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Abstract: Detecting breast cancer (BC) at the initial stages of progression has always been regarded as
a lifesaving intervention. With modern technology, extensive studies have unraveled the complexity
of BC, but the current standard practice of early breast cancer screening and clinical management of
cancer progression is still heavily dependent on tissue biopsies, which are invasive and limited in
capturing definitive cancer signatures for more comprehensive applications to improve outcomes
in BC care and treatments. In recent years, reviews and studies have shown that liquid biopsies in
the form of blood, containing free circulating and exosomal microRNAs (miRNAs), have become
increasingly evident as a potential minimally invasive alternative to tissue biopsy or as a complement
to biomarkers in assessing and classifying BC. As such, in this review, the potential of miRNAs as the
key BC signatures in liquid biopsy are addressed, including the role of artificial intelligence (AI) and
machine learning platforms (ML), in capitalizing on the big data of miRNA for a more comprehensive
assessment of the cancer, leading to practical clinical utility in BC management.

Keywords: liquid biopsy; circulating miRNA; breast cancer; AI; ML

1. Introduction

Globally, breast cancer (BC) remains the most common cancer and the leading cause
of cancer death for women [1]. Despite the advancement in BC screening, diagnostics
and therapy, the overall rates of BC incidence and mortality around the world have been
on an increasing trend. Although BC mortality rates have declined over time in most
high-income countries (HICs) [2], they remain high and are increasing in many low-middle-
income and low-income countries [3,4], partly due to poor awareness and perception of
early BC detection, leading to delays in diagnosis and treatment [1]. Recent studies show
that the mortality rate is also compounded by disparities in BC screening between rural
and urban rural/urban areas [5] as well as among those from different socio-economic
and ethnic backgrounds of HICs [2]. Nevertheless, there has been a more established
understanding of the heterogenous nature of BC and its application in the development
of personalized medicine and targeted therapy [6]. However, the complex interaction
within the tumor microenvironment (TME) and the influence of cancer stem cells (CSCs)
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from cancer recurrence to drug resistance [7] as well as population-based variation in
terms of immunological response [8] continue to pose challenges in deciphering feasible
approaches in managing BC diagnosis, monitoring and administrating effective treatment
options. In the past decade, the evolution of BC diagnosis and classification has resulted in
greater supporting tools, ranging from classical mammography and histopathology [9] to
molecular-based markers and multigene prognosticators [10], which ultimately guided the
overall management of BC (Table 1) [11–14]. Still, many if not all of these existing tools are
heavily reliant on invasive tissue biopsies as the starting point for screening and monitoring
BC progression, evaluating cancer prognosis and deciding on the best therapeutic options.
Moreover, studies have shown that the BC signatures are often not clearly manifested and
well represented in the current screening methods, namely mammography [15] and tissue
biopsies [16]—more so in the diagnosis of metastatic cancers [17]. Liquid biopsy (LB), on
the other hand, has emerged as a potential feasible approach in overcoming these shortfalls,
from obtaining samples in a noninvasive manner to early detection of cancer and more
comprehensive monitoring [18,19], thereby offering patients less stressful experiences and
a better sense of worthiness in managing cancer treatments. Among the commonly known
cancer biomarkers in LB [19], circulating microRNAs (miRNAs) stand out as a feasible
and practical option [20]. Hence, this review will address the role of miRNA as a feasible
candidate for liquid biopsy, not only in personalized BC management and targeted therapy
but also in consolidating the big data of miRNA with artificial intelligence (AI) and machine
learning platforms (ML) for a more comprehensive and inclusive approach in promoting
effective BC patient care and outcome.

Table 1. Clinical and molecular classification of BC.

Cancer
Type Benign

Pre-Malignant/
In-Situ

(20–25%) [13]
Malignant/Invasive [IDC (80%), ILC (20%)] [13]

Categories

Fibroadenoma
Intraductal
papilloma
Lipoma

Early Breast Cancer
Detection Molecular Subtypes (St Gallen)

Recurrence/
MetastaticLubular

Carcinoma
In-situ
(LCIS)

Ductal Carcinoma
In-situ (DCIS) Luminal A Luminal B

(HER2-)
Luminal B
(HER2+)

HER2+
Enriched TNBC

Cancer/Bio
markers
[11,12]

ER, PR, HER2 & Ki67
(low < 10%);
Germline test
BRCA1 & 2 (High
risk group)

ER+; PR+;
HER2−;
Ki67 low
(<10–14%);
Germline
test
BRCA1 & 2
(High Risk
Group)

ER+; PR−;
HER2−;
Ki67 high
(>14–30%);
Germline
test
BRCA1 &
2 (High
Risk
Group)

ER+;
PR+/−;
HER2+;
Ki67
high/low;
Germline
test
BRCA1 &
2 (High
Risk
Group)

ER−; PR−;
HER2+; Ki67
high;
Germline
test
BRCA1 & 2
(High Risk
Group)

ER−; PR−;
HER2−;
Ki67 high;
(CK 5/6+;
EGFR+);
Germline
test
BRCA1 &
BRCA2
(High Risk
Group)

Metastatic
Site: Bone,
liver, lungs,
brain
ESCAT score:
I = Good
prognosis
II = Poor
Prognosis

Frequency
of cases
[14]

20–25% 40–50% 20–30% 20–30% 15–20% 10–20% 4%

Histological
grade
(Majority)

Well
differentiated

(G1)

Moderately
differentiated

(G2)

Moderately
differentiated

(G2)

Poorly
differentiated

(G3)

Poorly
differentiated

(G3)

Poorly
differentiated

(G4)
TNM
Stage NR I-III I-III I-III I-III I-III IV

Prognosis NR Good Intermediate Intermediate Poor Poor Poor
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Table 1. Cont.

