Table 1.
Microorganisms | Biosynthesized NPs | Pollutant | Size Range (nm) | Characterization | Removal Efficiency | Mechanism of Pollutant Removal | References |
---|---|---|---|---|---|---|---|
Heavy metals | |||||||
Manglicolous fungi | Iron oxide nanoparticles | Cr (VI) | 2–16 | UV-vis spectroscopy, FTIR spectroscopy, FESEM-EDX, TEM-EDX, XRD analyzer, VSM | >90% | Chemisorption | [32] |
Aspergillus niger BSC-1 | Iron oxide NPs | 20–40 | UV-vis spectroscopy, ATR-FTIR spectroscopy, Raman spectroscopy, XRD, TEM, FESEM, zeta sizer, VSM | >99% | Adsorption and redox reactions | [33] | |
Aspergillus terreus S1 | Magnesium Oxide NPs | 8.0–38.0 | UV-vis spectroscopy, FTIR spectroscopy, TEM, SEM-EDX, XRD, DLS | 97.5% | Precipitation and adsorption | [34] | |
Marinobacter sp. MnI-79 | Manganese oxide NPs | Ag+ | - | XPS, surface analyzer | 95% | Electrostatic attraction and redox reactions | [35] |
Streptomyces thermolineatus | Iron Oxide magnetic NPs | Cu | 22 | UV-vis spectroscopy, FTIR spectroscopy, SEM, TEM, XRD, thermogravimetric analysis, vibrating sample magnetometer, dynamic light scattering. | 85% | Interactions between electrostatic attraction, surface complexation, and coordination | [35] |
Pseudomonas aeruginosa JP-11 | Cadmium Sulphide NPs | Cd(II) | 20–40 | UV-vis spectroscopy, FTIR spectroscopy, XRD, FESEM, TEM, AAS | 88.66% | Adsorption | [26] |
Spirulina plantesis | Palladium NPs | Pb | 10–20 | UV-vis spectroscopy, XRD, FTIR, TEM | 90% | Adsorption | [36] |
Aspergillus tubingenesis STSP 25 | Iron Oxide NPs | Pb(II) | 73.05 | UV-vis spectroscopy, Zeta analyser, DLS, FTIR, TEM-EDX, XRD, SQUID-VSM | 98% | Adsorption | [32] |
Ni(II) | 96.45% | ||||||
Cu(II) | 92.19% | ||||||
Zn(II) | 93.99% | ||||||
Dyes | |||||||
Shewanellaoneidensis | Magnetite/reduced graphene oxide nanocomposite | Methylene blue | 11.0 | TEM, XRD, FTIR spectroscopy, XRP spectroscopy, vibrating sample magnetometry | 100% | Electrostatic attraction | [37] |
Caldicellulosiruptorsaccharolyticus | Palladium NPs | Methyl orange and Diatrizoate | 10–20 | AAS, SEM, TEM-EDS | 100% | Reduction | [37] |
Bacillus marisflavi TEZ7 [38] | Silver NPs | Direct Blue-1, Methyl Red & Reactive Black 5 | 11.20–39 | FTIR Spectroscopy, XRD, TEM, SEM, EDS | 54.14–96.92% | Photocatalytic degradation | [38] |
Bacillus paralicheniformis, Bacillus pumilus, Sphingomonaspaucimobilis [39] | Silver NPs | Malachite green | 4–20 | XRD, TEM, FTIR spectroscopy | >90% | Adsorption | [39] |
Spirulina plantensisn | 17.9 | UV-vis spectroscopy, XRD, TEM, FTIR spectroscopy | 88% | Biosorption | |||
Anabaena variabilis [39] |
26.4 | 81% | |||||
Pseudochrobactrum sp. C5 | Zinc Oxide NPs | Methanol blue and reactive black 5 | 90–110 | FTIR spectroscopy, XRD, FESEM | >90% | Catalytic degradation | [39] |
Pharmaceutical and Hospital wastewater contaminants | |||||||
Shewanellaoneiedensis MR-1 | Bio-Palladium NPs doped with Au(0) | Diclofenac | - | - | 43.8 ±5.5% | Catalytic degradation | [40] |
Pseudonomas putida | Manganeese Oxide NPs | Estrone and 7α-ethinylestradiol | - | TEM-EDS, HPLC-MSMS | 100% | Absorption and oxidation | [41] |
Desulfovibrio vulgaris | Platinum NPs | 17-β estradiol | - | TEM | 94% | Catalytic reduction | [39] |
Sulfamethoxazole | 85% | ||||||
Escherichia coli | Biogenic Palladium NPs | Ciprofloxacin | 10–30 | SEM, EDXA, XPS | 87.70% | Reductive degradation | [38] |