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Abstract: Diabetic kidney disease (DKD) is one of the most important comorbidities for patients with
diabetes, and its incidence has exceeded one tenth, with an increasing trend. Studies have shown that
diabetes is associated with a decrease in the number of podocytes. Diabetes can induce apoptosis of
podocytes through several apoptotic pathways or induce autophagy of podocytes through related
pathways. At the same time, hyperglycemia can also directly lead to apoptosis of podocytes, and the
related inflammatory reactions are all harmful to podocytes. Podocyte damage is often accompanied
by the production of proteinuria and the progression of DKD. As a new therapeutic agent for diabetes,
sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been demonstrated to be effective in the
treatment of diabetes and the improvement of terminal outcomes in many rodent experiments and
clinical studies. At the same time, SGLT2i can also play a protective role in diabetes-induced podocyte
injury by improving the expression of nephrotic protein defects and inhibiting podocyte cytoskeletal
remodeling. Some studies have also shown that SGLT2i can play a role in inhibiting the apoptosis
and autophagy of cells. However, there is no relevant study that clearly indicates whether SGLT2i
can also play a role in the above pathways in podocytes. This review mainly summarizes the damage
to podocyte structure and function in DKD patients and related signaling pathways, as well as the
possible protective mechanism of SGLT2i on podocyte function.

Keywords: SGLT2 inhibitors; diabetic kidney disease; podocyte; signaling pathways

1. Introduction

Diabetes is one kind of chronic metabolic disease, the most common of which is type
2 diabetes (T2D). In 2021, the global prevalence of diabetes among people aged 20–79 is
estimated to be 10.5% (536.6 million people), and it will rise to 12.2% (783.2 million people)
by 2045. In 2021, the global expenditure on diabetes-related health is estimated at 966 billion
US dollars, which is expected to reach 1054 billion US dollars by 2045 [1]. Diabetes mellitus
can shorten the life expectancy of patients [2]. The main reason for the rising incidence of
diabetes is the aging population. The number of diabetic patients will continue to increase
rapidly in the future. However, due to improved health care, effective prevention strategies
may help to reduce the incidence of diabetes [3].

Diabetic kidney disease (DKD) is primarily caused by diabetes, while hyperglycemia
and DKD are major risk factors for cardiovascular disease and overall mortality. Approxi-
mately 40% of patients with T2D have DKD [4]. DKD is a serious complication of diabetes
and the main cause of renal failure, and there is currently a lack of effective treatment.
Patients with DKD have a higher incidence of coronary artery disease, heart failure (HF),
arrhythmias, and sudden cardiac death, and are much more likely to die from cardio-
vascular disease than from progression to end stage renal disease [5]. The incidence of
diabetes-related complications has largely declined over the past two decades, however
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the incidence of DKD remains uncontrolled [6]. DKD speaks volumes about the growing
role of diabetes as a major public health problem requiring more attention.

Podocytes are attached to the outside of the glomerular basement membrane (GBM),
which together with vascular endothelial cells and GBM constitute the glomerular hemofil-
tration barrier. Podocyte damage disrupts the normal GBM structure, leading directly to
proteinuria [7,8]. The experiment shows that diabetes is related to the decrease in podocyte
number, hyperglycemia directly induces the apoptosis of cultured podocytes, and pro-
teinuria increases with the decrease in podocyte number [9]. The number of podocytes
in patients with DKD is decreased. Podocyte-specific NLRP3 inflammasome activation
promotes DKD [10]. Moreover, DKD is closely related to autophagy of podocytes [11]. This
suggests that DKD damages podocytes, while podocyte damage accelerates the progression
of DKD.

Sodium-dependent glucose transporters 2 (SGLT-2) are the dominant transporters in
sodium-dependent glucose transporters (SGLTs) that mediate the process of renal reab-
sorption of glucose. SGLT-2, mainly distributed in the S1 segment of the renal proximal
convoluted tubule, is a transporter with low affinity and high transport capacity, and
its main physiological function is to complete the reabsorption of 90% glucose in the
glomerular filtration fluid in the renal proximal convoluted tubule [12,13]. Sodium-glucose
cotransporter 2 inhibitors (SGLT2i) are a class of anti-hyperglycemic drugs approved for
the treatment of T2D. These drugs block the reabsorption of glucose in the kidney by
inhibiting SGLT2 thereby increasing urinary glucose excretion, promoting urination, and
lowering blood glucose to improve glycemic control in a non-insulin-dependent manner.
In addition to their ability to increase urinary glucose excretion and help to control blood
glucose, SGLT2i have other properties that may be relevant for renal protection in DKD.
SGLT2i play a renal protection role by inhibiting podocyte injury caused by diabetes. The
drug can play a role through a variety of ways, including maintaining podocyte integrity,
inhibiting podocyte apoptosis, enhancing podocyte autophagy, improving slit septum dys-
function, recovering podocyte epithelial-mesenchymal transition (EMT), and preventing
podocyte loss.

This review mainly summarizes d the structural changes and functional damage of
podocytes in patients with DKD, including its possible involvement in podocyte-related
apoptotic autophagy, and discussed the role of SGLT2i in DKD’s involvement in regulating
podocyte-related apoptosis and autophagy. The validity and safety of current animal
models and clinical studies were summarized.

2. SGLT2i Provide Renal Protection in Animal Models

SGLT2i, such as the renal sodium-glucose transporter inhibitor T-1095 and TS-071
(Luseogliflozin), have a hypoglycemic effect when used in animal model experiments [14,15].
It also reduced proteinuria in animals [15] and delayed the progression of chronic kidney
disease (CKD) [16]. SGLT2i showed significant recovery of renal cortex oxygenation and
creatinine clearance [17,18]. SGLT2i can reduce blood pressure [19], and it can prevent
the occurrence of angiotension II (Ang II)-dependent hypertensive renal fibrosis and Ang
II-induced hypertensive renal injury (Table 1) [20,21].

It has been demonstrated in multiple animal experiments that SGLT2i can improve
the terminal outcome of the kidney by promoting autophagy or improving related inflam-
mation [22,23]. Similar effects on improving the inflammatory response were observed in
models of infectious kidney injury and oxidative damage [24,25], which might be achieved
by reducing the activity of NLRP3 inflammasomes [26,27]. In addition, autophagy may be
improved through the mTOR1-related signaling pathway [28]. SGLT2i may alleviate the
mitochondrial fission (Table 1) [29,30].
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Table 1. SGLT2I-related animal experiments.