Cancer
Type Benign

Pre-Malignant/
In-Situ

(20–25%) [13]
Malignant/Invasive [IDC (80%), ILC (20%)] [13]

Response
to
therapies
[11,12,14]

Surgery
Breast-conserving

surgery (BCS)
Radiotherapy
Lumpectomy
Mastectomy

Endocrine Endocrine
Chemotherapy

Endocrine
Chemotherapy

Targeted
Therapy

Chemotherapy
Targeted
Therapy

Chemotherapy
PARP

inhibitors

Chemotherapy
CKD4/6
Inhibitor

Fulvestrant

Abbreviations: BRCA 1 & 2: Breast Cancer gene 1 and 2; TNM: tumor, node, and metastasis; DCIS: Ductal
Carcinoma In-situ; ESCAT: ESMO Scale for Clinical Actionability of molecular Targets; ER: Estrogen receptor;
HER2: Human epidermal growth factor receptor; IDC: Invasive Ductal Carcinoma; ILC: Invasive Lobular
Carcinoma; LCIS: Lubular Carcinoma In-situ; PALB2: Partner and localizer of BRCA2; PDL1: Program death-
ligand 1; PR: Progesterone receptor, 2; MSI: Microsatellite instability.

2. miRNA as Liquid Biopsy in Personalized Breast Cancer Management and
Targeted Therapy

The liquid biopsy (LB) approach enables the securing of essential information on
cancer progression and tumor through simple body-fluid-based samples, mainly through
routine blood sampling. As gene-regulatory molecules in the body, circulating microRNAs
(miRNAs) may be readily detected in plasma or serum of blood samples, enabling measur-
able changes in their levels, which are associated with the various conditions of the body,
including cancers. Moreover, with the rapid advancement in bioinformatics in molecular
data analysis, the inference of miRNAs with oncogene targets, cancer signaling pathways,
survival analysis, prognostic values and drug targets is commonly obtainable [21] with
cross-validation from clinical cancer-associated databases [22,23]. Although the application
of miRNA as LBs for BC in the clinical setting is fairly new, with only two clinical studies
recorded in www.clinicaltrials.gov as of October 2022 (Table 2), its utility may comple-
ment well with the existing standard clinical approach (Table 1), enhance diagnosis and
monitoring of BC progression, as well as the response to treatments.

Table 2. Clinical trials that involved circulating miRNAs as liquid biopsy of human breast
cancer (n = 2).

Study Name Year Launched Study ID Location Status

Onco-liq: Kit for
Breast Cancer

Diagnosis.
2021 NCT04906330 Argentina On-going

Prospective
Breast Cancer
Biobanking

(PBCB)

2020 NCT04488614 Norway On-going

3. Current Trends and Research Outcomes of Circulating miRNA as Liquid Biopsy

Circulating miRNAs are extracellular miRNAs that are present in body fluids, such
as blood, serum, plasma, milk, saliva and urine, either in the form of free-circulating
miRNAs or encapsulated within extracellular vesicles (EVs), such as exosomes [24–26]. The
advancement in molecular biology techniques has allowed scientists to employ different
methods, such as real-time polymerase chain reaction (qPCR) [27], miRNA-sequencing
(miRNA-seq) [28] and microarray [29], to detect the levels of circulating miRNAs among
BC patients. These techniques have been reported to play essential roles in the diagnosis,
classification and prognosis of BC [30,31]. We hope to provide an updated overview of the
research findings that reported the association of circulating miRNAs to the diagnosis and
prognosis of BC. Notably, EV-derived and exosomal miRNAs have attracted remarkable
interest due to their superior stability to those of free-circulating miRNAs. As such, a

www.clinicaltrials.gov
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separate cluster of studies that researched specifically miRNAs derived from EVs is also
highlighted in this review.

3.1. Diagnostic Significance of Circulating miRNAs in Human Breast Cancer

To date, more than 50 original research articles have reported the roles of circulating
miRNAs as a minimally invasive tool in diagnosing BC, either as free-circulating miRNA BC
in plasma or serum (Table 3) [32,33] or transported in EVs and exosomes (Table 4) [34,35].
Many circulating miRNAs were shown to be elevated in BC patients as compared to
healthy controls and these include miR-21 [36], miR-24 [32], miR-34 [37], miR-155 [38],
miR-140-5p [39] and many other miRNAs [40]. Similarly, the downregulation of specific
circulating miRNAs, such as miR-363-5p [25] and miR-4488 [41], was demonstrated to be
useful to distinguish between BC patients and healthy controls. In addition, the elevation
of serum exosomal miR-21-5p and miR-23a-3p levels [33] and plasma miR-133a, miR-148b
and miR-200 levels [42,43] was found to be sensitive to distinguish early and advanced BC
and this is particularly useful to detect early BC. Other miRNAs that had been reported to
be useful in detecting early BC include miR-23b, miR-26b-5p, miR-106b-5p, miR-127-3p,
miR-142-3p, miR-142-5p, miR-148b, miR-185-5p, miR-362-5p, miR-409-3p, miR-652 and
miR-801 [44–46].

