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Abstract: The present study was carried out to explore the possible role of kinetin and gibberellic
acid (GA3) on faba bean under chromium (Cr) stress. Cr treatment negatively affected growth and
biomass production, reduced photosynthetic pigments, and inhibited photosynthesis, gas exchange
parameters, antioxidant enzymes, and the glyoxylase cycle. Moreover, Cr stress enhanced the
production of malondialdehyde (MDA, 216.11%) and hydrogen peroxide (H2O2, 230.16%), electrolyte
leakage (EL, 293.30%), and the accumulation of proline and glycine betaine. Exogenous application
of kinetin and GA3 increased growth and biomass, improved pigment contents and photosynthesis,
as well as up-regulated the antioxidant system by improving the antioxidant enzyme activities
and the content of nonenzymatic components, and the glyoxylase cycle. Additionally, kinetin and
GA3 application displayed a considerable enhancement in proline (602.61%) and glycine betaine
(423.72), which help the plants to maintain water balance under stress. Furthermore, a decline in Cr
uptake was also observed due to kinetin and GA3 application. Exogenous application of kinetin and
GA3 ameliorated the toxic effects of Cr in faba bean plants, up-shooting the tolerance mechanisms,
including osmolyte metabolism and the antioxidant system.
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1. Introduction

The past few decades have witnessed an alarming increase in heavy metals because
of rapid industrialization and urbanization. These heavy metals are often categorized as
soil contaminants; unrestrained disposal intensifies their concentration, which encourages
plant stress [1]. To combat the heavy metal stress, plants thriving under such contaminated
environments often display several morphological, physiological, and biochemical alter-
ations [2]. Among several naturally occurring heavy metals, chromium (Cr) is potentially
hazardous to both flora and fauna [3]. Chromium is considered an important pollutant,
and many sources contribute this pollutant to the environment such as metal smelters,
leather tanning, steel industries, fertilizer and pesticide use, as well as emissions from
industries [4,5]. In soil, Cr mainly exists in two ionic forms, Cr3+ (III) and Cr6+, and both are
toxic to plants. However, the higher stability and reactive nature of Cr6+ are the important
factors that make this form of Cr more toxic compared to other forms existing in the soil by
negatively affecting plant growth and development [4,6]. The availability of Cr in plants is
facilitated via the complexes formed by Cr with organic compounds in soil; however, its
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accumulation and translocation depend upon its oxidation state [7]. Under Cr stress, sev-
eral physiological, biochemical, and metabolic impairments have been reported in plants.
Major toxicity symptoms in plants resulting from Cr stress include stunted growth and
chlorosis [8]. Chromium stress impedes numerous substantial plant activities including
physiological aspects, membrane integrity, metabolic activities, and biochemical processes,
such as inhibition of the electron transport chain and photosynthesis in the mitochondrion
and chloroplast [8–10]. In addition, Cr toxicity severely inhibits the availability of mineral
nutrients that, in turn, negatively inhabits plant growth and development [5]. Moreover, in
plants, Cr stress has been reported to cause oxidative stress, leading to the over-production
of reactive oxygen species (ROS) that causes damage to the cells and even to cell death [11].
However, to overcome metal stress leading to oxidative damage, plants have developed
several intricate mechanisms by enhancing the efficient antioxidant system and production
of osmolytes such as proline and glycine betaine [12,13].

Many recent studies have documented that phytohormones are versatile molecules
that are helpful in combating different environmental stresses [9,14,15]. In order to over-
come Cr-stress-mediated phytotoxicity, it is imperative to adopt eco-friendly techniques.
Polyamines, amino acids, and phytohormones are some eco-friendly physiochemical ap-
proaches that maintain soil health [4,8]. For example, the cytokinins showed a role in over-
coming abiotic stress by improving growth [16], regulating the cell cycle [17], homeostasis
of the phytohormones and gene expression [15], as well as improving photosynthesis [18].
Recently, kinetin has been recognized as a key player among cytokinins for its role in
the mitigation of oxidative stress and promotes growth [18,19]. Cytokinins promote cell
division, and improve chlorophyll synthesis and organ development [20].

Gibberellins (Gas), a large family of diterpenoid tetracyclic compounds, comprise an
assemblage of plant growth regulators associated with seed germination, plant growth,
dormancy breaking, improved water uptake, and signaling [21,22]. Several studies have
demonstrated that gibberellins are promising biological molecules that play a pivotal role
in alleviating different types of abiotic and biotic stresses [23–25]. In addition to acting
as signaling molecules, gibberellins enhance developmental processes by counteracting
stressful conditions, uplifting growth, and enhancing plant immunity [26,27]. Additionally,
diminutive evidence is accessible from the literature that highlights the role of plant
growth played by GAs under stress conditions that make GAs the prime targets of the
present research.

Among different legume crops grown in the world, the faba bean (Vicia faba L.) is
one of the oldest crops and ranks sixth in their production [28]. This legume crop is also
known by different common names such as field beans, broad beans, and horse beans [28].
In developing countries, beans are vital components of human nutrition as it contains
a sufficient protein diet for humans [29]. Even at lower metal concentrations, a severe
clampdown of biomass production in leguminous crops has been reported [30,31]. With
regard to metal tolerance and accumulation in faba bean under Cr stress, however, little
information is available. Phytohormones have emerged as the hub of modern research
studies; however, from the literature, there is no evidence that highlights the role of kinetin
and GA3 in Cr stress mitigation. In light of the earlier cited conceivable validation, the
present investigation was commenced to describe the role and to unfold the possible
mechanism of kinetin and GA3 in Cr stress tolerance in the faba bean under individual
and/or combined application of kinetin and GA3.