Author, Year Medicines Animal Species Modeling Type Research Results

Yamamoto et al.,
2011 [14] TS-071 Sprague-Dawley

rats/Mice/Dog
STZ-induced diabetic
rats and db/db mice

TS-071 has some advantages
over current anti-diabetic

drugs with the lower risk of
pancreatic b-cells exhaustion

and hypoglycemia

Adachi et al.,
2000 [15] T-1095 Male Wistar rats STZ-induced

diabetic rats

Plasma glucose, HbA1c,
urinary albumin, kidney

weight, and vacuolation of
epithelial cells in the tubules
in insulin-deficient diabetic

STZ rats can be decreased by
oral administration of T-1095

Motrapu et al.,
2020 [16] Empagliflozin Mice

Uninephrectomized
BKS-Lepr2/2 (db/db)
mice treated with or
without MRE served

Empagliflozin therapy
significantly reduced

albuminuria.
In db/db 1K mice,

Empagliflozin significantly
reduced diffuse

glomerulosclerosis in
superficial as well as

juxtamedullary nephrons

O’Neill et al.,
2015 [17] Phlorizin Sprague-Dawley rats Rat model of type

1 diabetes

The reduction in medullary
PO2 in both control and
diabetic kidneys, which

results in medullary hypoxia.
When SGLT is inhibited,
renal cortex PO2 in the

diabetic rat kidney
is normalized

Rodriguez et al.,
2015 [18] Dapagliflozin Han: Sprague-Dawley

rats
Rat model of polystic

kidney disease

DAPA-treated Cy/+ rats
exhibited significantly higher
clearances for creatinine and
BUN and less albuminuria

than vehicle-treated
Cy/+ rats

Castoldi et al.,
2021 [19] Empagliflozin Sprague Dawley rats

CsA (intraperitoneal
injection) were

administered for
4 weeks

Empagliflozin
administration caused a

reduction in blood pressure
in CsA-treated rats and

showed a protective effect on
CsA nephropathy by

decreasing renal fibrosis,
type I and type IV collagen

expression, macrophage
infiltration and tyrosine
hydroxylase expression

Castoldi et al.,
2020 [20] Empagliflozin Sprague Dawley rats Ang II osmotic

minipumps

Prevent the development of
renal fibrosis in Ang

II-dependent hypertension

Miyata et al.,
2021 [21] Canagliflozin Transgenic (Tg) mice

Agt/Cat-Tg mice were
created by crossbreeding
the Agt-Tgs and Cat-Tgs

There is a link between
intrarenal RAS and SGLT2
expression and that SGLT2i
ameliorates Ang II-induced

renal injury independent
of SBP
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Table 1. Cont.

Author, Year Medicines Animal Species Modeling Type Research Results

Jaikumkao et al.,
2021 [22]

Dapagliflozin or
Vildagliptin Wistar rats

Rats were fed a high-fat
diet for 16 weeks to

induce obesity

The therapeutic effects of
dapagliflozin attenuated

pancreatic injury, pancreatic
oxidative stress, endoplasmic

reticulum stress,
inflammation, apoptosis, and
exerted renoprotective effects

by restoring autophagic
signaling in obese rats

Thongnak et al.,
2022 [23]

Dapagliflozin and
Atorvastatin Wistar rats

Rats were HFF for
16 weeks and then

treated with
dapagliflozin with or

without atorvastatin for
4 weeks

The combination therapy of
dapagliflozin and

atorvastatin has a positive
effect on renal injury

associated with autophagy
and inflammasome

activation induced by HFF in
insulin-resistant rats

Maayah et al.,
2021 [24] Empagliflozin Mice

LPS-induced
inflammation or

LPS-induced acute
sepsis-induced

renal injury

Empagliflozin significantly
reduces systemic and renal
inflammation to contribute

to the improvements
observed in an LPS-model of

acute septic renal injury

Hasan et al.,
2020 [25] Canagliflozin Rats

Isoprenaline
(ISO)-induced renal

oxidative damage in rats

Canagliflozin treatment of
ISO-treated rats:

AMP-activated protein
kinase (AMPK), Akt, eNOS↑,

iNOS, NADPH oxidase
isoform 4 (NOX4)↓

Canagliflozin treatment
improves kidney function in

ISO-treated rats

Ye et al., 2022 [26] Empagliflozin Mice Mice were fed an HFF
(45% fat, 530 kcal/100 g)

Empagliflozin improves
obesity-related kidney

disease through reduction of
NLRP3 inflammasome

activity and upregulation of
the HO-1–adiponectin axis

Ke et al., 2022 [27] Dapagliflozin Mice
Ischemia/reperfusion

injury (I/R): block renal
perfusion for 30 min

Dapagliflozin prevents
NLRP3 inflammasome

activation via promoting the
mitochondrial tricarboxylic

acid cycle
metabolite itaconate

Tomita et al.,
2020 [28] Empagliflozin Mice db/db mice as a model

of proteinuric DKD

Empagliflozin raised
endogenous ketone body

(KB) levels, KBs attenuated
mTORC1-associated

podocyte damage and
proteinuria in diabetic

db/db mice
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Table 1. Cont.

Author, Year Medicines Animal Species Modeling Type Research Results

Liu et al.,
2020 [29] Empagliflozin Mice Spontaneous diabetic

KK-Ay mice

The Empagliflozin could
alleviate apoptosis and

oxidative stress in the kidney
of KK-Ay mice.

Empagliflozin may rescue
the dephosphorylation of

DRP1S637 and alleviate the
mitochondrial fission via an
AMPK dependent pathway

Otomo et al.,
2020 [30] Ipragliflozin or Insulin Mice

Ins2Akita mice with
KK/Ta background
(KK/Ta-Akita mice)

Ipragliflozin treatment
contributed to amelioration
of proximal tubular protein

overload, mitochondrial
morphological abnormality,

and renal oxidative
stress and

tubulointerstitial fibrosis.

Domon et al.,
2021 [31] Empagliflozin Rats Male enlarged kidney

(DEK) rats

Treatment with
empagliflozin: reduced

blood glucose concentration,
food intake, adeps renis,

polyuria, polydipsia, urinary
excretion of proteins,

electrolytes↓, body weight↑.
Empagliflozin could
ameliorate systemic

metabolism and improve
renal tubule function in

diabetic condition

Trnovska et al.,
2021 [32] Empagliflozin Rats

Hereditary
hypertriglyceridemic

(hHTG) rats, a
non-obese model of

dyslipidemia, insulin
resistance, and

endothelial dysfunction

Empagliflozin: weight gain,
fasting blood glucose,

triglycerides, pyruvate,
alanine↓, HDL-cholesterol,

ketone bodies, leucine↑.
In the liver, adipose tissue
and kidney, empagliflozin
up-regulated expression of

genes involved in
gluconeogenesis and

down-regulated expression
of genes involved in

lipogenesis along with
reduction of markers of
inflammation, oxidative

stress and cell senescence

Jia et al., 2018 [33] Dapagliflozin Mice db/db mice

Dapagliflozin induced the
expression of gluconeogenic
key rate-limiting enzymes

through increasing the
expression levels of FoxO1 in

the kidney and liver
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Table 1. Cont.