On the contrary, the level of circulating miRNAs is helpful to classify BC based on the
clinical and histopathological grading [47,48]. For instance, the increased levels of exosomal
miR-363-5p [25] and circulating miR-106a levels [49] were useful to differentiate BC with
and without lymph node involvement. A clinical study reported that the elevation of four
serum miRNAs, including miR-16-5p, miR-17-3p, miR-451a and miR-940, was observed in
metastatic BC as compared to local, non-metastatic BC [50] and downregulation of plasma
miR-195 level was also observed in metastatic BC [51]. The combined findings from these
studies [50,51] highlighted the significance of circulating miRNA levels in BC staging. In
addition, upregulation of plasma exosomal miR-181-5p and miR-222-3p is reported to
link to advanced inflammatory BC as compared to non-inflammatory BC [35]. In terms of
molecular grading, circulating miR-182 and miR-200c were shown to be downregulated
and upregulated, respectively, in estrogen receptor (ER)- and progesterone receptor (PR)-
positive patients. Upregulation of miR-10b and miR-21 was reported in ER-negative BC
according to an Irish study [52], whereas suppression of miR-17 was shown to be observed
in ER-positive BC [24]. For human epidermal growth factor receptor 2 (HER2)-positive
patients, circulating miR-373 was reported to be upregulated [24] and, in another Chinese
study [53], it was shown that the circulating level of miR-106a-5p and miR-20b-5p was
increased in HER2-negative BC patients. In triple-negative BC (TNBC), serum miR-335 was
reported to be downregulated [54], whereas serum miR-200c was upregulated [55]. Other
circulating miRNAs that were upregulated in TNBC include miR-188-5p, miR-642b-3p,
miR-1202, miR-1207-5p, miR-1225-5p, miR-1290, miR-3141, miR-4270 and miR-4281 [56].

3.2. Prognostic Significance of Circulating miRNAs in Human Breast Cancer

Apart from being employed as minimally invasive biomarkers in diagnosing and classify-
ing different stages or types of BC (Tables 3 and 4) [57], circulating miRNAs are also important
in predicting the prognosis and treatment responses of BC patients [38,58]. For instance, the
expression of miR-155 and miR-1246 was elevated in the plasma exosomes isolated from BC
patients, and the upregulation of both miRNA levels was linked to poor survival, recurrence
and trastuzumab resistance among BC patients [38]. In another study [39], downregulation
of plasma miR-140-5p was correlated to increased chemoresistance, reduced event-free sur-
vival (EFS) and increased recurrence among BC patients. On the other hand, upregulation
of exosomal miR-21 [58], exosomal miR-34a, miR-182 and miR-183 levels [59] was shown
to contribute to poor chemotherapy response among BC patients, while the elevation of
blood exosomal miR-2392, miR-4448 and miR-4800-3p was demonstrated to correlate to
good response after neoadjuvant chemotherapy [60]. In terms of response towards targeted
therapy, such as trastuzumab, decreased serum levels of miR-16-5p, miR-17-3p, miR-451a
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and miR-940 were observed in trastuzumab-resistant BC and the increased expression of
these miRNAs was shown to promote treatment response to trastuzumab and improve
survival among BC patients [50]. In another Arabic study [30], dysregulations of seven
circulating miRNAs that include miR-19a, miR-19b-3p, miR-22-3p, miR-25-3p, miR-93-5p,
miR-199a-3p and miR-210-3p were shown to be related to resistance to both chemotherapy
and targeted therapy. On the contrary, the upregulation of circulating miR-21 correlated
tightly to radio resistance among BC patients [36]. Notably, all the circulating miRNAs that
were reported to modulate treatment responses in BC patients appeared to share a common
function in promoting uncontrolled proliferation and apoptosis evasion among the BC
cells [61,62]. For example, miR-373 was reported to upregulate the expression of vascular
endothelial growth factor (VEGF) in BC cells, which would lead to enhanced proliferation
and angiogenesis [62].

By studying the relationships between circulating miRNA levels, clinical conditions
and treatment responses, clinicians could predict the survival and likelihood of disease
recurrence among BC patients [63]. Elevation of several circulating exosomal miRNAs
was shown to be associated with good survival and it was suggested that the upregula-
tion of these miRNAs may improve patient survival by enhancing patient response to
chemotherapy [60]. On the other hand, the upregulation of exosomal miR-200c [64] and
miR-24-3p [47] was shown to correlate to poor overall survival (OS) among BC patients,
as the increased expressions of these miRNAs were hypothesized to directly correlate to
advanced disease staging [47,64]. Similarly, the downregulation of several circulating miR-
NAs, such as miR-34a [37] and miR-335 [54], was shown to reduce BC patient survival and
this would contribute to an increased likelihood of relapse and recurrence. Metastasis is
one of the important factors causing BC recurrence and the dysregulations. Eight miRNAs,
including miR-296-3p, miR-575, miR-3610-5p, miR-4483, miR-4710, miR-4755-3p, miR-5698
and miR-8089, were demonstrated to be able to predict the likelihood of recurrence sec-
ondary to BC metastasis [31]. Other circulating miRNAs that are reported to play vital
roles in influencing patient survival include miR-17, miR-18b, miR-103, miR-107, miR-652,
miR-26b-5p, miR-106b-5p, miR-142-3p, miR-142-5p, miR-185-5p and miR-362-5p [45,65,66].
Patients with dysregulated circulating levels of these miRNAs were found to have more
advanced disease staging and were more prone to face disease relapse and recurrence
with reduced survival rate [45,65,66]. In two other studies [29,31], at least 20 circulating
or exosomal miRNAs were reported to be sensitive and useful in distinguishing between
recurrent and non-recurrent BC cases and this is helpful to predict patient prognosis
and survival.

