Table 2.
The analysis of the layers for the second proposed model.
No. | Name | Type | Activation | Learnable |
---|---|---|---|---|
1 | inputimage 400 × 400 × 3 images | Input Image | 400 × 400 × 3 | - |
2 | convol_1 8 3 × 3 × 3 with stride = [1 1] and padding = ’same’ | Convolutional | 400 × 400 × 8 | Weight 3 × 3 × 8
Bias 1 × 1 × 8 |
3 | convol_2 8 3 × 3 × 8 | Convolutional | 400 × 400 × 8 | Weight 3 × 3 × 8 × 8
Bias 1 × 1 × 8 |
4 | batchnorm_1 with 8 channels | Batch normalization | 400 × 400 × 8 | Offset 1 × 18
Scale 1 × 1 × 8 |
5 | relu_1 | ReLU | 400 × 400 × 8 | - |
6 | maxpool_1 2 × 2 with stride = [2 2] and padding = [0 0 0 0] | Maxpooling | 200 × 200 × 8 | - |
7 | convol_3 16 3 × 3 × 8 | Convolutional | 200 × 200 × 16 | Weight 3 × 3 × 8 × 16
Bias 1 × 1 × 16 |
8 | convol_4 16 3 × 3 × 16 | Convolutional | 200 × 200 × 16 | Weight 3 × 3 × 16 × 16
Bias 1 × 1 × 16 |
9 | batchnorm_2 with 16 channels | Batch normalization | 200 × 200 × 16 | Offest 1 × 1 × 16
Scale 1 × 1 × 16 |
10 | relu_2 | ReLU | 200 × 200 × 16 | - |
11 | maxpool_2 2 × 2 | Maxpooling | 100 × 100 × 16 | - |
12 | convol_5 32 3 × 3 × 16 | Convolutional | 100 × 100 × 32 | Weight 3 × 3 × 16 × 32
Bias 1 × 1 × 32 |
13 | convol_6 32 3 × 3 × 32 | Convolutional | 100 × 100 × 32 | Weight 3 × 3 × 32 × 32
Bias 1 × 1 × 32 |
14 | batchnorm_3 with 32 channels | Batch normalization | 100 × 100 × 32 | Offest 1 × 1 × 32 Scale 1 × 1 × 32 |
15 | relu_3 | ReLU | 100 × 100 × 32 | - |
16 | convol_7 64 3 × 3 × 32 | Convolutional | 100 × 100 × 64 | Weight 3 × 3 × 32 × 64
Bias 1 × 1 × 64 |
17 | convol_8 64 3 × 3 × 32 | Convolutional | 100 × 100 × 64 | Weight 3 × 3 × 64 × 64
Bias 1 × 1 × 64 |
18 | batchnorm_4 with 64 channels | Batch normalization | 100 × 100 × 64 | Offest 1 × 1 × 64 Scale 1 × 1 × 64 |
19 | relu_4 | ReLU | 100 × 100 × 64 | - |
20 | maxpool_3 2 × 2 | Maxpooling | 50 × 50 × 16 | - |
21 | fc 5 fully connected layer | Fully Connected | 1 × 1 × 5 | Weight 5 × 160,000 Bias 5 × 1 |
22 | softmax | Softmax | 1 × 1 × 5 | - |
23 | classoutput crossentropyex | Classification Output | - | - |