Table 1.
Analysis of the layers for our first model.
No. | Name | Type | Activation | Learnable |
---|---|---|---|---|
1 | imageinput 400 × 400 × 3 images | Image Input | 400 × 400 × 3 | - |
2 | conv_1 8 3 × 3 × 3 convolutions with stride [1 1] and padding ’same’ | Convolution | 400 × 400 × 8 | Weight 3 × 3 × 8
Bias 1 × 1 × 8 |
3 | batchnorm_1 Batch normalization with 8 channels | Batch normalization | 400 × 400 × 8 | Offest 1 × 1 × 8 Scale 1 × 1 × 8 |
4 | relu_1 ReLU | ReLU | 400 × 400 × 8 | - |
5 | maxpool_1 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0] | Maxpooling | 200 × 200 × 8 | - |
6 | conv_2 16 3 × 3 × 8 convolutions with stride [1 1] and padding ’same’ | Convolution | 200 × 200 × 16 | Weight 3 × 3 × 8 × 16
Bias 1 × 1 × 16 |
7 | batchnorm_2 Batch normalization with 16 channels | Batch normalization | 200 × 200 × 16 | Offest 1 × 1 × 16 Scale 1 × 1 × 16 |
8 | relu_2 ReLU | ReLU | 200 × 200 × 16 | - |
9 | maxpool_2 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0] | Max Pooling | 100 × 100 × 16 | - |
10 | conv_3 32 3 × 3 × 16 convolutions with stride [1 1] and padding ’same’ | Convolution | 100 × 100 × 32 | Weight 3 × 3 × 16 × 32
Bias 1 × 1 × 32 |
11 | batchnorm_3 Batch normalization with 32 channels | Batch normalization | 100 × 100 × 32 | Offest 1 × 1 × 32 Scale 1 × 1 × 32 |
12 | relu_3 ReLU | ReLU | 100 × 100 × 32 | - |
13 | fc 5 fully connected layer | Fully Connected | 1 × 1 × 5 | Weight 5 × 320,000
Bias 5 × 1 |
14 | softmax softmax | softmax | 1 × 1 × 5 | - |
15 | classoutput crossentropyex | Classification Output | - | - |