Table 3. Potential free-circulating miRNAs in diagnosing and predicting the prognosis or treatment
responses among breast cancer patients. ↑ increase; ↓ reduce.

miRNAs miRNAs
Source

Diagnostic
Significance

Significance in
Grading/
Classification

Prognostic Significance
Ref.Response to

Treatment
Overall
Survival Relapse/Recurrence

miR-21 Serum ↑miR-21 in BC ↑miR-21 in
advanced BC

↑miR-21
linked to ↑ ra-
dioresistance

↑miR-21 in
BC ↓ survival NIA [36]

miR-125b Serum NIA
↑miR-125b
linked to ↑
disease staging

↑miR-125b
linked to ↑
chemoresis-
tance

NIA NIA [61]

miR-140-5p Plasma

↓miR-140-5p
in BC as
compared to
CT

↓miR-140-5p
linked to worst
disease
prognosis

↓miR-140-5p
linked to ↑
chemoresis-
tance

↓miR-140-5p
linked to ↓
EFS

↓miR-140-5p
linked to ↑ re-
lapse/recurrence

[39]
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Table 3. Cont.

miRNAs miRNAs
Source

Diagnostic
Significance

Significance in
Grading/
Classification

Prognostic Significance
Ref.Response to

Treatment
Overall
Survival Relapse/Recurrence

miR-335 Serum

↓miR-335 in
BC as
compared to
CT

↓miR-335 in
TNBC NIA

↓miR-335
linked to ↓
OS

↓miR-335
linked to ↑ re-
lapse/recurrence

[54]

miR-34a/b/c Plasma

↓ In the 3
miRNAs levels
in BC as
compared to
CT

↓miR-34a levels
linked to
advanced clinical
staging &
histopathological
grading

NIA
↓miR-34a
levels linked
to ↓ survival

NIA [37]

miR-21,
miR-23b,
miR-200c,
miR-190

Plasma

↑miR-21,
miR-23b &
miR-200c levels
&
↓miR-190 in
BC

The 4 miRNAs
distinguished
relapsed &
non-relapsed BC
cases

NIA

↑miR-21 &
miR-200c
linked to
short DFS

↑miR-21,
miR-23b &
miR-200c & ↓
miR-190 in
relapsed as
compared to
non-relapsed
case

[42]

miR-16-5p,
miR-17-3p,
miR-451a,
miR-940

Serum

No significant
difference in
the 4 miRNAs
levels between
BC & CT cases

The 4 miRNAs
distinguished
metastatic &
non-metastatic
BC cases

↓ In the 4
miRNAs in
trastuzumab-
resistant BC

↑ In the 4
miRNAs in
improved BC
survival

↑ In the 4
miRNAs in
reduced
incidence of re-
lapse/recurrence

[50]

miR-18b,
miR-103,
miR-107,
miR-652

Serum
↑ In the 4
miRNAs levels
in TNBC

↑ In the 4
miRNAs levels
linked to
advanced clinical
staging &
histopathologi-
cal
grading

NIA
↑ In the 4
miRNAs ↓
RFS & OS

↑ In the 4
miRNAs in
relapse group

[66]

Let-7a,
miR-10b,
miR-21,
miR-145,
miR-181a

Plasma

↑miR-10b,
miR-21 &
miR-181a & ↓
let-7a &
miR-145 in BC

↑miR-10b,
miR-21 &
miR-181a & ↓
let-7a & miR-145
in locally
advanced BC

NIA

↑miR-10b &
↓miR-21
linked to
survival

↑miR-10b &
miR-21 linked
to ↑ relapse

[57]

miR-26b-5p,
miR-106b-5p,
miR-142-3p,
miR-142-5p,
miR-185-5p,
miR-362-5p

Whole
blood

↑ In the 6
miRNAs levels
in BC

↑ In the 6
miRNAs levels
in early BC

NIA

↑ In the 6
miRNAs
levels linked
to ↓ OS/DFS

NIA [45]

miR-19a,
miR-19b-3p,
miR-22-3p,
miR-25-3p,
miR-93-5p,
miR-199a-3p,
miR-210-3p

Plasma
↑ In the 7
miRNAs levels
in BC

These miRNAs
predicted BC
patient survival
& relapse

The 7
miRNAs
regulate
chemother-
apy &
targeted
therapy
resistance

↑miR-19a,
miR-19b,
miR-93 &
miR-201
linked to
poor OS in
TNBC
patients

NIA [30]
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Table 3. Cont.

miRNAs miRNAs
Source

Diagnostic
Significance

Significance in
Grading/
Classification

Prognostic Significance
Ref.Response to

Treatment
Overall
Survival Relapse/Recurrence

miR-296-3p,
miR-575,
miR-3610-5p,
miR-4483,
miR-4710,
miR-4755-3p,
miR-5698,
miR-8089

Serum
↑ In the 8
miRNAs levels
in BC

The 8 miRNAs
distinguished
metastatic &
non-metastatic
BC cases

NIA

↓miR-5698 &
miR-8089
linked to ↑
improved
survival

The 8 miRNAs
predicted

distant
metastases

[31]

BC: breast cancer; DCIS: ductal carcinoma in situ; DFS: disease-free survival; EFS: event-free survival; ER: estrogen
receptor; LN: lymph node; OS: overall survival; NACT: neoadjuvant chemotherapy; TNBC: triple-negative breast
cancer; PFS: progression-free survival; PR: progesterone receptor; NIA: no information available. The complete
list of miRNA studies surveyed in this review is provided as Supplementary Tables S1 and S2.