2. Results
2.1. Growth and Biomass Yield

In the present study, we observed no significant difference in faba bean plants treated
individually either with kinetin or GA3. However, exposure to 300 µM of Cr stress revealed
a significant reduction in the shoot length by 50.93%. Additionally, when the Cr-treated
faba bean plants were subjected to kinetin priming, the shoot length showed an increase of
about 21.30%. Similarly, GA3 application to Cr-stressed plants also resulted in increased
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shoot length (25.77%). However, combined treatments of kinetin and GA3 to Cr-stressed
plants showed a dramatic increase in the shoot length by 83.19% (Figure 1A).
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Figure 1. Effect of kinetin (KN) and gibberellic acid (GA3) on (A) shoot and root length, and (B) shoot
dry weight in faba bean under Cr toxicity. The letters (a–f) denote significant difference at p < 0.05.
Data represent mean ± SE (n = 5).

In the case of root length, no significant change was recorded in faba bean plants
treated either with kinetin or GA individually; however, the Cr stress (300 µM) negatively
affected the root length (Figure 1A), and a significant decrease in root length was observed
as 41.63%. Under Cr stress, the application of kinetin (10 µM) and GA3 individually
improved the root length by 60.46% and 22.33%, respectively, in faba bean plants. However,
the combined application of kinetin and GA3 significantly improved the root length in faba
bean plants under Cr stress. The combined application increased the root length by 63.15%
in comparison to the control.

Faba bean plants treated with kinetin or GA3 without Cr stress showed almost the
same dry weight with respect to the control (Figure 1B). However, Cr exposure decreased
the dry weight in faba bean plants by 53.44%. Exposure of Cr-stressed plants to kinetin
and GA3 alone or in combination improved the dry weight per plant. Kinetin and GA3
individually improved dry matter by 64.81 and 50.00%, respectively, while the combined
application of kinetin and GA3 showed a much higher increase (83.33%) in dry weight than
the individual application of these hormones.
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2.2. Chromium Accumulation and Translocation Factor

In the plants subjected to Cr stress, higher levels of Cr accumulation of 57.48 mg kg−1

DW were observed in the root tissue followed by 31.43 mg kg−1 DW in the shoots in faba
bean plants (Table 1). Supplementation of kinetin to the Cr-stressed plants decreased the Cr
accumulation to 19.25 mg kg−1 DW and 42.15 mg kg−1 DW in the shoot and root, respectively.
The combined application of kinetin + GA3 to Cr-stressed plants reduced Cr accumulation to
15.48 mg kg−1 DW and 32.72 mg kg−1 DW in the shoot and root, respectively.

Table 1. Effect of KN and GA3 on Cr accumulation by shoot and root and translocation factor in
faba bean under Cr toxicity. The letters (a–d) denote significant difference at p < 0.05. Data represent
mean ± SE (n = 5).

Treatments Shoot Cr (mg kg−1 DW) Root Cr (mg kg−1 DW) Translocation Factor (TF)

0 ND ND ND
0 + KN (10 µM) ND ND ND

0 + GA3 ND ND ND
KN + GA3 ND ND ND

Cr (300 µM) 31.43 ± 0.727 a 57.48 ± 1.3 2 a 0.546 ± 0.014 a
Cr + Kn 19.25 ± 0.424 c 42.15 ± 0.97 b 0.456 ± 0.008 c

Cr + GA3 22.71 ± 0.565 b 45.67 ± 1.13 b 0.497 ± 0.011 b
Cr + Kn + GA3 15.48 ± 0.311 d 32.72 ± 0.65 c 0.473 ± 0.008 bc

ND: Not detected.

The translocation factor showed a declined trend under the individual and combined
application of kinetin and GA3 (Table 1). Kinetin application alone decreased the TF in faba
bean plants by 11.48%, whereas GA3 application reduced the TF up to 8.97%. However,
combined supplementation of kinetin and GA3 showed a greater decrease of 13.36% in TF.

2.3. Pigment Systems, Photosynthesis, and Gas Exchange Parameters

Pigment contents, viz., Chl a, Chl b, TChl, and carotenoids, showed no significant
difference among the kinetin or GA3-treated as well as control faba bean plants (Figure 2A).
However, the Cr stress was found to decrease pigment content significantly in faba bean
plants. In comparison to the control, we observed a reduction of 48.21%, 51.61%, 48.95%,
and 60.00% in Chl a, Chl b, total Chl, and carotenoid content, respectively, under Cr stress
in faba bean plants. Kinetin application enhanced Chl a, Chl b, total Chl, and carotenoid
content by 25.00%, 6.45%, 20.97%, and 27.50%, respectively, in Cr-stressed plants. Similarly,
the GA3 exposure under Cr stress also showed an augmentation in pigment content. For
example, the GA3 application increased Chl a, Chl b, total Chl, and carotenoid content by
28.57%, 19.35%, 26.57%, and 32.50%, respectively, in Cr-treated plants relative to nontreated
GA3 plants. Compared to individual effects of kinetin and GA3, combined treatment of
kinetin and GA3 had a prominent effect on pigment enrichment (both chlorophyll and
carotenoid). Combined treatment increased Chl a, Chl b, total Chl, and carotenoid content
by 15.17%, 6.06%, 10.48%, and 7.5% in faba bean plants under Cr stress, respectively.
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Figure 2. Kinetin (KN) and gibberellic acid (GA3) enhance (A) chlorophyll and carotenoid con-
tent (mg g−1 FW), (B) net photosynthesis, Pn (µmol m−2 S−1), (C) CO2 assimilation rate A,
(µmol (CO2) m−2 S−1), (D) stomatal conductance (mmol m−2 S−1), and (E) transpiration rate
(mmol H2O m−2 S−1) in faba bean under Cr toxicity. The letters (a–e) denote significant difference at
p < 0.05. Data represent mean ± SE (n = 5).

