithmic transformed Adjusted P-value cutoff.
(E) Heat map; Pearson correlation was used to cluster DEG (Tucidinostat vs. Control), which were
then represented as a heatmap with the data scaled by Z score for each row. (F); Heat map. Pearson
correlation was used to cluster DEG (DL-Sulforaphane vs. Control), which was then represented as
a heatmap with the data scaled by Z score for each row. DEGs: differentially expressed genes, FC:
fold-change.

3.4.1. Pathway Analysis of DEGs upon Tucidinostat and DL-Sulforaphane Treatment

To gain insight into the biological changes by HDAC inhibition, gene set enrichment
analysis (GSEA) was performed. We demonstrated that several gene sets were enriched in
Tucidinostat vs. control group (Figure 7A–F).
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Figure 7. Hallmark analysis demonstrated the alteration of multiple pathways in SK-UT-1 cells
in response to Tucidinostat (TD) treatment (Significantly enriched gene sets (HDAC inhibitor vs.
control) from GSEA using Hallmark biological processes in MSigDB. (A) Functional pathways
analysis identified significantly altered pathways in SK-UT-1 cells treated with Tucidinostat. Signifi-
cantly enriched gene sets (Tucidinostat vs. control) from GSEA using Hallmark biological processes
in MSigDB. Gene count and significance levels are shown by the size and color of each circle, respec-
tively. Pathways analysis revealed that several gene sets were altered and associated with KRAS
signaling (B,C), estrogen-response (D), interferon-response (E,F). RES: Running Enrichment Score;
RLM: Ranked list metric.

GSEA analysis also revealed that DL-sulforaphane altered the expression of sev-
eral gene sets (Figure 8A), including UV response (Figure 8B), TNFa signaling via NFkB
(Figure 8C), interferon alpha/Gamma response (Figure 8D,E), MTORC1(Figure 8F), xenobi-
otic metabolism, reactive oxygen species pathway, P53 pathway, oxidative phosphorylation,
MYC targets, KRAS, among others. Notably, Tucidinostat and DL-sulforaphane shared al-
tered common pathways, including UV response, MYC targets, KRAS signaling, interferon
alpha/Gamma response, and inflammatory response (Figures 7A and 8A).



Cells 2022, 11, 3801 12 of 27Cells 2022, 11, x FOR PEER REVIEW 12 of 28 
 

 

  
Figure 8. Hallmark analysis demonstrated the alteration of multiple pathways in SK₋UT₋1 cells 
in response to DL-sulforaphane treatment (Significantly enriched gene sets (DL-sulforaphane vs. 
control) from GSEA using Hallmark biological processes in MSigDB. (A) Functional pathways 
analysis identified significantly altered pathways in SK₋UT₋1 cells treated with DL-sulforaphane t. 
Significantly enriched gene sets (DL-sulforaphane vs. control) from GSEA using Hallmark 
biological processes in MSigDB. Gene count and significance levels are shown by the size and color 
of each circle, respectively. Pathways analysis revealed that several gene sets associated with UV 
response (B), TNFa via NFkB (C), Interferon-alpha (D), Interferon-gamma (E), and MTORC1 (F) 
were altered. RES: Running Enrichment Score; RLM: Ranked list metric. 

3.4.2. The Expression of Cell Cycle- and Apoptosis-Related Genes Is Altered upon 
Tucidinostat and DL-Sulforaphane Treatment 

To determine genes regulating the cell cycle and apoptosis in uLMS cells in response 
to Tucidinostat and DL-sulforaphane treatments, we checked the expression of CDKN1A 
(P21), BAK1, CDK1, CDK3, CDK10, and HDAC6. As shown in Figure 9, both Tucidinostat 
and DL-sulforaphane increased the expression of CDKN1A and BAK1 and reduced the 
expression of CDK3 and CDK10. In addition, Tucidinostat but not DL-sulforaphane 
reduced the expression of CDK1. Moreover, both Tucidinostat and DL-sulforaphane 
decreased the expression of HDAC6 in uLMS cells. BAK localizes to mitochondria, and 
functions to induce apoptosis. HDAC6 is involved in cell cycle and apoptosis [56], and 
CDKN1A and CDK members were critical in cell cycle progression [57–59]. Therefore, our 
results suggested that Tucidinostat and DL-sulforaphane suppressed the uLMS 
proliferation via cell cycle arrest and apoptosis. 