Table 4. Potential exosomal and extracellular-vesicle miRNAs in diagnosing and predicting the
prognosis or treatment responses among breast cancer patients. ↑ increase; ↓ reduce.

miRNAs miRNAs
Source

Diagnostic
Significance

Significance in
Grad-
ing/Classification

Prognostic Significance
Ref.Response to

Treatment
Overall
Survival Relapse/Recurrence

miR-24-3p Plasma ↑miR-24-3p in
BC

↑miR-24-3p
linked
to advanced
clinical &
histopathological
grading

NIA

↓miR-24-3p
linked to
improved
survival

NIA [47]

miR-363-5p Plasma ↓miR-363-5p
in BC

↓miR-363-5p in
LN+ve BC cases
as compared to
LN –ve BC cases

NIA
↑miR-363-5p
linked to ↑
survival

NIA [25]

miR-141,
miR-200c Plasma ↑miR-141 &

miR-200c in BC

↑miR-141 in
invasive BC; ↑
miR-141 &
miR-200c in
metastatic BC

NIA
↑miR-200c
linked to
short OS

NIA [64]

miR-155,
miR-1246 Plasma

↑ Both
miRNAs in
trastuzumab-
resistant
BC

↑ Both miRNAs
advanced BC as
compared to
non-advanced
BC

↑ Both
miRNAs in
trastuzumab-
resistant
BC

↑ Both
miRNAs
linked to
poor survival

↑ Both
miRNAs
linked to
relapse & poor
EFS

[38]

miR-21,
miR-105,
miR-222

Serum

↑ In the 3
miRNAs levels
linked to
presence of
circulating BC
cells

↑miR-222 linked
to advanced
clinical staging &
histopathologi-
cal grading; ↑
miR-21 &
miR-105 in
metastatic than
non-metastatic
BC

↑miR-21
reduced
NACT
response

NIA NIA [58]



Int. J. Mol. Sci. 2022, 23, 15382 8 of 18

Table 4. Cont.

miRNAs miRNAs
Source

Diagnostic
Significance

Significance in
Grad-
ing/Classification

Prognostic Significance
Ref.Response to

Treatment
Overall
Survival Relapse/Recurrence

miR-150-5p,
miR-576-3p,
miR-4665-5p

Plasma
↑ In the 3
miRNAs levels
in BC

The 3 miRNAs
distinguished
recurrence &
non-recurrence
in BC cases

NIA NIA

↑ In the 3
miRNAs levels
in recurrent BC
as compared to
non-recurrent
BC

[34]

miR-16,
miR-30b,
miR-93

Plasma
↑miR-16 in BC
& ↑miR-93 in
DCIS

↑miR-93 in ER &
PR +ve BC NIA NIA

↓miR-30b
linked to
recurrence

[63]

miR-195-5p,
miR-548ab,
miR-2392,
miR-2467-3p,
miR-4448,
miR-4800-3p

Serum

↑miR-2392,
miR-2467-3p,
miR-4448 &
miR-4800-3p
levels in BC

The 6 miRNAs
distinguished
recurrence &
non-recurrence
in BC cases

↑miR-2392,
miR-2467-3p,
miR-4448 &
miR-4800-3p
levels in BC
with
complete
NACT
response

↑miR-2392,
miR-2467-3p,
miR-4448 &
miR-4800-3p
levels linked
to ↑ OS in BC

↑ In
miR-195-5p &
↓miR-548ab in
recurrent BC
cases

[60]

miR-30b,
miR-34a,
miR-127,
miR-141,
miR-182,
miR-183,
miR-328,
miR-423

Plasma
Dysregulation
in the 8 miRNA
levels in BC

↓miR-30b,
miR-127 &
miR-328 in
invasive BC

↑miR-127 &
miR-141
linked to
complete
NACT
response;
↑miR-34a,
miR-182 &
miR-183
linked to
poor NACT
response

↓miR-141,
miR-34a,
miR-423,
miR-182 &
miR-183
linked to ↑
OS

NIA [59]

BC: breast cancer; DCIS: ductal carcinoma in situ; DFS: disease-free survival; EFS: event-free survival; ER: estrogen
receptor; LN: lymph node; OS: overall survival; NACT: neoadjuvant chemotherapy; TNBC: triple-negative breast
cancer; PFS: progression-free survival; PR: progesterone receptor; NIA: no information available. The complete
list of miRNA studies surveyed in this review is provided as Supplementary Tables S1 and S2.