In this study, we observed no significant statistical difference in net photosynthetic
rate (Pn), CO2 assimilation rate (A), stomatal conductance (gs), and transpiration rate (E)
among the kinetin or GA3-treated and control faba bean plants (Figure 2B–E). However,
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all the attributes related to photosynthesis were severely affected under Cr stress. As
compared to the control, the faba bean plants exposed to Cr displayed a decrease of about
55.47%, 50.98%, 76.76%, and 48.64% in Pn, A, gs, and E, respectively. Moreover, an increase
in all the photosynthetic attributes was observed when Cr-treated plants were exposed
to kinetin and GA3 alone or in combination. Combined kinetin and GA3 application
demonstrated a considerably higher photosynthetic rate (102.73%), CO2 assimilation rate
(100.70%), stomatal conductance (237.80%), and transpiration (220.51%) in comparison to
control plants.

In the absence of Cr treatment, no significant statistical difference was observed
in chlorophyll florescence parameters (Figure 3) between faba bean plants not treated
with kinetin or GA3, and those supplemented with either kinetin or GA3. Nonetheless,
all the attributes related to chlorophyll florescence were significantly reduced under Cr
stress. It is pertinent to mention that Cr-treated plants supplemented with kinetin or
GA3 alone or in combination (kinetin and GA3) suffered less damage as compared to
plants treated with Cr alone. Cr treatment alone decreased the PSII efficiency (Fv/Fm),
photochemical efficiency (qp), and quantum yield of PSII (ΦPSII) by 35.00%, 38.63%,
and 38.70%, respectively. However, exposure of Cr-treated plants to kinetin and GA3
individually improved all the chlorophyll-florescence-related parameters. Moreover, an
increase in the chlorophyll-florescence-related parameters was observed when Cr-treated
plants were exposed to the combined application of kinetin and GA3. Additionally, an
increase in nonphotochemical quenching (NPQ) was observed in faba bean plants under
Cr stress as compared to control plants, and an increase of 52.83% in NPQ was observed
under Cr stress. However, the individual application of kinetin and GA3 decreased the
NPQ by 25.92% and 20.98%, respectively. The combined application of kinetin and GA3
brought about a greater decrease (38.27%) in the level of NPQ in Cr-treated plants.
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2.4. Relative Water Content, and Proline and GB Content

No significant difference in RWC was observed between the control, as well as kinetin
and GA3-treated plants; however, the Cr stress decreased the RWC significantly by 53.44%
relative to control plants (Figure 4A). Furthermore, a remarkable increase in RWC was
observed in Cr-stressed plants upon treatment with kinetin and GA3. Kinetin alone
enhanced the RWC by 36.54%, while GA3 increased the RWC up to 42.12% with respect
to Cr-alone-treated plants. Additionally, the kinetin and GA3 in combination proved to
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be more operational in stress alleviation by increasing the RWC by 76.93% over Cr-alone-
treated plants.
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Figure 4. Effect of kinetin (KN) and gibberellic acid (GA3) on (A) RWC, (B) proline content, (C) glycine
betaine content, and (D) oxidative stress biomarkers (H2O2 and MDA) and (E) EL in faba bean under
Cr toxicity. The letters (a–d) denote significant difference at p < 0.05. Data represent mean ± SE
(n = 5).

In comparison to the control, plants treated with kinetin and GA3 exhibited no sig-
nificant difference in proline and GB accumulation when compared with the control
(Figure 4B,C). Plants under Cr stress displayed a notable enhancement in proline and
GB accumulation. With respect to the control, under Cr stress, the proline content and
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GB accumulation increased by 467.81% and 286.51%, respectively, in faba bean plants.
However, the individual application of kinetin and GA3 further improved proline and GB
accumulation under stress conditions. Kinetin application increased the proline content
and GB accumulation by 549.50% and 400.00%, respectively. Similarly, the GA3 application
increased the proline and GB content by 504.57% and 358.13%, respectively. Furthermore,
the combined (kinetin and GA3) application under Cr stress proved to be very effective in
proline and GB accumulation. Combined hormone application increased the proline and
GB content by 602.61 and 423.72%, respectively.

2.5. H2O2, MDA Content, and EL

With respect to the control, plants treated with kinetin and GA3 individually displayed
no statistical difference in H2O2, MDA, and EL (Figure 4D,E). However, plants exposed to
Cr stress displayed augmented levels of H2O2, MDA, and EL. In comparison to the control,
the Cr stress alone increased H2O2, MDA, and EL by 230.16%, 216.11%, and 293.30%,
respectively. Furthermore, kinetin application under Cr stress decreased H2O2, MDA,
and EL by 116.75%, 89.09%, and 220.03%, respectively, over the control plants. Similarly,
the individual application of GA3 decreased H2O2, MDA, and EL by 120.67%, 95.26%,
and 195.11%, respectively. Additionally, declines of about 56.68%, 26.54%, and 134.46%
were observed in H2O2, MDA, and EL, respectively, in faba bean plants under combined
application of kinetin and GA3.

2.6. Antioxidants Enzyme Activity

To explore the possible functional role of kinetin and GA3 on antioxidant enzymes in
faba bean plants under Cr stress, the plants were treated with kinetin and GA3 individually
or in combination. These results concomitant with the activities of the antioxidant enzymes
are illustrated in Figure 5A–C. Compared to the control, plants treated with either Kinetin
or GA3 displayed no significant statistical difference in antioxidant enzyme activities
of faba bean plants. However, when the plants were exposed to Cr stress, a significant
increase was observed in the activities of several antioxidant enzymes. Cr stress alone
increased the activities of SOD, CAT, APX, and GR by 51.34%, 59.77%, 134.21%, and 70.24,
respectively, relative to those of control plants. Kinetin application under Cr stress further
increased the activity of SOD (65.78%), CAT (92.72%), APX (162.79%), and GR (117.07%)
relative to control plants. Similarly, the GA3 application enhanced the activity of SOD, CAT,
APX, and GR by 59.21%, 83.85%, 150.83%, and 109.43%, respectively, compared to control
plants. Additionally, the combined application of kinetin and GA3 further enhanced the
antioxidant enzyme activities of SOD, CAT, APX, and GR by 82.89%, 122.89%, 187.37%,
and 144.87%, respectively, relative to control plants (Figure 5A,B).