HDACs have been implicated as a target for sulforaphane. A number of studies have 
demonstrated that sulforaphane impacts the cellular acetylome and decreases HDAC 
activity in several models and diseases, including prostate epithelial cells, mouse colon 
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Figure 8. Hallmark analysis demonstrated the alteration of multiple pathways in SK-UT-1 cells
in response to DL-sulforaphane treatment (Significantly enriched gene sets (DL-sulforaphane vs.
control) from GSEA using Hallmark biological processes in MSigDB. (A) Functional pathways
analysis identified significantly altered pathways in SK-UT-1 cells treated with DL-sulforaphane t.
Significantly enriched gene sets (DL-sulforaphane vs. control) from GSEA using Hallmark biological
processes in MSigDB. Gene count and significance levels are shown by the size and color of each
circle, respectively. Pathways analysis revealed that several gene sets associated with UV response
(B), TNFa via NFkB (C), Interferon-alpha (D), Interferon-gamma (E), and MTORC1 (F) were altered.
RES: Running Enrichment Score; RLM: Ranked list metric.

3.4.2. The Expression of Cell Cycle- and Apoptosis-Related Genes Is Altered upon
Tucidinostat and DL-Sulforaphane Treatment

To determine genes regulating the cell cycle and apoptosis in uLMS cells in response
to Tucidinostat and DL-sulforaphane treatments, we checked the expression of CDKN1A
(P21), BAK1, CDK1, CDK3, CDK10, and HDAC6. As shown in Figure 9, both Tucidinostat
and DL-sulforaphane increased the expression of CDKN1A and BAK1 and reduced the
expression of CDK3 and CDK10. In addition, Tucidinostat but not DL-sulforaphane reduced
the expression of CDK1. Moreover, both Tucidinostat and DL-sulforaphane decreased the
expression of HDAC6 in uLMS cells. BAK localizes to mitochondria, and functions to
induce apoptosis. HDAC6 is involved in cell cycle and apoptosis [56], and CDKN1A
and CDK members were critical in cell cycle progression [57–59]. Therefore, our results
suggested that Tucidinostat and DL-sulforaphane suppressed the uLMS proliferation via
cell cycle arrest and apoptosis.
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Figure 9. Tucidinostat and DL−sulforaphane altered cell cycle- and apoptosis−related gene ex-
pression in uLMS cells. RNA−seq revealed the upregulation of P21 and BAK1 and downregulation
of CDK1, CDK3, CDK10, and HDAC6 in uLMS cells. NS: no significant difference; * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001.

HDACs have been implicated as a target for sulforaphane. A number of studies
have demonstrated that sulforaphane impacts the cellular acetylome and decreases HDAC
activity in several models and diseases, including prostate epithelial cells, mouse colon tis-
sues, satellite cells, and human peripheral blood mononuclear cells [60–62], concomitantly
with an increase in the levels of acetylated histones and p21. In addition, separate studies
demonstrated that other types of cells, such as HCT116 is at least partially resistant to the
nuclear HDAC inhibitory effect of Sulforaphane [63]. Therefore, sulforaphane exerted a
distinct action on transcriptome changes in a cell-dependent manner.

To assess if Tucidinostat and DL-sulforaphane exhibited similar transcriptional pat-
tern in uLMS with other HDAC inhibitors, we performed drug similarity analysis using
L1000CDS2 and demonstrated that Tucidinostat- induced transcriptional pattern has simi-
larity with signatures of multiple HDAC inhibitors, including BRD-K11663430, HDAC6
inhibitor ISOX, mocetinostat, vorinostat, entinostat, among others, which were shown in
Table S1. However, the transcriptional signature induced by DL-sulforaphane did not show
similarity with any other HDACi-induced transcriptional pattern (Table S2), indicating that
DL-sulforaphane may not target HDAC directly in uLMS cells.