3.3. Multifunctional Roles of Circulating miRNAs as Potential Biomarker for Human
Breast Cancer

Evidently, circulating miRNAs have great potential to be employed as minimally
invasive biomarkers in diagnosing BC at an early stage and complementary to the distin-
guishment of BC based on its clinical and histopathological grading [62,67]. In addition,
circulating miRNAs are also helpful to predict the likelihood of relapse, recurrence and
treatment responses among BC patients and this is particularly useful in guiding clinicians
in planning a personalized treatment approach for different BC patients [30,68]. Given
the challenge in identifying a miRNA panel useful for these functions within the grow-
ing number of related studies, we hope to provide an overview of the current status of
the reported multifunctional roles of circulating miRNAs. Based on our findings from
Tables 3 and 4 as well as the Supplementary Tables S1 and S2, the miRNAs were further
classified based on their reported roles in the diagnosis, staging classification and the pre-
diction for relapse, treatment outcome and survival prognosis for BC patients (Figure 1a,b).
We found that most of the reported free-circulating miRNAs were suitable in achiev-
ing the purpose of diagnosis only or concurrently in diagnosis and staging classification
(Figure 1a). On the other hand, more reported exosomal and EV miRNAs were classified
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with either diagnosis only or staging only (Figure 1b), suggesting that exosomal and EV
miRNAs may have more specific targets than free-circulating miRNA to be translated into
clinical validation for diagnostic and staging purposes. Interestingly, there are two free-
circulating (miR-21, miR-140-5p) and exosomal and EV (miR-155, miR-1246) miRNAs that
were reported with the multifunctional roles, i.e., diagnosis, staging, treatment, survival
and relapse.
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3.4. Sensitivity and Specificity Levels of miRNA Detection in BC Patients

Several potential miRNA biomarkers have been identified in BC patients’ serum or
plasma. With a receiver operating characteristic (ROC) curve analysis, miR-21-5p was
shown to have greater potential in discriminating between BC patients and the control
group than that of miR-221-3p [69]. Additionally, a recent meta-analysis on miR-21-5p
and BC that comprises six publications, consisting of Asian and Caucasian study cohorts,
further confirmed the potential early diagnostic role of miR-21-5p in BC patients due to
its high pooled AUC and diagnostic odds ratio [70]. Further, another recent meta-analysis
conducted with the aim of determining the overall diagnostic performance of 56 eligible
studies involving circulating miRNAs via qPCR revealed a pooled sensitivity and specificity
of 0.85 and 0.83, respectively [71]. Moreover, multiple miRNA panels with sensitivity and
specificity scores of 0.90 and 0.86, respectively, were significantly higher compared to
that of the single miRNA panels with corresponding sensitivity and specificity scores of
0.82 and 0.83, respectively. With regard to specimen type, pool sensitivity and specificity of
plasma were 0.83 and 0.85, respectively, and the pool sensitivity and specificity of serum
were 0.87 and 0.83, respectively, indicating little difference in the diagnostic performance
between serum and plasma samples. These studies revealed that cell-free circuiting miRNA
could function as a promising early diagnostic biomarker for the detection of BC [71].

4. Current Challenges and Issues in Circulating miRNAs as a Common Candidate for
Liquid Biopsy in BC Management

While establishing significant dysregulated miRNA expression of significance blood
samples, studies have shown contrary findings between the use of serum or plasma as start-
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ing materials for obtaining miRNAs and in multicentered heterogenous patient samples, as
well as in the use of various statistical models. Nevertheless, the need for standardization
of pre-analytical variables, namely sample processing, storage and handling, as well as
the data normalization strategy for the quantification of miRNA, are often highlighted
as possible causes for the discordant outcomes of the identified miRNA as diagnostic,
predictive or prognostic markers [72].

4.1. Biological Parameters

The expression profiles between miRNAs obtained from human BC serum versus
tumors using RNA-sequencing revealed a total of 109 significant differentially expressed
miRNAs between the patient’s serum and healthy individuals’ serum. Furthermore,
174 significant differentially expressed miRNAs between normal tissues and tumors were
observed, of which only 10 common miRNAs were differentially expressed in serum and
tumor biopsy [73]. Furthermore, an in-depth analysis of data obtained from the HMDD v3.0
database and individual papers showed circulating miRNAs as BC diagnostic biomarkers
lack specificity due to different expressions in tissues and blood of cancer patients and
even miR-21-5p being cited as the most commonly dysregulated miRNA in BC studies was
shown to be highly expressed in other cancer types and diseases [74]. On the other hand, a
study on circulating miRNA among BC tumors, serum and normal tissues using microarray
and qPCR was able to show that miRNA profiles between tumors matched to that of their
corresponding serums, indicating the possible selective release of miRNAs from the tumor
site to the blood [75]. In another study, in which the influence of the heterogeneous popula-
tion setting on miRNA profile was obtained from two different geographical populations,
one from Belgium (n = 110; primary BC = 55, healthy individuals = 55) and another from
Rwanda (n = 110; primary BC = 55, healthy individuals = 55), using qPCR from plasma
samples, revealed two distinct pools of circulating miRNA corresponding to each of the
studied populations [76]. However, a multicenter study comprising Caucasian and Asian
ethnicities from five different geographical locations obtained a common pool of miRNA,
with AUC values ranging from 0.88 to 0.97 in the detection of early BC [15].