Antioxidant activities prompted us to measure the activities of DHAR and MDHAR,
and we observed a sharp decline in the activity of DHAR and MDHAR by 48.15% and
53.85%, respectively, in faba bean plants under Cr stress in comparison to control plants
(Figure 5C). However, when Cr-stressed plants were treated with kinetin, an increase of
about 37.65% and 16.82% was observed in the activities of DHAR and MDHAR, respectively.
Similarly, the GA3 application also showed an improvement in DHAR and MDHAR activity
by 48.89% and 18.01%, respectively, in comparison to Cr-stressed plants. Furthermore,
combined kinetin and GA3 application remarkably improved the DHAR and MDHAR
activity under Cr stress. Under the combined application of kinetin and GA3, the DHAR
increased by 27.83% and MDHAR increased by 4.81% in comparison to Cr-treated plants
alone. The results demonstrate that kinetin and GA3 either individually or in combination
helped the faba bean plants to maintain the DHAR and MDHAR pool under Cr toxicity.
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Figure 5. Supplementation of kinetin (KN) and gibberellic acid (GA3) regulates the activity of
(A) SOD and CAT, (B) APX and GR, (C) DHAR and MDHAR, (D) AsA content, (E) GSH content, and
(F) GSSG content in faba bean under Cr toxicity. The letters (a–d) denote significant difference at
p < 0.05. Data represent mean ± SE (n = 5).

2.7. Kinetin and GA3 Application Maintains Ascorbic Acid (AsA), GSH, and GSSG Ratio

No significant statistical difference was observed in AsA, GSH, and GSSG content in
control plants, and the ones treated with kinetin and GA3 (Figure 5D–F). However, under
Cr stress, plants showed a sharp decline of about 54.54% in AsA levels. Moreover, we
observed an improvement in the AsA levels in Cr-treated plants when supplemented with
kinetin and GA3 either alone or in combination. The combined kinetin + GA3 treatment
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increased AsA levels up to 40.00% in plants subjected to Cr stress relative to those of the
plants treated with Cr alone.

During the study, an increase of about 38.43% in GSH concentration was observed in
faba bean plants under Cr stress as compared to nontreated plants; however, the application
of kinetin and GA3 to Cr-stressed pants further increased the GSH content by 13.51% and
15.15%, respectively, in comparison to Cr-alone-treated plants. Additionally, the Cr-treated
plants supplemented with combined kinetin + GA3 further enhanced the GSH activity by
78.34% with respect to Cr-alone-treated plants. The Cr stress enhanced the GSSG content by
144.77% relative to control plants, However, further enhancements by 181.86% and 174.58%
were observed by the supplementation of kinetin and GA3 individually, respectively, to the
Cr-treated plants in comparison to Cr-alone-treated plants. The combined application of
kinetin + GA3 to Cr-stressed plants further enhanced the GSSG content by 240.66% with
respect to Cr-alone-treated plants.

2.8. Methylglyoxal (MG) and Glyoxalase System

Chromium stress in faba bean plants enhanced MG levels up to 145.05% as compared to
control plants (Figure 6A). However, the Cr-treated faba bean seedling when supplemented
with kinetin and GA3 individually showed a significant reduction by 96.12% and 36.00%,
respectively, as compared to Cr-alone-treated plants. Cr-stressed plants showed a maximum
decrease of about 54.53% in MG levels when kinetin and GA3 were applied in combination
with respect to Cr-alone-treated plants.
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Figure 6. Application of kinetin (KN) and gibberellic acid (GA3) regulates (A) MG content
(µmol g−1 FW) and (B) GlyI and GlyII (µmol min−1 mg−1 protein) in faba bean under Cr toxic-
ity. The letters (a–d) denote significant difference at p < 0.05. Data represent mean ± SE (n = 5).

Under Cr stress, reduced GlyI and GlyII activities were observed in faba bean plants
(Figure 6B). GlyI and GlyII activities declined by 50.66% and 49.01% respectively, under
Cr stress in comparison to nontreated plants. Relative to Cr-alone-treated plants, kinetin
enhanced the activities of both GlyI (36.00%) and GlyII (27.45%) enzymes in Cr-stressed
plants. Foliar application of GA3 to Cr-stressed plants also enhanced the GlyI and GlyII by
41.33% and 33.33% respectively, over Cr-alone-treated plants. Higher activities of 21.33% in
GlyI and 7.84% in GlyII were observed when kinetin + GA3 was applied in combination to
cadmium-stressed plants as compared to Cr stress alone.
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3. Discussion
3.1. Plant Growth and Biomass