3.4.3. Tucidinostat and DL-Sulforaphane Altered the Gene Expression Correlating to
Histone Modifications

To understand epigenetic-mediated transcriptional changes in response to the Tucidi-
nostat and DL-sulforaphane treatment, we performed enrichment analysis of epigenetic
histone markers using the Enrichr web server. As shown in Figure 10, several histone
modifications, including H3K27me3 and H3K9me3, associated with upregulated DEGs in
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response to Tucidinostat were identified (Figure 10A). In addition, down-regulated DEGs
associated with histone modifications, including H3K27ac, H3K4me3, and H3K79me2 were
identified (Figure 10B). For DL-sulforaphane-induced DEGs associated histone modifica-
tions, our analysis revealed that histone modifications with up DEGs included H3K27me3,
H3K27me2, H3K27ac, H3K79me2, among others (Figure 10C). The histone modifications
associated with DL-sulforaphane-induced down DEGs included H3K27me3, H3K4me1,
H3K9ac, H3K4me2, among others (Figure 10D)
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Figure 10. Dot plot analysis for histone modifications. The dot plots showed the top twenty
enrichment terms for histone modification associated with up DEGs (A) and down DEGs (B) in
response to Tucidinostat treatment. (C) histone modifications related to up DEGs in response to
DL-sulforaphane treatment. (D) histone modifications associated with down DEGs in response
to DL-sulforaphane treatment. The X-axis represents the gene ratio, and the y-axis descript the
enrichment components. The area of the circle is proportional to the number of genes assigned to the
term, and the color accords with the Adjusted p-value.

3.4.4. Tucidinostat and DL-Sulforaphane Altered the Gene Expression Associated with
Transcriptional Factors

Transcriptional factors play an important in many biological processes and their
control is disrupted in cancer cells [64]. The dysregulation of these core transcription
factors forms interconnected transcriptional loops to establish and reinforce the abnormal
gene-expression program in cancer cells [65]. Our studies demonstrated that Tucidinostat
and DL-sulforaphane induced- DEGs are putative targets of multiple transcriptional factors,
as shown in Figure 11A–D.
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Figure 11. Transcription factors enrichment analysis. The dot plots showed the top twenty enrich-
ment Terms for transcription factors associated with up DEGs (A) and down DEGs (B) in response
to Tucidinostat treatment. (C) Transcriptional factors associated with up DEGs in response to DL-
sulforaphane treatment. (D) Transcriptional factor enrichments associated with down DEGs in
response to DL-sulforaphane treatment.

3.4.5. Tucidinostat and DL-Sulforaphane Altered the Gene Expression Correlating to the
miRNA Regulation

We used TargetScan microRNA analysis in Enrichr web server to determine the
mechanism underlying the regulation of DEGs associated with miRNAs in response to
HDAC inhibitors treatment. As shown in Figure 12A–D, Tucidinostat and DL-sulforaphane
induced- DEGs are putative targets of multiple miRNAs.

3.4.6. UpSet Plot Visualization

To further visualize the intersections of three drugs-induced DEGs (Tucidinostat up, Tu-
cidinostat down, DL-sulforaphane up, DL-sulforaphane down, TP472 up, TP472 down), the
upset plot was utilized to present the distribution characteristics of DEGs upon treatments.
As shown in Figure 13A, the common up and down DEGs with Tucidinostat and DL-
sulforaphane contain 71 and 140 genes, respectively. The TP472-down/DL-sulforaphane-
down groups had 513 genes, the group with the largest number of genes in all groups with
genes involved in two types of gene regulations. In addition, the Tucidinostat-down/DL-
sulforaphane-down/TP472-down groups contained 358 genes, the group with the largest
number of genes in all groups involved in three types of regulations. Figure 13B,C exhibited
the expression pattern in the red intersection (Tucidinostat-down, DL-sulforaphane-down,
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and TP472-down), the blue intersection (Tucidinostat-up, DL-sulforaphane-up, and TP472-
up) presented in Figure 13A.
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Figure 12. MicroRNAs enrichment analysis. The dot plots showed the top twenty enrichment
Terms for microRNAs associated with up DEGs (A) and down DEGs (B) in response to Tucidinostat
treatment. (C) MicroRNAs associated with up DEGs in response to DL-sulforaphane treatment.
(D) MicroRNAs associated with down DEGs in response to DL-sulforaphane treatment.

Functional enrichment analysis revealed that the genes from the blue and red inter-
sections in Figure 13A exhibited multiple enriched pathways, including inflammatory
response, p53 pathway, KRAS signaling, apoptosis, estrogen response, UV response, com-
plement, angiogenesis, IL-2/STAT5 signaling, EMT, among others (Figure 13D,E).

Since the number of shared DEGs between Tucidinostat and DL-sulforaphane are
much less compared to the number of DEGs from each individual group, one may consider
that Tucidinostat and DL-sulforaphane promoted the inhibitory effect on uLMS via different
network mechanisms.

