Skip to main content
. 2022 Nov 25;12(23):4187. doi: 10.3390/nano12234187

Table 1.

Bio-nanoparticles for removal of wastewater pollutants.

Microorganisms Biosynthesized NPs Pollutant Size Range (nm) Characterization Removal Efficiency Mechanism of Pollutant Removal References
Heavy metals
Manglicolous fungi Iron oxide nanoparticles Cr (VI) 2–16 UV-vis spectroscopy, FTIR spectroscopy, FESEM-EDX, TEM-EDX, XRD analyzer, VSM >90% Chemisorption [32]
Aspergillus niger BSC-1 Iron oxide NPs 20–40 UV-vis spectroscopy, ATR-FTIR spectroscopy, Raman spectroscopy, XRD, TEM, FESEM, zeta sizer, VSM >99% Adsorption and redox reactions [33]
Aspergillus terreus S1 Magnesium Oxide NPs 8.0–38.0 UV-vis spectroscopy, FTIR spectroscopy, TEM, SEM-EDX, XRD, DLS 97.5% Precipitation and adsorption [34]
Marinobacter sp. MnI-79 Manganese oxide NPs Ag+ - XPS, surface analyzer 95% Electrostatic attraction and redox reactions [35]
Streptomyces thermolineatus Iron Oxide magnetic NPs Cu 22 UV-vis spectroscopy, FTIR spectroscopy, SEM, TEM, XRD, thermogravimetric analysis, vibrating sample magnetometer, dynamic light scattering. 85% Interactions between electrostatic attraction, surface complexation, and coordination [35]
Pseudomonas aeruginosa JP-11 Cadmium Sulphide NPs Cd(II) 20–40 UV-vis spectroscopy, FTIR spectroscopy, XRD, FESEM, TEM, AAS 88.66% Adsorption [26]
Spirulina plantesis Palladium NPs Pb 10–20 UV-vis spectroscopy, XRD, FTIR, TEM 90% Adsorption [36]
Aspergillus tubingenesis STSP 25 Iron Oxide NPs Pb(II) 73.05 UV-vis spectroscopy, Zeta analyser, DLS, FTIR, TEM-EDX, XRD, SQUID-VSM 98% Adsorption [32]
Ni(II) 96.45%
Cu(II) 92.19%
Zn(II) 93.99%
Dyes
Shewanellaoneidensis Magnetite/reduced graphene oxide nanocomposite Methylene blue 11.0 TEM, XRD, FTIR spectroscopy, XRP spectroscopy, vibrating sample magnetometry 100% Electrostatic attraction [37]
Caldicellulosiruptorsaccharolyticus Palladium NPs Methyl orange and Diatrizoate 10–20 AAS, SEM, TEM-EDS 100% Reduction [37]
Bacillus marisflavi TEZ7 [38] Silver NPs Direct Blue-1, Methyl Red & Reactive Black 5 11.20–39 FTIR Spectroscopy, XRD, TEM, SEM, EDS 54.14–96.92% Photocatalytic degradation [38]
Bacillus paralicheniformis, Bacillus pumilus, Sphingomonaspaucimobilis [39] Silver NPs Malachite green 4–20 XRD, TEM, FTIR spectroscopy >90% Adsorption [39]
Spirulina plantensisn 17.9 UV-vis spectroscopy, XRD, TEM, FTIR spectroscopy 88% Biosorption
Anabaena variabilis
[39]
26.4 81%
Pseudochrobactrum sp. C5 Zinc Oxide NPs Methanol blue and reactive black 5 90–110 FTIR spectroscopy, XRD, FESEM >90% Catalytic degradation [39]
Pharmaceutical and Hospital wastewater contaminants
Shewanellaoneiedensis MR-1 Bio-Palladium NPs doped with Au(0) Diclofenac - - 43.8 ±5.5% Catalytic degradation [40]
Pseudonomas putida Manganeese Oxide NPs Estrone and 7α-ethinylestradiol - TEM-EDS, HPLC-MSMS 100% Absorption and oxidation [41]
Desulfovibrio vulgaris Platinum NPs 17-β estradiol - TEM 94% Catalytic reduction [39]
Sulfamethoxazole 85%
Escherichia coli Biogenic Palladium NPs Ciprofloxacin 10–30 SEM, EDXA, XPS 87.70% Reductive degradation [38]