Author, Year Medicines Animal Species Modeling Type Research Results

Swe et al.,
2020 [34] Dapagliflozin Wistar rats HFF

Glucose tolerance was
improved in obese
prediabetic rats by

suppressing renal glucose
release from not only glucose
reabsorption but also renal
gluconeogenesis through
improving renal cortical

insulin signaling and
oxidative stress

Vallon et al.,
2014 [35] Empagliflozin Mice

Streptozotocin-diabetic
mice, type 1 diabetic

Akita mice

Empagliflozin
attenuated/prevented the
increase in SBP, glomerular
size, and molecular markers

of kidney growth,
inflammation, and

gluconeogenesis in Akita

Zhang et al.,
2016 [36] Dapagliflozin Sprague-Dawley rats

5/6 (subtotally)
nephrectomized rats, a
model of progressive

chronic kidney
disease (CKD)

Glycosuria, hypertension,
heavy proteinuria and

declining GFR,
glomerulosclerosis,

tubulointerstitial fibrosis or
overexpression of the
profibrotic cytokine,
transforming growth
factor-ß1 mRNA were

unaffected by dapagliflozin.
SGLT2 inhibition does not

have renoprotective effects in
this classical

model of progressive
non-diabetic CKD

Knight et al.,
2018 [37] Empagliflozin Mice CD-1 mice

The development of renal
tumors only in high-dose

males (1000 mg)

STZ: streptozotocin; HbA1c: glycosylated hemoglobin, type A1C; CsA: cyclosporine-A; DAPA: dapagliflozin;
Ang II: angiotensin II; RAS: renin-angiotensin system; SBP: systolic blood pressure; LPS: lipopolysaccharide;
HFF: high-fat feed.

In metabolism, SGLT2i can improve the metabolism of animal models [31] and increase
gluconeogenesis [32], possibly by inducing the expression of the key rate-limiting enzyme
of gluconeogenesis [33]. In some animal models, SGLT2i can inhibit renal gluconeogenesis
(Table 1) [34,35].

Furthermore, SGLT2i has no renal protection in progressive non-diabetic CKD mod-
els [36]. Notably, the use of high doses of SGLT2i also has the possibility of tumorigenesis
(Table 1) [37].

3. SGLT2i Provide Renal Protection in Clinic

SGLT2i has shown significant benefits in clinical studies of patients with CKD. Many
studies have shown that the use of SGLT2i can reduce the risk of severe cardiac and renal
outcomes in patients [38–41], improve the cardiac and renal outcomes of patients, and effec-
tively reduce the number of hospitalizations of patients [40,42], thereby reducing medical
expenses in this area. The above studies have also shown that SGLT2i has significant effects
on the reduction of glycosylated hemoglobin, type A1C (HbA1c), body weight, fasting
blood glucose, and systolic blood pressure [43–46]. Many studies have shown that SGLT2i
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can significantly improve proteinuria, especially in patients with high proteinuria and
thus improve the progress of urine albumin to creatinine ratio (UACR) in patients [47–49].
Although some studies have shown that the decrease in estimated glomerular filtration
rate (eGFR) of this drug is not different from that of placebo [50], more studies have found
that SGLT2i has a statistical significance in alleviating the decline slope of eGFR [51,52].
SGLT2i caused a significant increase in 24-h urine volume without an increase in urinary
sodium when used in combination with a loop diuretic. The sodium benefits that SGLT2i
may cause may be transient and only present early [53]. It is noteworthy that the study also
found an early decrease in filtration rate (Table 2) [50,54,55].

Table 2. Clinical study of SGLT2i.

Author, Year Medicines Research Type Race Country
Patient’s Condition

(CKD Stage,
Proteinuria)

Change in End
Indicators

Safety
Evaluation

Bhatt et al.,
2020 [38] Sotagliflozin Randomized

controlled trial
White, Black,

Asian Multi-center eGFR: 25 to
60 mL/min/1.73 m2

The risk of a composite
of a sustained decline in
the estimated GFR of at

least 50%, end-stage
kidney disease, death

from renal or
cardiovascular causes↓

Similar incidence
of AEs with

sotagliflozin and
placebo

William G
Herrington et al.,

2022 [39]

Empagliflozin
vs. Placebo

Randomized
controlled trial —— Multi-center

eGFR < 45
mL/min/73 m2:
≥45 to <90
≥20 to <45

UACR: ≥200 mg/g

Empagliflozin therapy
led to a lower risk of

progression of kidney
disease or death from
cardiovascular causes

than placebo

The rates of
serious AEs were

similar in the
two groups

Perkovic et al.,
2019 [40]

Canagliflozin
(100 mg) vs.

Placebo

Randomized
controlled trial

White, Black,
Asian, Other Multi-center eGFR of 30 to

<90 mL/min/1.73 m2

The event rate of the
primary composite

outcome of end-stage
kidney disease,

doubling of the serum
creatinine level, or renal
or cardiovascular death
was significantly lower

in the
canagliflozin group.

The canagliflozin group
also had a lower risk of
cardiovascular death,
myocardial infarction,

or stroke and
hospitalization

for HF

The risk of
kidney failure

and
cardiovascular

events was lower
in the

canagliflozin
group than in the

placebo group.
No significant
differences in

rates of
amputation or

fracture

Wanner et al.,
2016 [41] Empagliflozin Retrospective

analysis

Caucasian,
African, Asian,

etc.
Multi-center eGFR < 30

(mL/min/1.73 m2)

Empagliflozin group:
event or exacerbation of

renal disease, risk of
doubling serum

creatinine levels, risk of
renal replacement

therapy↓

Genital
infections↑

McMurray et al.,
2021 [42] Dapagliflozin Retrospective

analysis

White, Black
or African
American,

Asian, Other

Multi-center

eGFR (25 to
75 mL/min/1.73 m2):

≥60
≥45 to <59
≥30 to <44

<30
UACR: 200–5000

mg/g

Dapagliflozin reduced
the total number of HF
hospitalizations (first
and repeat) by 60%.

Dapagliflozin reduced
the overall slope of
eGFR, which was

similar in both HF and
non-HF patients.

Dapagliflozin was also
effective in reducing the
risk of kidney-specific

renal lesions

Similar incidence
of AEs with

Dapagliflozin
and placebo

Dagogo-Jack
et al., 2021 [43] Ertugliflozin Randomized

controlled trial
White, Black,
Asian, Other Multi-center eGFR: 30 to

60 mL/min/1.73 m2

Ertugliflozin: HbA1c,
body weight, SBP, the
risk of HF↓, eGFR→

Similar incidence
of UTIs with

ertugliflozin and
placebo
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Table 2. Cont.

Author, Year Medicines Research Type Race Country
Patient’s Condition

(CKD Stage,
Proteinuria)

Change in End
Indicators

Safety
Evaluation

Heerspink et al.,
2017 [44]

Canagliflozin
vs.