Plants being nonmobile in nature are often subjected to environmental stresses in-
cluding heavy metals [32]. Among the heavy metals, Cr has been reported to adversely
affect plant growth and development by inhibiting several metabolic processes [33,34]. In
the present study, a significant reduction in growth (shoot and root length) and biomass
production was observed in the faba bean plants under Cr stress. In agreement with our
results, several recent studies have also documented a decline in growth and biomass in
different plants such as Brassicca napus, wheat, and Arabidopsis under Cr stress [35–37].
The reduction in plant growth by Cr phyto-toxicity has been suggested to result from
the degradation of chlorophyll pigments [38,39], disturbed nutrient uptake balance [33],
ROS overproduction, destruction of cellular ultrastructure [40], and disorganization in
antioxidant defense machinery [33]. Hence, it is a prerequisite to improve the Cr stress
tolerance in faba bean to avoid its negative effect on plant growth. In this regard, we used
two plant hormones, viz., kinetin and GA3, to explore their role in the Cr tolerance in faba
bean plants. Our results demonstrated that kinetin and GA3 application individually as
well as in combination considerably improved growth and biomass in faba bean under Cr
stress. The application of GA3 has been previously documented to significantly improve
plant growth and biomass in leaf lettuce [41] and Vigna radiata [23]. The GA3-mediated
promotion of growth and biomass under stress can be ascribed to the promoted synthesis of
DNA, RNA, nuclear material, and proteins [42,43], improved enzyme activity, and optimal
nutrient uptake [23,44]. Moreover, improved growth performance was observed in kinetin-
treated faba bean plants exposed to Cr stress. Several researchers have demonstrated
the ameliorative effect role of kinetin under different abiotic stress conditions [18,19,45].
Kinetin has been suggested to improve growth and biomass in faba bean plants under
stress conditions by enhancing the uptake of nutrients [46], hormones [47], as well as the
accumulation of polyamines. Our results demonstrated that the combined application of
kinetin and GA3 has a more pronounced effect on growth and biomass yield in the faba
bean plants under Cr stress. The synergetic action of kinetin and GA3 on plant growth and
biomass under various abiotic stress conditions has also been documented in chickpea [48],
barley, wheat, cucumber, alfalfa, tomato, lettuce [49,50], and Chrysanthemum [51].

Heavy metal toxicity in plants depends on the amount, distribution, and partitioning
of metal in different organs [52,53]. Remarkably, roots are the first plant organs that
come in direct contact with metal ions, and, thus, roots play an important role in the
regulation of metal uptake [54,55]. In the present investigation, Cr exposure considerably
increased the accumulation and uptake of Cr, in both the roots and leaves of faba bean
plants. Our results are in agreement with the findings previously observed in barley,
Salvinia [56], and wheat [57]. We observed a higher Cr accumulation in roots compared
to the leaves. However, kinetin and GA3 application alone as well as in combination
considerably decreased the Cr translocation and uptake from roots to leaves. Kinetin
and GA3 caused a reduction in Cr translocation, and uptake might be related to the
defensive role of these hormones in membrane stability [58], which, in turn, prevented
Cr from entering into the cytoplasm. Hence, the increase in the phytohormone-mediated
increment in plant growth and biomass has been suggested to likely result from low metal
translocation under Cr stress [58].

3.2. Photosynthetic Efficiency

The extent of damage to the plant’s photosynthetic machinery due to various environ-
mental perturbations can be best explained through their primary effect on the disruption
of the photosynthetic pigments [5,23]. Our study documented the significant reduction
in the chlorophyll and carotenoid pigments under Cr stress, similar to those previously
reported by different authors in various plant species [33,59,60]. It has been suggested
that the reduction in the chlorophyll and carotenoid pigments due to heavy metal stress
including Cr might have resulted from the inhibition of enzymatic machinery involved in
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the pigment biosynthesis and photosystem damage [33,61,62]. In our study, the application
of kinetin and GA3 individually or in combination increased the photosynthetic pigments
under Cr stress, but the combined effect of kinetin and GA3 was more profound, similar to
that previously demonstrated by Terzi and Kocaçalişkan [50]. Although there is no direct
evidence available demonstrating the role of GA3 on the photosynthetic pigments under
Cr stress in plants, GA3 application has been reported to positively affect the biosynthesis
of photosynthetic pigments for the case of other heavy metal stresses such as Chlorella
vulgaris [63] and Vigna radiata [23]. These authors suggested that increased pigment content
under metal stress upon foliar application of GA3 might have been due to reduced oxida-
tive damage resulting from GA3-enhanced antioxidant defense mechanisms. In agreement
with our findings, the kinetin application to the Cr-stressed plants has been documented
to enhance pigment content [17,64]. Therefore, the restoration in photosynthetic pigments
under kinetin and GA3 supplementation suggested their important role in protecting
the photosynthetic apparatus against Cr-mediated photodynamic damage as reported in
previous studies [15,64].

The reduction in the photosynthetic gas exchange parameters, viz., Pn, A, E, and
gs, under Cr toxicity is in accordance with those observed in barley [60], rice [65], and
cauliflower [33]. In addition, many other recent studies have also reported severe reductions
in gas exchange parameters under Cr toxicity [10,66]. Many authors have suggested that
the Cr-induced reduction in the leaf gas exchange parameters may be attributed to altered
enzyme activities, which leads to protein dysfunction [10,65,66]. Similar to our results, the
GA3 application has also been previously reported to enhance the gas exchange parameters
in different plant species such as jute [67] and mungbean [23] under heavy metal stress. It
has been reported that GA3 enhanced the photosynthetic activity by increasing the CO2
assimilation rate [68], Rubisco enzyme activity [69], and nutrient uptake [23], which, in turn,
increased the plant growth and development. In addition, several researchers have reported
an enhancement in photosynthesis and gas exchange parameters by kinetin application
under heavy metal stress in different plants [64,70,71], similar to that reported in the
present study. The enhanced gas exchange under Cr stress by kinetin application might be
attributed to the higher antioxidant activity that can prevent ROS-induced photosynthetic
damage [64]. The combined effect of kinetin and GA3 on these gas exchange parameters
was found to be more prominent combined with their individual effect, similar to that
reported by Terzi and Kocaçalişkan [50].