4.2. Statistical Models

The detection of dysregulated miRNA expression level methods requires normaliza-
tion to remove variations across samples and different normalization methods were shown
to have likely contributed to differences in the miRNA profiles obtained. In one study,
qPCR was validated using the >2-fold change method from plasma circulating miRNAs and
obtained 24 significant upregulated miRNAs and 16 significant downregulated miRNAs in
BC patients compared to controls; however, only three miRNAs (miR-22-5p, miR-27b-3p,
miR-423-5p) were able to distinguish cancer patients from healthy individuals [77]. Another
study also used qPCR for the detection of possible circulating miRNA biomarkers in BC
by creating a panel from an unbiased exploration among all expressed miRNAs via the
two-fold cross-validation consolidating logistic regression and feature selection algorithm
in the discovery cohort. Results from the study revealed the identification of six miRNA
potential biomarker panels with an AUC of 0.78 and 0.77 in the discovery and validation
cohorts, respectively, using the global geometric mean normalization method [15].

It is obvious that numerous studies (Tables 3 and 4) have identified dysregulated
miRNA profiles, which significantly represent early cancer detection, molecular subtype
classification status and monitoring signatures of recurrence and metastatic BC progression.
However, these studies often reveal a diverse pool of miRNA, with roles typically associated
with the various hallmarks of cancer [78]. Therefore, by consolidating the big data of miRNA
with artificial intelligence (AI) and machine learning platforms (ML), a more comprehensive
and inclusive approach may be established for complementing clinical-based decisions in
promoting effective BC patient care and recovery outcome.
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5. Machine Learning and Deep Learning Approaches in BC Research

The field of healthcare has been transformed by technological advancements, such as
the generation of large digital datasets. Over the past few decades, many researchers have
put their efforts in exploring the application of machine learning (ML) in various healthcare
applications, including cancer detection, diagnoses, prognoses, treatment and recurrence
prediction [79–82]. Basically, there are two main common types of ML techniques, i.e.,
(i) supervised learning and (ii) unsupervised learning. The main difference between these
two types of learning is the need for labelled training data. Supervised learning relies on
labelled input and output training data. Based on the input and output data, the model will
first identify their relationship before it can be used to classify new and unseen datasets
and predict outcomes. On the contrary, unsupervised learning processes unlabeled or raw
data. It is often used to identify the trends or patterns in raw datasets and perform initial
data analysis.

5.1. Machine Learning and Deep Learning for Detection and Diagnosis

Detection and diagnosis of BC at the early stage helps in reducing the fatality rate to
a greater extent. Rana et al. [83] conducted a comparative experiment with four different
supervised algorithms, including the support vector machine (SVM), logistic regression
(LR), k-nearest neighbor (KNN) and Naïve Bayes (NB) on the Wisconsin Breast Cancer
Diagnostic dataset (WBCD) in predicting and diagnosing BC. Based on their analysis,
the KNN technique provided the best results. NB and LR have also performed well
in BC diagnosis. Nonetheless, they highlighted that SVM is a strong predictive and
sophisticated machine learning algorithm, especially when it comes to predictive analysis;
thus, this technique is also the most suited technique for recurrence or non-recurrence
prediction of BC. Similar findings were also found by many researchers [84,85], whereby
SVM has demonstrated its efficiency in BC prediction and diagnosis and achieved the best
performance in terms of accuracy and precision.

In addition to BC detection and diagnosis, machine learning techniques were also used
for subtypes classification. Three different ML techniques, including fuzzy SVM, Bayesian
classifier and random forest (RF), were compared in categorizing the types of cancer from
a sequence of mammography images in the MIAS database. They found that fuzzy SVM
has the best performance compared to other ML techniques, with over 90% accuracy,
sensitivity, specificity, precision and recall [86]. Similar findings were also obtained by
Wu and Hicks [87], whereby the SVM technique was effective in discriminating the existence
of triple-negative breast cancer (TNBC) based on the RNA sequencing datasets. The clinical
significance of this investigation is that ML algorithms could be used not only to improve
diagnostic accuracy, but also for identifying women who are at high risk of developing
TNBC, which could be prioritized for treatment.

ML techniques have been widely utilized for cancer prognosis and survival prediction
purposes too. For instance, in a study [88] involving eight different ML techniques to
develop models for identifying and visualizing relevant prognostic indications of BC
survival rates, based on 5 years’ BC patient database of the National Cancer Institute’s
SEER Program from 2006 to 2010, the RF technique was found to be the best technique,
with an accuracy level of 94.64%. A study focusing on the analyses of the impact of
chemotherapy and establishment of prediction model of prognosis in early elderly TNBC
was conducted by using machine learning, with 4696 patients in the SEER Database who
were 70 years or older, diagnosed with primary early TNBC, from 2010 to 2016 [89]. The
propensity-score-matched method was utilized to reduce covariable imbalance. Univariable
and multivariable analyses were used to compare BC-specific survival (BCSS) and overall
survival (OS). Nine models were developed by ML to predict the 5-year OS and BCSS for
patients who received chemotherapy. The multivariate analyses showed a better survival
in the chemotherapy group and the Light Gradient Boosting Machine (LightGBM) is a
practical model for predicting survival and providing precious systemic treatment for
patients who received chemotherapy [90].
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Researchers have also used deep learning (DL), a subset of ML, in cancer applications.
Based on the literature review, it was noted that some of the DL applications were found
to have better performance compared to the conventional ML techniques. For instance,
an ensemble deep learning approach for the definite classification of non-carcinoma and
carcinoma BC histopathology images was able show a sensitivity of 97.73% for carcinoma
classification, with an overall accuracy of 95.29% [91]. On the other hand, particle-swarm-
optimized wavelet neural network (PSOWNN) was found relatively superior compared
to other conventional ML techniques, such as CNN, KNN and SVM [92]. Meanwhile,
the deep-learning-assisted efficient AdaBoost algorithm (DLA-EABA), a combined ML
approach with AdaBoost algorithm as the base, for early BC detection showed a high
accuracy level of 97.2%, sensitivity at 98.3% and specificity at 96.5% [93]. Apart from that,
this method was reported to increase the patient survival rate.