Glimepiride

Retrospective
analysis

White, Black
or African
American,

Asian, Other

Multi-center UACR: ≥30 mg/g

Canagliflozin delayed
the progression of renal
disease, including eGFR
and proteinuria, in type

2 diabetic patients
within 2 years

Five patients
experiencing
acute renal

failure or renal
failure events, all

in the
canagliflozin

group

Fioretto et al.,
2018 [45] Dapagliflozin Randomized

controlled trial

White, Black
or African
American,

Indian/Alaska
Native, Other

Multi-center eGFR: 45 to 59
mL/min/1.73 m2

Dapagliflozin: HbA1c,
body weight, fasting

plasma glucose, SBP↓

Similar incidence
of AEs with

dapagliflozin
and placebo

Allegretti et al.,
2019 [46] Bexagliflozin Randomized

controlled trial

White, Black
or African
American,

Asian, Other

Multi-center eGFR 30–60
mL/min/1.73 m2

Bexagliflozin: HbA1c
levels, body weight,
SBP, albuminuria↓

UTIs, genital
mycotic

infections↑

Jongs et al.,
2021 [47] Dapagliflozin Retrospective

analysis

White, Black
or African
American,

Asian, Other

Multi-center

eGFR: 25 to 75
mL/min/1.73 m2

UACR:
200–5000 mg/g

Dapagliflozin
significantly reduced
albuminuria, with a

larger relative reduction
in patients with T2D.
Among patients with
UACR of 300 mg/g or

greater at baseline,
dapagliflozin increased

the likelihood of
regression in
UACR stage

——

Jardine et al.,
2021 [48]

Canagliflozin Retrospective
analysis

White, Black,
Asian Multi-center

UACR (mg/g)
≤1000

>1000–<3000
≥3000 mg/g

Canagliflozin safely
reduces kidney and

cardiovascular events in
people with T2D and

severely increased
albuminuria. In this

population, the relative
kidney benefits were

consistent over a range
of albuminuria levels,
with greatest absolute
kidney benefit in those

with an
UACR ≥ 3000 mg/g

——

Pollock et al.,
2019 [49]

Dapagliflozin,
Saxagliptin

Randomized
controlled trial

White, Black,
Asian, Other Multi-center UACR 30–3500 mg/g

Dapagliflozin and
dapagliflozin–

saxagliptin reduced
UACR versus placebo

AEs or serious
AEs were similar

across groups

Kohan et al.,
2016 [50]

Dapagliflozin Randomized
controlled trial

Caucasian,
African,

American,
Asian, Other

Multi-center

eGFR
(mL/min/1.73 m2):

≥90
≥60 to <90
≥30 to <60

<30

There was a small
transient decrease in

mean eGFR of
dapagliflozin at Week 1,
but it returned to near

baseline values at Week
24 and remained stable
at Week 102. At Week
102; the mean eGFR

changes for
dapagliflozin were not
significantly different

from placebo

Dapagliflozin
was more likely
than placebo to
develop renal

AEs in patients
≥65 years of age
or CKD Phase 3

Heerspink et al.,
2021 [51] Dapagliflozin Retrospective

analysis

White, Black
or African
American,

Asian, Other

Multi-center

eGFR: 25 to
75 mL/min/1.73 m2

UACR:
200–5000 mg/g

Dapagliflozin
significantly slowed

long-term eGFR decline
in patients with chronic

kidney disease
compared with placebo.
The mean difference in

eGFR slope between
patients treated with
dapagliflozin versus

placebo was greater in
patients with T2D,
higher HbA1c, and

higher UACR

——
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Table 2. Cont.

Author, Year Medicines Research Type Race Country
Patient’s Condition

(CKD Stage,
Proteinuria)

Change in End
Indicators

Safety
Evaluation

Cherney et al.,
2021 [52] Ertugliflozin

Prespecified
exploratory

analysis

White, Black,
Asian, Other Multi-center

eGFR (mL/min/
1.73 m2):
G1 ≥ 90

G2 ≥ 60 to <90
G3 < 60

Ertugliflozin has a
favorable

placebo-adjusted
eGFR slope 0.75

mL/min per 1.73 m2

per year

——

Natalie A Mordi
et al., 2020 [53]

Loop di-
uretic+Empagliflozin

vs. Loop
diuretic+Placebo

Randomized
controlled trial —— England eGFR < 45

mL/min/1.73 m2

Empagliflozin caused
a significant increase
in 24-h urine volume

without an increase in
urinary sodium when
used in combination
with loop diuretic.

The sodium benefit
that Empagliflozin
may cause may be
transient and only

present early

——

Heerspink et al.,
2020 [54] Dapagliflozin Randomized

controlled trial
White, Black,

Asian Multi-center

eGFR: 25 to 75
mL/min/1.73 m2

UACR 200–5000
mg/g

During the first 2
weeks, there was a
greater reduction in

the estimated GFR in
the dapagliflozin
group than in the

placebo group.
Thereafter, the annual

change in the mean
eGFR was smaller
with dapagliflozin
than with placebo

——

Oshima et al.,
2020 [55] Canagliflozin Retrospective

analysis
White, Black,

Asian Multi-center

eGFR: 30 to 90
mL/min/1.73 m2

UACR 300–3000
mg/g

Although acute drops
in eGFR > 10%

occurred in nearly
half of all participants
following initiation of

canagliflozin the
benefit of

canagliflozin
compared with

placebo was observed
regardless of the

acute eGFR decline

——

Neuen et al.,
2021 [56] Canagliflozin Randomized

controlled trial

White, Asian,
Black or
African

American,
Other

Multi-center

eGFR (60–90
mL/min/1.73 m2):

>60
45 to <60

<45
UACR: >300 mg/g

≤1000
1000 to <3000
≥3000

Canagliflozin
reduced the risk of

hyperkalemia in
patients with T2D

and CKD compared
with placebo, as well

as patient use of
potassium binders.

There was no adverse
effect on the

occurrence of
hypokalemia

A U-shaped
association

between serum
potassium levels

and renal and
cardiovascular
outcomes, such

as an association
between serum

potassium
levels < 4.0

or > 5.0 mmol/L
and an increased
risk of adverse

outcomes

Antlanger et al.,
2022 [57] Empagliflozin

Randomized
controlled trial
and perspective

study

—— Austria
eGFR: 15 to 59

mL/min/1.73 m2

UACR: 30 mg/g

Empagliflozin
treatment resulted in
a 1.5 to 2-fold increase
in main RAS peptides

in patients with
diabetes compared

with placebo.
Compared with

placebo, all main RAS
peptides increased up

to 100-fold more in
the empagliflozin

group, while plasma
ACE activity and

ACE2 levels
remained suppressed

——
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Table 2. Cont.

