Skip to main content
. 2022 Dec 1;23(23):15107. doi: 10.3390/ijms232315107

Table 2.

H2S improves plant stress tolerance.

Plant Species Stressors H2S Doses Protective Effects References
Arabidopsis thaliana Oxidative 0.5 mmol L−1 NaHS Repressed glycolate oxidase
activities
[152]
Arabidopsis thaliana Osmotic 150 mmol L−1 NaHS Involved in osmotic
stress-triggered stomatal closure
[168]
Safflower Drought: 70 and 50% field capacity 0.5 and 1.0 mmol L−1 NaHS Increased the accumulation of secondary metabolites
Strengthened the antioxidant capacity
Regulated elemental uptake
[171]
Wheat (Triticum aestivum L.) Drought: 30% field capacity 10 mg m−3 SO2 Triggered proline accumulation
Activated antioxidant enzymes
Changed expression level of transcription factors
Increased H2S content
[172]
Cyclocarya paliurus Salinity: 100 mmol L−1
NaCl
0.5 mmol L−1 NaHS Maintained chlorophyll fluorescence
Regulating nitric oxide level
Improved antioxidant capacity
[194]
Wheat (Triticum aestivum L.) Heat: 40 °C 200 µmol L−1 NaHS Reduced glucose sensitivity
Increased the activities of SOD, catalase, and the AsA-GSH cycle
[211]
Pepper (Capsicum annuum L.) Chilling: 10 °C/5 °C day/night 1 mmol L−1 NaHS Enhanced the antioxidant capacity
Increased the enzyme transcription levels
Reduced the contents of O2•−, H2O2, and MDA
[210]
Wheat (Triticum aestivum L.)
Rice
(Oryza sativa L. var.)
Metalloids: 20 μmol L−1 Cr(VI) 15 μmol L−1 NaHS Maintained fruit firmness
Delayed pectin degradation
Downregulated the expression of polygalacturonase, pectate lyase, and expansin
[221]

SOD: Superoxide dismutase; AsA-GSH: ascorbate-glutathione cycle; MDA: malondialdehyde; O2•−: superoxide radical; H2O2: hydrogen peroxide.