Under severe environmental perturbations, chlorophyll fluorescence is extensively
implied to enumerate stress tolerance and acclimation in plants [72]. During the present
study, a significant decrease was observed in the Fv/Fm, ΦPSII, and qP under Cr stress,
and these results are consistent with those reported in Wheat [73], Tomato, and Brassica
napas [39]. Impaired PSII electron flow under Cr stress can cause photo-inhibition that
enhances the obliteration in antenna molecules [74,75]. Electron transport from the primary
to secondary acceptor is blocked at the PSII acceptor side that drastically reduces the ratio
Fv/Fm [39,76]. Negative effects on various photosynthetic parameters such as ΦPSII, qP,
Fv/Fm ratio, and NPQ were reversed when Cr-stressed faba bean plants were treated
with GA3 and kinetin alone or in combination. GA3 application improved chlorophyll-
fluorescence-related parameters under heavy metal stress and has been reported by several
authors [24,67]. Under Cr stress, GA3 allows the plant to effectively uphold their electron
pool, which results in the reduction in PSII photoinhibition as well as the maintenance
of the ΦPSII, Fv/Fm ratio, and qp. Similar findings have been reported in eggplant [77],
Mentha piperita [78], and cucumber [79]. During the present study, a decline in NPQ was
observed in faba bean seedlings under Cr stress conditions, and the results are consistent
with observations in Brassica juncea, cauliflower [33], and Halienthus annus [66], which
also documented a decreased trend in various photosynthetic attributes under Cr stress.
The findings advocate that GA3 helps in maintaining the integrity of thylakoid membranes,
and at the same time, prevents PSII from over-excitation.
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3.3. Relative Water Content, and Proline and GB Contents

RWC is considered an important indicator for stress [80,81]. Chromium toxicity was
observed to decrease the RWC in faba bean plants during the present investigation. In
accordance with our study, several studies have also reported significant decreases in
RWC under Cr toxicity in different plant species such as Phyllanthus emblica, tomato, and
maize [80,82]. These authors suggested that the decrease in the RWC under Cr stress
might be attributed to the decrease in the root surface area [80,83], which, in turn, has
decreased the root absorption and assimilation rate of Cr in the roots, in order to protect
the aerial parts from high Cr accumulation by satisfying optimal water uptake to the aerial
parts [80,81]. The application of kinetin and GA3 individually or in combination increases
the RWC under Cr stress, but the combined use of kinetin and GA3 has a more profound
effect on the RWC. A similar observation was earlier reported under heavy metal stress in
Vigna angularis and mungbean [23]. Foliar application of GA3 alleviated the severe effects of
Cr by augmenting RWC levels through the reduction in metal accumulation [23], increased
root elongation and shoot biomass, and enhanced enzyme activities [84].

Proline and GB act as osmoregulators and protect the cells from osmotic stress [85].
Proline is a multifunctional molecule that acts as a molecular chaperone, enhances enzyme
activity, prevents membrane damage, and scavenges the ROS [86–89]. Furthermore, under
stressful environments, GB protects the photosynthetic apparatus, enhances the enzyme
activity, helps in osmotic adjustments, and also prevents protein damage [90–92]. Proline
and GB have been reported as strong osmolytes, and their accumulation was reported
under Cr stress [93,94]. Cr stress enhanced the proline and GB content in different plants
and has also been investigated in different crops such as Sorghum bicolor [55], Chenopodium
quinoa [95], Brassica juncea [96], and Sorghum bicolor [97]. However, the GA3 supplementa-
tion alone further augmented the proline content and GB under Cr stress in the present
study, and our results corroborate those observed by earlier works in different crops of
Solanum lycopersicum, Helianthus annuus, and Capsicum annum [4,98]. GA3-enhanced proline
accumulation might be due to the enhanced activity of enzymes related to the synthesis
of proline or reduction in catabolizing enzymes [23]. GA3 application synthesis restores
the photosynthetic efficiency [42], improves growth [26], and decreases oxidative dam-
age [53,99]. External kinetin supplementation enhanced the proline content in different
plants under abiotic stress, viz., in Vigna angularis under cadmium stress, in Salvia officinalis
under salt stress [100], and in tomato under salt stress [101]. Kinetin-induced proline
accumulation may be attributed to the decline in activity of proline dehydrogenase [20],
improved ROS scavenging, and prevention of photoinhibition [102].

Cr-stress-enhanced ROS production has been reported by several works [4,103]. Un-
der stressful conditions, H2O2 plays a central role in signaling [104,105]. However, it
is also intended to be the key ROS molecule that negatively affects plant growth and
development. The Cr stress induces lipid peroxidation and increases the production
of MDA [37,106], which, in turn, disturbs the fluidity and integrity of biological mem-
branes [107,108], and the H2O2 also obstructs the Calvin cycle, causing disruption in the
rates of photosynthesis [109,110]. However, our study revealed that the application of
kinetin and GA3 reduced the H2O2, MDA, and EL in Cr-stressed faba bean plants. Kinetin
is known to shield the cell membrane components by recovering the plants from lipid
peroxidation induced by heavy metal stress. Kinetin also causes a significant reduction
in H2O2 and MDA content by increasing antioxidant activities that help in quenching the
ROS [19,101]. Additionally, the GA3 application also reduced ROS accumulation under salt
stress [111], cadmium stress [23] and boron stress. Kinetin and GA3 application in faba
bean plants mitigate Cr stress by enhancing antioxidant activities, which, in turn, scavenge
ROS molecules and prevent membrane damage.