Author, Year Medicines Research Type Race Country
Patient’s Condition

(CKD Stage,
Proteinuria)

Change in End
Indicators

Safety
Evaluation

Sen et al.,
2022 [58] Dapagliflozin

Randomized
controlled trial

and retrospective
analysis

White, Asian
or of Middle

Eastern
Multi-center

eGFR: ≥25 and ≤50
mL/min/1.73 m2 or

eGFR: ≥25
mL/min/1.73 m2

UACR:
500–3500 mg/g

Compared to placebo,
dapagliflozin increased

plasma renin,
aldosterone and
copeptin levels

——

Heerspink et al.,
2020 [59] Dapagliflozin Randomized

controlled trial
White, Black,
Asian, Other Multi-center

eGFR: 25 to 75
mL/min/1.73 m2

UACR ≥ 200 mg/g
——

The rate of
serious

renal-related
AEs was

significantly
lower in the

dapagliflozin
compared with

the placebo
group

Mayer et al.,
2019 [60] Empagliflozin Randomized

controlled trial —— Multi-center eGFR ≥ 30
mL/min/1.73 m2

Empagliflozin
treatment in the

EMPA-REG OUTCOME
trial was associated

with an initial reduction
in eGFR from baseline

to week 4 versus
placebo (i.e., treatment

initiation period).
However, after week 4

until last value on
treatment (i.e., the
chronic treatment

period), placebo-treated
patients exhibited a
significantly larger

decline in eGFR than
patients on

empagliflozin did. After
cessation of therapy,

eGFR swiftly increased
in empagliflozin treated

patients versus those
on placebo

——

eGFR: estimated glomerular filtration rate; HF: heart failure; HbA1c: glycosylated hemoglobin, type A1C; SBP:
systolic blood pressure; UTIs: urinary tract infections; UACR: urinary albumin/creatinine ratio; RAS: renin-
angiotensin system; ACE2: angiotensin-converting enzyme 2; T2D: type 2 diabetes. AEs: adverse events.

In addition, hyperkalemia has a significant correlation with the terminal outcome
of patients, and SGLT2i can also reduce the incidence of hyperkalemia in patients with
CKD [56]. Combination of SGLT2i with angiotensin-converting enzyme inhibition can
up-regulate the renin-angiotensin system in CKD (Table 2) [57,58].

Even though SGLT2i has beneficial effects on renal outcomes, the safety of SGLT2i
is also important. Adverse events (AEs) associated with using SGLT2i include hypoten-
sion, dehydration, hypovolemia, syncope, urinary tract infection, genital infection, renal
impairment, and so on. Most studies showed no significant differences in AEs compared
to placebo [42,45,49]. Furthermore, some studies have even shown that SGLT2i reduces
the incidence of AEs [59]. However, a few studies reported an increased incidence of
glucosuria, urinary tract infections, and genital mycotic infections [41,46]. In addition, a
transient decrease in eGFR in the early phase of SGLT2i treatment, followed by a gradual
return to baseline levels, but SGLT2i still has an effect on the maintenance of eGFR after
drug discontinuation [60], which also needs to be noted when administering SGLT2i. Since
SGLT2i has the effect of lowering blood pressure and blood glucose, it is important to
pay attention to the possibility of hypotension and hypoglycemia. In conclusion, SGLT2i
appeared safe and effective in most clinical studies (Table 2).
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4. Podocyte Injury-Related Signal Pathway

DKD is a serious complication caused by diabetes and occurs in 20–40% of people
with diabetes [61]. DKD is related to significant podocyte damage. Diabetes also leads to
podocyte apoptosis through a variety of apoptotic and autophagy mechanisms. Increased
podocyte autophagy is associated with decreased mesangial dilatation, improved glomeru-
lar histology, and decreased proteinuria, finally, by inducing a shift from systemic glucose
utilization to fatty acid oxidation [62]. The accumulation of lipids and toxic lipid metabo-
lites in podocytes caused podocyte injury, and the accumulation of fatty acids in podocytes
was related to the development of insulin resistance in vitro [63]. Mitochondrial oxidation
of fatty acids stimulates the production of reactive oxygen species (ROS), further leading to
tubular injury and apoptosis [64]. In addition, increased transport of albumin-bound fatty
acids to the proximal tubules induced endoplasmic reticulum stress [6]. There are multiple
pathways related to the regulation of apoptosis in podocytes. In the state of diabetes, each
pathway is affected, and the common result is to promote the apoptosis of podocytes,
destroy the basement membrane barrier formed by the participation of podocytes, and
induce symptoms such as proteinuria, which in turn induces the further development
of inflammation. The development of inflammation and DKD promote each other. The
possible pathways of injury to podocytes by diabetes will be described below.

4.1. Phosphatidylinositol 3 Kinase (PI3K)/Protein Kinase B (AKT) Pathway

Diabetes weakens the PI3K/AKT pathway. The relative lack of insulin action and
hyperglycemia lead to the impairment of Akt activity and Akt expression in type 2 diabetic
mice [65]. The PI3K/AKT signaling pathway can inhibit the apoptosis of podocytes, and
the activation of this pathway is an important part of maintaining the functional integrity of
podocytes. CD2-associated protein (CD2AP) and p85 regulate the subunits of PI3K, absorb
PI3K onto the plasma membrane and stimulate the PI3K-dependent AKT signaling pathway
in podocytes. It can also promote puromycin aminonucleoside (PAN)-induced apoptosis
of podocytes [66]. The related regulator miR-27a upstream of the pathway activates the
pathway. MiR-27a up-regulates the activation of the PI3K/Akt signaling pathway at the
protein and mRNA levels. Peroxisome proliferator-activated receptor (PPAR) inhibitors
can inhibit PPAR-γ expression and increase AKT phosphorylation (Figure 1) [67].

In summary, type II diabetes weakens the activation of the PI3K/Akt pathway, and
further weakens the inhibition of this pathway on podocyte apoptosis, leading to an
increase in podocyte apoptosis, or inhibition of autophagy, resulting in kidney damage.