3.4.7. Apoptosis and EMT

To further determine the apoptosis pathway affected by the treatments, we used the
single-sample gene set enrichment analysis (ssGSEA) to measure the apoptosis scoring
in response to the Tucidinostat, DL-sulforaphane, and TP472. We demonstrated that
treatments with above three agents significantly increased the apoptosis scoring compared
to the control (DMSO) group. Moreover, Tucidinostat exhibited the most effective of
activating apoptosis among the three drugs (Figure 14A).
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Figure 13. Intersection size of DEGs across Tucidinostat, DL−sulforaphane, and TP472 treat-
ments and associated epigenetic changes. (A) Upset diagram showing the intersection size of
upregulated and downregulated genes across drug treatments. (B) Eigengenes expression pattern in
the blue intersection. (C) Eigengenes expression pattern in the red intersection. (D,E) The dot plot of
the top 20 functional enrichment results for (D) blue intersection and (E) red intersection.

For epithelial-mesenchymal transition (EMT) scoring, we used three different methods
to quantify EMT; 76GS, KS, and ssGSEA. The KS method has a predefined scale for EMT
scores [−1, 1], with higher scores indicating mesenchymal signatures. On the other hand,
there is no pre-defined range of scores calculated by 76GS, and the higher the 76GS score,
the more epithelial the sample is. The score derived from ssGSEA reflects the degree
to which the input gene signature is coordinately up or downregulated within samples
(Figure 14A,B).

3.4.8. Co-Expression Network Analysis

The weighted gene co-expression network was constructed with 1356 most variable
genes (the top 10% of genes). (Figure 15A) The scale-free topology R2 did not reach the
soft threshold of 0.85, so the recommended power value of 12 was chosen (Figure 14B).
The WGCNA revealed two gene co-expression modules by average linkage hierarchical
clustering. Modules with more than 0.25 expression profiles similarity were merged. Each
module was shown in a unique color (Figure 15C). The Module-Blue was found to have
the highest significant association with EMT (correlation = 0.99 and p-value < 9 × 10−13).
(Figure 15D,E). The 255 genes were found in the Module-Blue, which used the STRING tool
to reconstruct the gene-gene interactions (https://string-db.org/ (accessed on 27 October
2021). Cytoscape software identified the hub genes associated with the Module-Blue. Based
on intramodular connectivity, top hub genes in the co-expression network are shown in
Figure 16.

https://string-db.org/
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Figure 14. Apoptosis and EMT scoring. The X-axis represents the 76 gene signature scores, and the
y-axis describes the Kolmogorov–Smirnov test scores. (A) ssGSEA scoring of hallmark apoptosis
pathway, (B) EMT scoring: Dot shape indicates group, and dot color indicates ssGSEA score for EMT.
ssGSEA: Single-sample gene set enrichment analysis. *** p < 0.001, DL: Dl-sulforaphane; TP: TP472;
TD: Tucidinostat.

3.5. Potential Drugs Prediction

This study used DGIdb as the first approach for identifying the possible drugs with
the effects on reversing the increased expression of EMT hub genes. Using DGIdb, we
found 186 candidate drugs that target the top 10 percent of EMT modules’ genes (based on
the network’s connectivity). These potential drugs are shown in Table S3.

Our research used L1000CDS2 as the second approach to identify drug candidates
for EMT inhibition. The list of the EMT modules DEGs and their related fold changes
between the Tucidinostat group (as the most significant treatments group) vs. Control was
entered to the L1000CDS2 web tool to search for molecular compounds that can reverse the
expression changes. The top 50 drugs are identified as an output and are shown in Table S4.
This study proposes future research to use a combination treatment strategy (HDACi in
combination with EMT inhibitors) to achieve a better outcome in treating human uLMS.
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Figure 15. Sample dendrogram and trait heatmap. (A) The five traits are Tucidinostat,
DL−sulforaphane, TP−472, Control, and EMT. (B) Scale independence and mean connectivity
of various soft-thresholding values. (C) Gene co-expression network modules. Different colors
represent different modules, and gray represents genes that cannot be merged into any module. The
bottom colors represent the module after merging modules. (D) Heatmap of the correlation between
the clinical traits and MEs. Each cell contains the corresponding correlation and the P value. The table
is color-coded by the correlation according to the color legend. (E) Using linear regression, scatter
plots of gene significance (GS) vs. module membership (MM) in the blue modules.
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a grid layout sorted by degree. * p < 0.05.