5.2. Studies with miRNAs as Breast Cancer Biomarkers with ML/DL Approaches

MicroRNAs (miRNAs) have been suggested as the biomarkers or therapeutic targets
in BCs [94–96]. However, there are not many BC studies utilizing the ML or DL approaches
on miRNA biomarkers. Table 5 summarizes some of the related work for BC that adopted
ML or DL approaches on miRNA biomarkers.

Table 5. Related work for BC studies with miRNA as biomarkers.

Reference Function/Purpose Methods Accuracy of Model

[97] Cancer Classification

Gradient Boosting Accuracy 93.59%

RF Accuracy 93.24%

LR Accuracy 92.37%

Passive Aggressive Accuracy 88.31%

SGD Accuracy 90.35%

SVM Accuracy 91.54%

Ridge Accuracy 83.05%

Bagging Accuracy 91.1%

[98] Cancer Classification NB Accuracy 94.9%

[99] Cancer detection

RF AUC 99.5–99.9%

SVM AUC 93.8–99.6%

ANN Accuracy 97.3%

KNN Accuracy 99.2%

SVM Accuracy 96.3%

LR Accuracy 95.8%

[100] Cancer Classification Tree-based model NIA

[101] Cancer Classification

DT Accuracy 99.12%

NB Accuracy 93.86%

ANN Accuracy 100%

DL Accuracy 100%
Abbreviations: BC: breast cancer; SVM: Support Vector Machine; LR: Logistic Regression; KNN: k-Nearest
Neighbor; NB: Naïve Bayes; WBCD: Wisconsin Breast Cancer Diagnostic dataset; RF: Random Forest;
SGD: Stochastic Gradient Descent; ANN: Artificial Neural Network; DT: Decision Tree; DL: Deep Learning;
NIA: no information available.

As the amount of miRNA expression data in the Genomic Data Commons (GDC)
Data Portal increased dramatically, several researchers proposed feature-selection meth-
ods to reduce the size of datasets, before they proceed with their analysis. An ensemble
feature-selection methodology for miRNA signatures was proposed to identify the most
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robust and reliable miRNAs to be used in clinically relevant prediction tasks [97]. In their
research, including over 8000 samples from TCGA, 100 miRNA signatures were identified
and distinguished between tumor and normal tissues. The proposed approach provided
better accuracy after 10-fold cross-validation with different ML classifiers, showing over
90% classification accuracy. In another study, the ensemble methodology was performed to
identify the important biomarkers for BC and then classified by different ML techniques,
such as NB, LR, KNN, SVM and multilayer perceptron [98]. In their preliminary analysis,
default parameters were changed only when experimentation showed that classifier perfor-
mance generally improved significantly across all datasets. Rehman et al. [99] performed
four different feature-selection methods, including the Information Gain (IG), Chi-Squared
(CHI2) and Least Absolute Shrinkage and Selection Operation (LASSO), to identify the
most specific and effective miRNAs in discriminating normal and cancerous tissues. After
feature selection, they applied the RF and SVM algorithms to identify the cancerous cell.
The study demonstrated that the miRNAs ranked higher by their analysis had higher
classifier performance. Performance becomes lower as the rank of the miRNA decreases,
which shows that these miRNAs had different degrees of importance as biomarkers.

The tree-based ML models were normally applied on specific miRNAs for classify-
ing the upregulated and downregulated BC cells [100]. In addition, several supervised
methods, such as DT, NB, neural network and DL, were adopted, to classify cancer cells
based on the expression of the microRNA gene to obtain the best method that can be
used for gene analysis [101]. It was found that the DL method, which was developed
based on a multilayer feed-forward ANN trained with stochastic gradient descent using
backpropagation outperformed other conventional ML methods [101].

6. Conclusions

Key cancer signatures are represented by the dysregulated expression of miRNAs
detected in liquid biopsy and shown to be associated with BC diagnosis, subtype classifica-
tion and recurrence, as well as metastatic spread of the cancerous cells. Therefore, using
miRNA-based liquid biopsy may be much more feasible in BC management, which also
may come with greater patient acceptance as it could be conducted as simple routine blood
collection, but the amount of information contained in the miRNA profile is immense.
Using bioinformatics and with current and emerging AI and ML platforms, this huge
amount of miRNA data may be able to be analyzed in ways that provide cancer progression
indicators that complement standard clinical practices. However, translation of the miRNA
targets selected by ML requires clinical validation to achieve the number of biomarkers
that can accurately perform the expected roles cost effectively. This will eventually result
in better treatment outcomes and supportive BC management from early detection to
personalized therapy, ultimately improving the quality of life among BC patients.
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