4.2. Mammalian Target of Rapamycin (mTOR) Pathway

One of the important kinases that regulate autophagy is mTOR. Studies have shown
that the activity of mTORC1 is enhanced in diabetic animal podocytes. The overactivity of
mTOR signal in podocytes plays a central role in the development of diabetic nephropathy
models. Abnormal activation of mTORC1 leads to mispositioning of the slit diaphragm
protein and induces EMT like phenotypic transformation in the presence of increased
endoplasmic reticulum stress in the podocytes [68]. Studies on its related regulatory factors
found that both thioredoxin interacting protein induced by hyperglycemia and mTOR can
regulate cell autophagy [69,70]. PI3K/AKT is one of the pathways that regulates mTOR
activity. Diabetes leads to abnormal activation of mTORC1 in podocytes, which in turn
leads to insufficient autophagy in podocytes (Figure 1).
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Figure 1. Mechanisms of promoting apoptosis and resisting apoptosis in podocytes. In DKD, the
inflammatory response is enhanced in which ROS attenuate autophagy of podocytes via mTORC1.
The combination of CD2AP and p85 promotes the activation of the PI3K/AKT pathway, which
can lead to the apoptosis of podocytes. DKD inhibits the activity of the PI3K/AKT pathway and
reduces its activity of inhibiting apoptosis. The Wnt/β-catenin pathway is activated in the diabetic
state, which activates the downstream effector factor Snail and promotes the apoptosis of podocytes.
At the same time, the activation of β-catenin is associated with the activation of the membrane
channel TRPC6, which also promotes the apoptosis of foot cells. miR27a can activate the PI3K/AKT
pathway and the Wnt/β-catenin pathway by mediating PPARγ. The increase of IL-6 in diabetes
can activate the JAK/STAT3 pathway, and lead to apoptosis of podocytes. At the same time, the
increased TGF-β can promote the activation of TβRI and TβRII and then promote the activity of
Smad family. This pathway can also lead to podocyte autophagy. In addition, NOX can promote
p38/MAPK pathway through ROS or directly, activate JNK downstream and promote podocyte
autophagy. SGLT2i may exert effects on all the above pathways. Studies have shown that the use
of SGLT2i can reduce the activity of mTORC1 in cells and promote autophagy. In addition, the
use of SGLT2i can enhance the expression of AKT, reduce the expression of β-catenin and Smad
families and inhibit the p38/MAPK/JNK pathway to inhibit apoptosis. However, studies have also
shown that SGLT2i can promote the expression of STAT3 and thus promote apoptosis. ROS: reactive
oxygen species; mTORC1: molecular target of rapamycin complex 1; CD2AP: CD2-associated protein;
PI3K: phosphatidylinositol 3 kinase; AKT: protein kinase B; GSK-3β: glycogen synthase kinase-3
β; PPARγ: peroxisome proliferator-activated receptor; TRPC6: transient receptor potential cation
channel, subclass C, member 6; IL-6: interleukin-6; JAK: janus kinase; STAT3: signal transducer
and activator of transcription 3; TGF-β: transforming growth factor-beta; TβRI: the transformation
growth factor-β type I receptor kinase domain; TβRII: the transformation growth factor-β type
II receptor kinase domain; Smad: the drosophila mothers against decapentaplegic protein; NOX:
nicotinamide adenine dinucleotide phosphate oxidase; MAPK: mitogen-activated protein kinase;
JNK: c-JunN-terminal kinase.

4.3. Janus Kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) Pathway

Interleukin-6 (IL-6), an inflammatory mediator produced by diabetes, activates the
JAK-signal transducer and activator of transcription 3 (STAT3) signaling pathway. IL-6
binds to cytokine receptors and induces dimerization of gp130 receptors [71]. Phosphory-
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lated STAT3 (Tyr705) proteins interact to form homodimers, translocating to the nucleus,
where they bind to specific DNA-responsive elements and regulate target gene expression
(Figure 1) [72].

In human podocytes, advanced glycation end products (AGEs) induce p65 and STAT3
acetylation, while overexpression of p65 and STAT3 acetylation-deficient mutants inhibits
AGEs-induced expression of NF-kB and STAT3 target genes [73]. The above studies
have shown that activation of podocyte STAT3 by acetylation leads to an aggravation of
nephropathy independent of changes in the upstream JAK signal (Figure 1).

The JAK/STAT pathway also inhibits podocyte autophagy. High glucose inhibits au-
tophagy by activating the JAK/STAT pathway in mice and podocytes, thereby preventing
the effective removal of damaged proteins and organelles from the body to prevent apopto-
sis, and finally aggravating podocyte injury and the progression of DKD (Figure 1) [74].

4.4. Transforming Growth Factor-β (TGF-β)/Smad Pathway

TGF-β activates mothers against decapentaplegic homolog (Smads). TGF is a key
regulator of protein synthesis in the extracellular matrix (ECM) of renal cells. Increased
expression of TGF-β mRNA and/or protein in podocytes of nephrotic patients [75]. TGF-
β transmits signals through sequential activation of two cell surface receptors, serine-
threonine kinase. In podocytes, TGF-β1 phosphorylates Smad2. The Smad2 and Smad3
proteins are activated by TGF-receptor kinases. Phosphorylated Smads form complexes
with Smad4 and are then transferred to the nucleus, where they transduce signals to target
genes (Figure 1) [76]. Smad7 inhibits signal transduction of NF-κB by cell survival factor,
leading to TGF-β-mediated amplification of podocyte apoptosis [77]. TGF-β1 stimulates
NOX4 through the activation of the Smad pathway by transcriptional podocyte-induced
apoptosis [78]. TGF-β1-induced up-regulation of mitochondrial NOX4 through the TGF-β
receptor-Smad2/3 pathway is the cause of ROS production, mitochondrial dysfunction,
and apoptosis (Figure 1).

4.5. Wnt/β-Catenin Pathway

Up-regulation of the Wnt β-catenin signaling pathway was demonstrated in human
DKD podocytes and streptozotocin (STZ)-induced diabetic mice [79]. Snail1, a direct
downstream target of Wnt signal transduction, was up-regulated by β-catenin in DKD [80].
Ectopic expression of Wnt1 or stable β-catenin in vitro induces transcription factor Snail
and inhibits nephrin expression, leading to podocyte dysfunction (Figure 1) [79].

Transient receptor potential cation channel, subclass C, member 6 (TRPC6) leads to
proteinuria through a mechanism involving the activation of Wnt/β-catenin when mutated
or chronically exposed to high glucose. High glucose induces apoptosis and differentiation
of mouse podocytes, followed by a decrease in podocyte viability, leading to an increase
in TRPC6 expression and activation of the Wnt/β-catenin pathway [81]. MiR-27a in
DKD induced the deletion of podocyte-specific markers and increased apoptosis through
PPARγ-mediated β-catenin activation, leading to podocyte injury and deterioration of
renal function (Figure 1) [82].

4.6. MAPK Pathway

It has been found that TGF-β can induce apoptosis by activating mitogen-activated
protein kinase (MAPK) p38 and the classical effector factor caspase-3 [77]. Diabetes-induced
dual specificity phosphatase 4 (DUSP4) decreases and increases p38 and c-JunN-terminal
kinase (JNK) activity, as well as induces podocyte dysfunction. Overexpression of DUSP4
inhibits high glucose exposure-induced p38, JNK, caspase 3/7 activity, and NOX4 expres-
sion [83]. At the same time, it has been found that the inhibitory protein kinase C-δ inhibits
the decreased expression of DUSP4 and the activation of p38/JNK in podocytes and renal
cortex of diabetic mice. Apoptotic signal-regulated kinase-1 (ASK1) is an upstream kinase
of the p38 MAPK pathway, which promotes apoptosis once activated by inflammation and
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oxidative stress [84]. Evidence of increased ASK1 activity has been found in renal biopsy
samples from patients with DKD (Figure 1) [85].