4. Discussion

ULMS is a highly aggressive tumor with high tumor recurrence rates, progression,
and metastasis [5]. The malignant potential of uterine fibroids is extremely low [66,67]. The
origin and molecular mechanism underlying driving its clinical and biological behavior
remain unclear [6].
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This study demonstrated that Class I HDACs are abnormally upregulated in uLMS
compared to myometrial tissues, which may contribute to the uLMS pathogenesis.

We compared the expression levels of main class I HDAC members HDAC1, 2, and 3
in uLMS and adjacent myometrium, as well as the expression of full members of Class I
HDACs in UTSM, HuLM, and uLMS cell lines. The protein levels of HDAC1, 2, and 3 are
significantly upregulated in two uLMS cell lines compared to UTSM and HuLM cell lines.
In addition, the expression levels of HDAC 1,2 and 3 are upregulated in uLMS tumors
compared to myometrium tissues suggesting that Class I HDACs may contribute to the
pathogenesis of uLMS.

Abnormal cell proliferation via decreasing the cell cycle arrest and apoptosis is com-
mon in many cancers [68–71]. We revealed that uLMS cells grow faster than myometrial
cells in vitro and in vivo. To determine if targeting HDACs can suppress the uLMS pheno-
type, we determined the uLMS cell growth in response to HDAC inhibitor treatment. Our
study demonstrated that HDAC inhibition suppressed the uLMS cell proliferation. The
anti-tumor effect of HDAC inhibition observed in our model was consistent with literature
from other types of cancer. Targeting class I HDACs with Tucidinostat (benzamide HDAC
inhibitor) has been studied in different types of cancers showing beneficial effects. For
instance, in pancreatic cancer, Tucidinostat treatment synergistically enhances gemcitabine
cytotoxicity in pancreatic cancer cells [72]. In multiple myeloma (NN), Tucidinostat inhib-
ited the proliferation and invasion of MM cells. In addition, Tucidinostat in combination
with lenalidomide and a low dose of borezomid exhibited a synergistic effect in MM [73].
In hepatic cancer, Tucidinostat showed an anti-tumor activity [74]. Moreover, Tucidinos-
tat targeted stem and progenitor cells of acute myeloid leukemia [75]. All those studies
demonstrated the critical role of Class I HDACs in cancer development and targeting class
I HDACs showed beneficial effects in several types of neoplasms.

To further determine the mechanisms associated with inhibition, we performed a
genome-wide RNA-sequencing experiment comparing the DMSO-treated with Tucidinos-
tat -treated uLMS cells. In addition, DL-sulforaphane-induced transcriptional changes were
also compared. The transcriptome analysis revealed that targeting HDACs with Tucidinos-
tat altered several critical biological pathways that may contribute to uLMS pathogenesis.
In addition, we determined the transcriptional changes in response to DL-sulforaphane
treatment. Although DL-sulforaphane showed the activity of inhibiting cell proliferation,
the specificity of the drug targeting class I HDACs has not been reported in uLMS. Our
analysis demonstrated that 21.5% and 27.5% of down DEGs shared common genes between
Tucidinostat and DL-sulforaphane treatment groups. Similarly, 18.1% and 40.8% of up
DEGs showed common genes between Tucidinostat and DL-sulforaphane treatment groups.
This overlapped analysis is consistent with the hallmark analysis demonstrating that Tu-
cidinostat and DL-sulforaphane impaired common pathways. However, the alteration of
some other biological pathways differed in response to Tucidinostat and DL-Sulforaphane,
respectively.