Metal toxicity in plants inevitably results in oxidative stress due to ROS over-
production [54,58]. Plants have developed an intricate and robust antioxidant defense
system based on enzymatic and nonenzymatic antioxidants to counteract such situa-
tions [112,113]. In the present study, we observed an upsurge in both enzymatic and
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nonenzymatic antioxidants under Cr toxicity. Our results corroborate the observations
in Helianthus annuus [98] and tomato [38]. However, the application of GA3 and kinetin
moderated the enzymes of the AsA-GSH cycle differently, by changing APX, MDHAR, and
DHAR activities to a varying level. Moreover, kinetin treatment prompted an enhancement
in GR activity. A well-mediated redox status is likely sustained by the application of kinetin
and GA3 that may help to renew GSH from GSSG, which is clearly evident from the increase
observed in the levels of GSH together with GSG/GSSG ratio [18]. Plants under differ-
ent environmental perturbations can activate the GSH-dependent defense mechanisms
that play an important role in plant protection. The defense mechanism associated with
AsA-GSH under the supplementation of kinetin and GA3 established further improved
GSH levels [101]. This might be the reason behind the biosynthesis and modulation of
GR activity under Cr stress, which might have subsequently contributed in the GST and
GPX-facilitated effectual decontamination of hydroperoxides. Our results are in agreement
with those observed in Pisum sativum under chromium stress [114] and Vigna angularis
under cadmium stress, and they demonstrated an increase in the AsA-GSH cycle enzymes.
Similar findings were also reported by Hassan and Mansoor [115] in mung bean. In ad-
dition to kinetin, several authors have also demonstrated a positive role of GA3 in stress
tolerance [23,53,99]. Hence, the application of kinetin and GA3 alone or combination might
prevent the plant cells from oxidative damage by maintaining osmotic balance, preventing
Cr translocation and enhancing antioxidative enzymatic machinery, and maintaining the
proper redox balance.

It has been reported that in plants, the GSH-dependent Gly system is associated with
the maintenance of the redox balance and detoxification of MG [116]. The current study was
carried out with the aim to decipher the role of kinetin and GA3 application in improving
Cr stress tolerance. During the current study, it was found that the MG concentration was
enhanced under Cr stress likely because of the inefficient working of the glyoxylase enzyme
system due to toxicity caused by Cr. The application of kinetin and GA3 enhanced GlyI
and GlyII activities that might have helped the plants to overcome the cytotoxic effects of
MG. Several studies have deliberated about the increased levels of glyoxylase enzymes
under stressful conditions [117].

In conclusion, the present study is the first report demonstrating the combined effect
of kinetin and GA3 in the Cr tolerance in faba bean. Our results revealed that the combined
application of kinetin and GA3 has more positive effects on the accumulation of osmolytes,
antioxidant enzyme activities, glyoxylase enzyme activities, and efficient ROS detoxification.
Hence, our results suggested defense crosstalk between kinetin and GA3 in the regulation
of Cr stress tolerance in faba bean. However, the mechanism underlying this crosstalk
needs to be explored in the future to harness the true potential of these phytohormones in
the regulation of Cr tolerance in faba bean.

4. Materials and Methods
4.1. Plant Growth and Treatments

The seeds of faba bean (Vicia faba L.) were disinfected by using 70% ethanol for 8 min,
and the disinfected seeds were further surface-sterilized with 4% sodium hypochlorite
(NaOCl) for 15 min by following the procedure of Alsahli et al. (2020). After surface
sterilization, the seeds were thoroughly rinsed with double-distilled water to remove
the surface chemicals. After sterilization, the seeds were primed with 10 µM kinetin
solution for 12 h, and the priming was performed by dissolving kinetin in 1 N NaOH and
then diluting to 10 µM concentration by adding deionized water [118]. For the control
treatment, the seeds were just placed simply in deionized water for 12 hrs. Following
the kinetin treatment, the seeds were air-dried and subsequently sown in the earthen
pots (10 seeds/pot) containing soil, sand, and vermiculite in the ratio of 1:1:1 (Table 2).
After germination, three seedlings were maintained in each earthen pot in a completely
randomized-block-design (RBD) manner, and each replicate included five plants. The 11-
day-old seedlings were subjected to Cr stress (300 µM) by dissolving potassium dichromate
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(K2Cr2O7) in nutrient solution. Control plants were provided with the nutrient solution
only. The Cr was given every week (two days per week, 50 mL per pot) until the end
of the experiment (31 day). Gibberellic acid (GA3) at the rate of 10−6 M mixed with
Tween-20 was applied to the leaf tissues after every alternate day from the first day of
Cr treatment. The faba bean plants were raised in a light chamber under controlled
conditions with day/night temperatures of 28/22 ◦C, photosynthetically active radiation
(PAR 200 µmol m−2 s−1), and a relative humidity of 65%. The collection of leaf samples
was carried out after two weeks of the treatment to perform different biochemical and
physiological analysis. Overall, our experiment consisted of the following seven treatments:

• 0 mM (Control);
• 0 mM + Kinetin (10 µM);
• 0 mM + GA3 (10−6 M);
• 0 mM + Kinetin (10 µM) + GA3 (10−6 M);
• Cr (300 µM);
• Cr (300 µM) + Kinetin (10 µM);
• Cr (300 µM) + GA3 (10−6 M);
• Cr (300 µM) + Kinetin (10 µM) + GA3 (10−6 M).

Table 2. Analysis of media used in the experiment.

Parameters

Texture Sandy loam
pH 8.83
Cr ND

Organic matter 1.12
ND: not detected.

4.2. Plant Growth Parameters

Shoot and root length measurements of different faba bean plants were carried out
by using a manual scale. For dry weight estimation, the plant samples were oven-dried
at 70 ◦C for 48 h, and the dried material was then weighed using a weighing balance. We
followed the procedure of Alsahli, et al. [119] to measure these parameters.

4.3. Estimation of Chromium

For the Cr estimation, a sample of 0.5 g of dried plant material was acid-digested
in HNO3 (70%) using the microwave digestion system 2000, following the procedure as
described by Gupta and Sinha [120]. In dried leaf samples, the Cr content was estimated
with the help of an atomic-absorption spectrophotometer (Perkin Elmer AA700, Waltham,
MA, USA). The Cr accumulation and translocation were estimated as per Duman et al. [121].