4.7. Inflammatory Reaction

Inflammation is one of the important mechanisms of kidney damage in DKD patients.
Proteinuria in DKD patients promotes important changes of inflammatory state, endothelial
dysfunction and coagulation-fibrinolysis balance [86]. Inflammation and oxidative stress
are non-traditional risk factors (RF). The uremic toxin induces the production of free radicals
in renal cells and induces an inflammatory response. In turn, the induced inflammation can
be mediated by the production of ROS synthesis by macrophages [87]. There is a dynamic
interaction between inflammatory response and oxidative stress, and these two processes
are directly involved in renal cell injury [88]. Chronic inflammation and oxidative stress
increase the incidence of DKD, which in turn promotes the development of inflammatory
states [89].

4.8. NADPH Oxidase (NOX) Imbalance

Transgenic studies of overexpression of Nox-5 in rodents, especially in podocytes and
mesangial cells, have demonstrated a possible pathogenic effect of this subtype [90]. Protein
kinase C (PKC) has been proved to regulate the expression of NOX-2 and NOX-4 as well
as ROS production [91]. The disorder of NOX leads to the increase of the NADH/NAD+
ratio and also leads to the activation of PKC, which exerts a pathogenic effect through the
activation of TGF-β [92]. Relevant studies have shown that the pro-apoptotic effect of high
glucose on podocytes is mediated by the activation of NOX, including ROS production,
NF-kB and p38/MAPK [93,94].

4.9. NLRP3

The NLRP 3 inflammasomes are activated by damaging the cytoplasmic components of
the associated molecular patterns, mitochondrial DNA, adenosine triphosphate (ATP), ROS,
and glycoproteins to form active caspase-1 and active forms of IL-1 and IL-18. The activation
of inflammasomes can also induce pyroptosis. The activation of NLRP3 inflammasomes
aggravates podocyte autophagy and reduces the expression of podocyte nephrin, while
the silence of NLRP3 effectively recovers podocyte autophagy and improves high glucose-
induced podocyte injury. Autophagy plays a key role in maintaining lysosomal homeostasis
in diabetic podocytes. Autophagy injury is involved in the pathogenesis of podocyte loss,
leading to massive proteinuria in patients with DKD [95]. Serum factors associated with
massive proteinuria in diabetes impair autophagy of podocytes but are not associated
with diabetes itself. Podocyte autophagy deficiency may play a pathogenic role in the
development of DKD into massive proteinuria [96].

4.10. Hyperglycemia Induces Apoptosis of Podocytes

In diabetes, the glomerulus enlarge beyond a certain limit and the podocytes are no
longer able to maintain cellular proximity. In addition, compensatory podocyte hypertro-
phy is accompanied by substantial changes in podocyte morphology and protein expression.
Such changes are associated with impaired function and susceptibility of podocytes to
separate from the GBM, leading to a further decrease in podocyte density [97–99]. Hy-
perglycemia produces inflammation affecting podocyte nephropathy protein expression.
In high glucose conditions, podocytes may attract macrophages by overexpressing the
chemokine including vascular endothelial growth factor [100]. Macrophage-induced re-
ductions in nephrin and podocin in cultured podocytes and isolated glomeruli [101].
This mechanism of injury involves tumor necrosis factor-α (TNF-α) produced by acti-
vated macrophages and has been shown to repress the nephrin gene at the transcriptional
level [102]. Hyperglycemia produces AGEs, which bind to RAGE to activate FOXO4
transcription factors, which leads to podocyte apoptosis [103].
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In summary, DKD can lead to podocyte apoptosis through multiple apoptosis-related
pathways, including PI3K, JAK, TGF-β, Wnt, and MAPK. DKD can also lead to podocyte
autophagy deficiency through mTORC pathway or other related pathways. Inflammatory
factors, such as NOX, NLRP3, high glucose, changes in mechanical load environment and
AGEs caused by diabetes, can also cause podocyte damage.

5. SGLT2i May Be Involved in the Regulation of the Podocyte Signaling Pathways

Dapagliflozin counteracts the effects of the PI3K/AKT/ Glycogen synthase kinase-
3 beta (GSK-3β) pathway downstream of ROS [104]. Alpelisib is an α-selective phos-
phatidylinositol 3-kinase (PI3K) inhibitor, use of SGLT2i and a very low-carbohydrate
diet in the absence of metformin are effective in reducing hyperglycemia during Alpelisib
therapy [105]. SGT2/insulin-like growth factor-1 receptor (IGF1R)/PI3K signal transduc-
tion plays a key role in regulating the EMT of podocytes. Using SGLT2i in high-glucose
model can significantly reduce the levels of SGLT2, IGF1R and phosphorylated PI3K, which
indicates that SGLT2 inhibitor can inhibit the EMT of podocytes under diabetic conditions
by downregulating IGF1R/PI3K pathway [106].

SGLT2i inhibits mTORC1 and prevents renal insufficiency [107]. Empagliflozin is
shown to decrease IL-1β and TNF-α but significantly increase LC3-phosphatidylethanola-
mine conjugate.

LC3-I and bcl2/bax ratios, and its beneficial effects are activation of autophagy and
inhibition of apoptosis. Empagliflozin attenuates renal injury in rats by promoting au-
tophagy and mitochondrial biogenesis and by attenuating oxidative stress, inflammation
and apoptosis [108].

In cardioprotective studies, dapagliflozin can exert cardioprotective effects by in-
creasing EPO levels and activating P-Akt, P-JAK2 and pMAPK signaling cascades medi-
ated by reducing apoptosis [109]. EPO was found to activate three pathways simultane-
ously: the Janus-activated cascade of kinase signal transduction and transcription activator
(JAK2/STAT5), PI3K/Akt and extracellular signal-related kinase/MAPK (ERK/MAPK). In
another cardio protection study, SGLT2i significantly increased STAT3 activity and STAT3
nuclear translocation [110].

SGLT2i inhibits TGF-β/Smad pathway activation. Dapagliflozin inhibits phosphory-
lation of the Smad3 junction (serine 204) induced by high D-glucose and TGF-β1 treatment,
suggesting a mechanism of SGLT2-ERK-mediated TGF-β1/Smad3 signaling that induces
pro-fibrotic growth factor secretion [111]. Another study showed that dapagliflozin could
prevent fibroblast activation and mesenchymal transition through AMPKα-mediated inhi-
bition of TGF-β/Smad signaling [112].

The expression of β-catenin in hepatocellular carcinoma cells is significantly down-
regulated by carvedilol. Carvedilol promotes the proteasome degradation of β-catenin
by increasing the phosphorylation of β-catenin [113]. The accumulation of β-catenin has
been significantly inhibited by tofogliflozin. In tofogliflozin-treated mice, levels of blood
glucose and mRNA expression of serum TNF-α, and pro-inflammatory markers in white
adipose tissues were decreased, as was macrophage infiltration [114]. Dapagliflozin inhibits
the inflammatory response by inhibiting the activation of the NF-κB pathway and TNF-α
levels [104].