In contrast to Tucidinostat, the inhibitory effect of Sulforaphane on HDAC activity
is controversial. For example, sulforaphane treatment does not reduce nuclear HDAC
activity, but decreases the levels of HDAC1-4 and 6 in keratinocytes [63]. However, other
studies demonstrated the inhibitory effect of sulforaphane on HDAC activity. For example,
sulforaphane repressed the HDAC activity by 40%, 30%, and 40% in BPH-1, LnCaP, and
PC-3 prostate epithelial cells, respectively. The HDAC inhibition was accompanied by a
50–100% increase in acetylated histones in all three prostate cell lines [61]. A similar study
showed that sulforaphane dramatically reduced HDAC activity in porcine satellite cells
with an increase in global acetylated H3 and H4 levels [62]. The in vivo studies demon-
strated that sulforaphane could decrease HDAC activity by ~65%, concomitantly with an
increase in acetylated histones globally, as well as locally on the promoters of genes such
as P21 and BAX [60]. Therefore, sulforaphane may have a distinct impact on different cell
types. In this study, our drug similarity analysis demonstrated that Tucidinostat-induced
transcriptional signature had a similar pattern with several other known HDAC inhibitors-
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induced patterns. Still, DL-sulforaphane did not, indicating that DL-sulforaphane may
affect uLMS via different mechanisms, rather than HDAC inhibition in uLMS. Notably,
we demonstrated that the more inhibitory efficiency of Tucidinostat over DL-sulforaphane
is consistent with the expression levels of cell cycle-related genes, including P21, CDK1,
and CDK3, as shown in Figure 9. For the apoptosis-related gene, both Tucidinostat and
DL-sulforaphane increased the expression levels of BAK1, which localizes to mitochondria,
and functions to induce apoptosis. Moreover, Tucidinostat probably promoted apoptosis
more strongly than DL-sulforaphane identified by GSEA Score. Therefore, targeting class
I HDACs with Tucidinostat proves superior to DL-sulforaphane by inhibiting the uLMS
proliferation via inducing apoptosis and cell cycle arrest in uLMS cells.

EMT is a cell biological process crucial for tumor aggressiveness, including cancer
metastasis and drug response [76,77]. Therefore, the EMT status of cancer cells can be
proved to be a critical estimate of patient prognosis. In this regard, we used three distinct
metrics that score EMT on a continuum, based on the transcription signature of Tucidinostat
and DL-sulforaphane and control groups. However, our results demonstrated that both
drugs increase the EMT levels compared to the DMSO control (Figure 13B). It has been
reported that dysregulation of apoptosis and EMT are linked with various pathological
progress, including tumor formation and progression [78]. Notably, TGF-β, as a potent
pleiotropic molecule, induced apoptosis and simultaneously induced the EMT of AML-12
cells. The question is if targeting the HDACs induces these concurrent but distinct events
in uLMS cells. A study by Yang et al. demonstrated that TGF-β1-induced apoptosis and
EMT were closely related to the cell cycle stage, and TGF β 1-induced concurrent apoptosis
and EMT are independent of each other [79]. Therefore, deep diving into the mechanism
underlying the Tucidinostat and DL-sulforaphane-induced changes in apoptosis, EMT, and
other pathways is worthwhile.

It has been reported that cross-talk between different epigenetic mechanisms regulates
gene expression [80–83]. For instance, HDAC inhibitors can elicit transgenerational effects
via altered DNA and histone methylation [84]. HDAC4 and HDAC9 can differentially
influence H3K27 acetylation, which can explain the pleiotropic actions of MEF2 transcrip-
tion factors in uLMS [85]. In this study, Tucidinostat altered the up-DEGs correlated with
multiple histone modifications in uLMS, including H3K27me3, H3K79me2, 3, and H3K9ac,
among others. The down-DEGs correlated with H3K27ac, H3K4me1, 2, 3, and H3K27me3,
among others. Our studies indicated that HDAC inhibition might alter the transcription by
reprogramming the oncogenic transcriptome in uLMS. This observation was further con-
firmed by transcriptional factor regulation analysis inferred from integrating genome-wide
ChIP-X (ChIP-chip, ChIP-seq, ChIP-PET, and DamID) studies. By combining transcriptome
data with ChIP-X transcriptional factor, and histone modification studies, we identified
multiple putative networks linking to enriched pathways, that can help target specific
transcription factor activity in uLMS cells using combination drug treatment strategy.

Notably, the interplay between miRNAs and HDACs has been widely reported [86–88].
We used Targetscan miRNA as a prediction tool to assess which miRNAs may interact with
their targets. A number of miRNAs are shown to putatively interact with Tucidinostat-
induced DEGs. In addition, DL-sulforaphane treatment also altered the interaction between
miRNAs and target mRNA. Subsequent experiments for functional validation of miRNA-
target interactions in response to Tucidinostat and Dl-sulforaphane treatments are needed.