4.4. Pigment Content, Photosynthesis, and Gas Exchange Parameters

Measurements pertaining to chlorophyll were carried out by following the method
of Lichtenthaler and Wellburn [122]. The 0.5 g fresh leaf sample was homogenized with
5 mL of acetone (80% v/v) and centrifuged at 10,000× g for 8 min. The absorbance
of samples was recorded at 480, 510, 645, and 663 nm by using the spectrophotometer
(Beckman 640D, Brea, CA, USA). A Pulse Modulation Fluorometer (PAM 2500; Heinz Walz
GmbH, Pfullingen, Germany) was used to perform measurements related to chlorophyll
fluorescence [123]. Photosynthetic parameters including Pn (net photosynthetic rate), A
(Carbon dioxide assimilation), gs (stomatal conductance), and E (Transpiration rate) were
assayed (9:00–11:00 am) by operating a portable photosynthesis system IRGA (LI-COR,
Lincoln, NE, USA).
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4.5. Analysis of LRWC and Proline and Glycine Betaine Content

Leaf relative water content (RWC) was assayed by the method as previously demon-
strated by Barrs and Weatherley [124]. The LRWC was estimated by using the formula of
Avestan, et al. [125]

LRWC =
FW − DW
TW − DW

× 100 (1)

For the estimation of proline, the method of Bates, et al. [126] was used. The optical
density of the supernatant was then measured at 520 nm by using a spectrophotometer.
Toluene was used as the blank. Glycine betaine (GB) was assayed as per the method of
Grieve and Grattan [127].

4.6. Estimation of Hydrogen Peroxide (H2O2), Lipid Peroxidation (Malondialdehyde), and
Electrolyte Leakage

Hydrogen peroxide levels were assayed as described previously by Velikova, et al. [128].
Lipid peroxidation measurement, expressed as thiobarbituric acid reactive substances
(TBARS) content, was carried out following the method of Heath and Packer [129].

To determine leaf relative electrolyte leakage (LREL), the fully expanded upper fourth
leaves from faba bean plants were excised and rinsed with deionized distilled water. Ten
leaf discs (5 mm in diameter) punched from the leaf material were placed in glass bottles
containing 15 mL of distilled deionized water and then shaken for 4 h at 300× g in the
dark at 25 ◦C. With the help of a conductivity detector (DDS SJ-308A, Shanghai, China),
the electrolyte leakage (R1) was measured in the solution at 25 ◦C. Then, after the solution
containing leaf discs was allowed to boil for 20 min and subsequently cool down to room
temperature, electrolyte leakage (R2) was measured from the boiled solution at 25 ◦C. LREL
(%) was calculated as:

Electrolyte leakage% = EC1/EC2 × 100 (2)

4.7. Enzyme Extraction and Assays

Enzymes were extracted from 0.1 gm of 21-day-old frozen leaf samples with 1 mL of
freshly prepared extraction buffer containing (50 mM potassium phosphate buffer pH 7.8,
2 mM Na2-EDTA, 10 mM 1,4, dithiothreitol, 20 mM ascorbic acid, 0.6% PVPP, and 50 µL of
protease inhibitor cocktail). The extracted samples were centrifuged for 15 min at 14,000× g
at 4 ◦C to obtain the supernatant for enzyme assays. The enzyme activity was expressed as
EU mg−1 of protein.

Total superoxide dismutase activity (SOD; 1.15.1.1) was assayed according to Dhindsa
and Matowe [130]. The protocol of Aebi [131] was employed for the estimation of catalase
activity (CAT;1.11.1.6). Ascorbate activity (APX;1.11.1.11) was measured by monitoring the
decrease in absorbance at 290 nm for 3 min from the enzyme extract containing H2O2 and
ascorbic acid (Nakano and Asada [132]). Glutathione reductase (GR;1.6.4.2) activity was as-
sayed by the method of Foster and Hess [133]. Monodehydroascorbate reductase (MDHAR;
1.6.5.4) activity from the extract was assayed as per Miyake and Asada [134]. Dehydroascor-
bate reductase (DHAR; 1.8.5.1) was assayed as per the method of Nakano and Asada [132].
GST (EC 2.5.1.18) activity was measured following the method of Alsahli et al. [119]. Pro-
tein contents in the enzyme extracts were determined using Coomassie brilliant blue
G-250 [135].

4.8. Nonenzymatic Antioxidants

The method of Huang, et al. [136] was followed to access the levels of ascorbate (AsA)
and the protocol by Yu, et al. [137] was used for the estimation of glutathione pool.

4.9. MG Content Estimation

MG content was assayed by the method previously described by Wild, et al. [138]. Gly-
oxalase I and glyoxylase II were estimated by the method described by Alsahli et al. [119].
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4.10. Statistical Analysis

One-way analysis of variance (ANOVA) and Tukey’s HSD (Honestly Significant
Difference) tests were used to achieve the statistical analysis with a significance level
of 0.05 on all results using SPSS v.17 software.

5. Conclusions

The stress induced by Cr was effectively mitigated by kinetin along with GA3 as
photosynthetic efficiency was strengthened, oxidative damage was reduced, and growth
attributes were recovered. In addition to these functions, the application of kinetin and GA3
together showed excellent efficacy in boosting osmolyte accumulation and efficiently detox-
ifying ROS by enhancing the capacity of both enzymatic and nonenzymatic antioxidants
to prevent oxidative damage. Furthermore, by regulating the GSH-based Gly systems to
detoxify MG, the combination of kinetin and GA3 application played a critical function in
maintaining the AsA/DHA and GSH/GSSG ratios that also assisted in reducing oxidative
damage. The study suggests that kinetin along with GA3 are effective protectants that
improve Cr tolerance in faba bean plants by enhancing antioxidant enzymes and reducing
oxidative damage. Nevertheless, under Cr stress, kinetin and GA3-mediated resilience in
plants and its mechanism should be deeply investigated at the molecular level.
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