SGLT2i could inhibit the activation of the MAPK pathway. The protective effect of
canagliflozin is associated with inhibition of p53, p38, and JNK activation. Canagliflozin
enhances the activation of Akt and inhibited the mitochondrial pathway of apoptosis [115].

SGLT2i can reduce the activation of TGF-β in pig models and the expression of
downstream Smad family [116], which promotes the improvement of renal fibrosis [117].
The simultaneous use of SGLT2i can improve the quality of life of patients [118]. The
use of SGLT2i (empagliflozin) in patients with HFrEF effectively improved the VO2 peak,
consistently improving both VO2 maximum and submaximal motor ability in the treated
group [119]. Renal hypoxia occurs in patients with DKD, and the improvement of hypoxia
with SGLT2i may also be another mechanism for its treatment of DKD. In addition, SGLT2i
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was able to reduce oxidative stress [117]. SGLT2i improves the energetics of tissues by
shifting organ metabolism from glucose consumption to the use of free fatty acids and
ketones [120] and thus improves ATP production [121]. SGLT2i can reduce podocyte lipid
content, thereby promoting podocyte health and reducing proteinuria [62].

SGLT2i inhibits the inflammatory response in diabetes. Empagliflozin inhibits the
up-regulation of NOX-2 and NOX-4 in the kidney of diabetic rats [122]. Empagliflozin
weakens the activation of NLRP3 inflammasomes [123]. Dapagliflozin inhibits NLRP3
inflammasome activation and assembly, and subsequently pro-inflammatory IL [124]. The
study by Leng et al. also showed that dapagliflozin could reduce ROS-NLRP3 activity [125].
Dapagliflozin reduced the inflammasome activation in diabetic mice (decreased mRNA
levels of NALP3, apoptosis-associated speck-like protein containing a CARD (caspase
recruitment domain), IL-1β, IL-6, caspase-1, and TNF-α). A similar conclusion has been
reached in vitro models, indicating that the anti-inflammatory and anti-fibrosis effects may
not be related to the hypoglycemic effect of SGLT2i [126].

Inhibition of SGLT improves renal cortical oxygen tension in diabetic rats, which may
contribute to the improvement of tubular cell integrity and tubular albumin reabsorp-
tion [127]. In fructose-induced diabetes mellitus rats, Dapagliflozin down-regulated the
expression of NADPH oxidase in RAGE-induced lens epithelial cells by inactivating glucose
transporter and reducing ROS production [128]. Studies have shown that Dapagliflozin
improves glucose toxicity by reducing the flow of elevated glucose into renal tubular ep-
ithelial cells under high glucose conditions. High glucose increases SGLT2 expression and
glucose consumption, and produces AGEs. This eventually leads to excessive production
of TGF-β1 and IL-8, as well as cell necrosis and apoptosis. Dapagliflozin improves the
aggregation of AGEs and inflammatory response [129].

SGLT2i reduces glomerular pressure. The high expression of SGLT2 increases the
reabsorption of sodium and glucose in proximal renal tubules, resulting in the decrease of
sodium ions reaching the dense spots of distal renal tubules, which leads to the expansion of
afferent arterioles. Therefore, the glomerulus shows high perfusion, high internal pressure
and high filtration. The structural counterpart of renal ultrafiltration is renal hypertrophy,
which is characterized by the increased volume of the glomerular cluster, Bowman’s cavity,
renal tubular epithelium and renal tubular cavity at nephron level, resulting in the increase
of GBM length and podocyte hypertrophy.

SGLT2i can reduce renal hyperfiltration, activate glomerular feedback, increase af-
ferent arteriole tension, and reduce intraglomerular pressure through the mechanism of
increased sodium secretion. SGLT2 inhibition has also been demonstrated to prevent renal
hyperfiltration by reducing blood pressure and glomerular size and inhibiting renal growth
factors [130].

6. No Associated Study Focusing on the Role of SGLT2i on Factors of Signal Pathway

More renal studies on the effects of SGLT2i on signaling pathways are expected. The
above studies have shown that SGLT2i can regulate multiple pathways of PI3K, JAK, TGF-
β, and MAPK in Figure 1 and affect cell apoptosis. Podocyte apoptosis is also regulated by
the above pathways, so SGLT2i may play a role in alleviating diabetes-induced podocyte
apoptosis. However, there is currently no related research that can explain whether the
effects of SGLT2i on these pathways also play a role in podocytes, which may be a new
research direction. At the same time, the research on the inhibition of Wnt/β-catenin
pathway by SGLT2i did not involve its downstream Snail factor and TRPC6 channel that
regulate podocyte apoptosis, so it is uncertain that SGLT2i has a regulatory effect on
apoptosis caused by this pathway.

SGLT2i can directly prevent the down-regulation of autophagy mechanism in
podocytes [131], and affect autophagy to cause podocyte changes.

However, the regulation of the above pathways by SGLT2i has demonstrated that
the inhibitory effect of the drug on diabetes-induced cell damage caused by glycosuric
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nephropathy is achieved not only by inhibiting the urinary glucose in DKD but by regulat-
ing the gene expression through the pathway to inhibit the apoptosis of podocytes.

7. Conclusions

Studies on the damage mechanism of diabetes on the kidney, such as the variety of
podocyte pro-apoptotic and anti-apoptotic mechanisms mentioned above, have shown that
kidney podocyte damage caused by diabetes is the reason for the occurrence of proteinuria
in diabetes. Therefore, in order to prevent diabetes from further developing into CKD,
the intervention should be aimed at preventing or reducing podocyte apoptosis. As an
anti-hyperglycemic drug, SGLT2i has been shown to improve the proteinuria in relevant
diabetes treatment studies, maintaining the integrity of the podocytes, improving the slit
septum dysfunction, recovering the EMT of the podocytes, inhibiting the apoptosis of the
podocytes, enhancing the autophagy of the podocytes, preventing the loss of the podocytes,
and other protective effects, thereby contributing to the reduction of proteinuria. Studies in
other cells have shown that SGLT2i can regulate the related apoptotic pathways and inhibit
cell apoptosis. However, in podocytes, there is no clear research on whether SGLT2i also
plays a protective role in podocytes by regulating apoptosis. It is not clear whether SGLT2i
can resist podocyte apoptosis and its anti-apoptosis mechanism. At present, this paper
systematically describes the research of SGLT2i on intracellular apoptosis and autophagy-
related pathways, which are the possible mechanisms of SGLT2i’s protective effect on
podocytes. The description of the corresponding mechanism in this paper may provide
another new idea for SGLT2i to study the protection mechanism of podocytes.
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