HDACs are divided into five groups based on sequence homology to the original
yeast enzymes and domain organization. Among them, HDAC1, 2, 3, and 8 belong to Class
I. Class IIa contains HDAC4, 5, 7, and 9. A previous study demonstrated that Tucidino-
stat targets Class I HDACs and sulforaphane attenuates class ILa HDACs and HDAC2
enzyme activities [89]. This study revealed several differences between Tucidinostat and
DL-sulforaphane treatments in uLMS cells. (1) Tucidinostat showed a more potent in-
hibitory effect on cell proliferation than DL-sulforaphane. (2) Venn diagrams analysis
demonstrated a distinct transcriptome pattern between Tucidinostat and DL-sulforaphane.
(3) The expression levels of key genes such as p21 differed between Tucidinostat and DL-
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sulforaphane treatments. In addition, the enriched pathways and reprogramming differed
between the two treatments. Tucidinostat showed similarity with other HDAC inhibitors
in the transcriptome pattern, but DL-sulforaphane did not. From upset plot analysis, the
groups of Tucidinostat and DL-sulforaphane contained a smaller number of common genes
than either Tucidinostat/TP472 groups or DL-sulforaphane/TP472 groups, respectively.
Since TP472 mainly targets BRD9, one may consider that Tucidinostat and DL-sulforaphane
trigger the distinct expression pattern in uLMS cells markedly.

Per our studies, we proposed a mechanism model for targeting HDACs in uLMS
based on our novel findings that (1) Class I HDACs expression is dysregulated in uLMS
tumors and cells, (2) targeting HDACs with Tucidinostat alters the uLMS phenotype with
a decrease in cell proliferation and modulation of cell-cycle related genes, and increases
the apoptosis process; (3) Tucidinostat and DL-sulforaphane reversed the phenotype of
uLMS via different mechanism; (4) Class I HDACs constitutes a distinguished vulnerability
in malignant uLMS, and HDAC inhibitors, such as Tucidinostat, alter key pathways and
reprogram the oncogenic epigenome and miRNA network to suppress the uLMS phenotype
(Figure 17).

Cells 2022, 11, x FOR PEER REVIEW 23 of 28 
 

 

 
Figure 17. Experimental model. The model shows that Tucidinostat and DL-sulforaphane activate 
apoptosis, induce cell cycle arrest, induce miRNA-mediated gene regulation, and reprogram pro-
oncogenic epigenome in uLMS cells. Note: Arabic numerals are the index for histone modifications. 

The concept that preoperative therapy leads to the improvement of oncological re-
sults is widely approved for long-term survival in potentially curative cases and in those 
with metastatic diseases [90–92]. Unfortunately, no single preoperative test can reliably 
differentiate benign from malignant uterine disease [93]. Therefore, identifying bi-
omarkers to differentiate malignant uLMS from benign UFs will help to initiate preoper-
ative therapy to achieve a better outcome for patients with uLMS. 

5. Conclusions 
Our study demonstrated that uLMS tumors and cells exhibited an aberrant upregu-

lation of class I HDAC proteins. Targeting HDACs in uLMS may impart beneficial effects 
in uLMS and provide a promising and novel strategy for treating patients with this ag-
gressive uterine cancer. Furthermore, the present study provided a list of potential medi-
cations as inhibitors for EMT that can be used in combination with antineoplastic drugs 
to increase the sensitivity of tumor cells to improve responses to therapy in uLMS cells. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Table S1: Tucidinostat drug similarity analysis; Table S2: DL-sulforaphane 
drug similarity analysis; Table S3: Candidate drugs that target the top 10 percent of EMT modules’ 
genes; Table S4: Drug candidates for EMT inhibition. 
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The concept that preoperative therapy leads to the improvement of oncological results
is widely approved for long-term survival in potentially curative cases and in those with
metastatic diseases [90–92]. Unfortunately, no single preoperative test can reliably differ-
entiate benign from malignant uterine disease [93]. Therefore, identifying biomarkers to
differentiate malignant uLMS from benign UFs will help to initiate preoperative therapy to
achieve a better outcome for patients with uLMS.
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5. Conclusions

Our study demonstrated that uLMS tumors and cells exhibited an aberrant upregula-
tion of class I HDAC proteins. Targeting HDACs in uLMS may impart beneficial effects in
uLMS and provide a promising and novel strategy for treating patients with this aggressive
uterine cancer. Furthermore, the present study provided a list of potential medications as
inhibitors for EMT that can be used in combination with antineoplastic drugs to increase
the sensitivity of tumor cells to improve responses to therapy in uLMS cells.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11233801/s1, Table S1: Tucidinostat drug similarity analysis;
Table S2: DL-sulforaphane drug similarity analysis; Table S3: Candidate drugs that target the top 10
percent of EMT modules’ genes; Table S4: Drug candidates for EMT inhibition.
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