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Abstract: Doxorubicin (DOXO) is an antineoplastic drug that is used extensively in managing multi-
ple cancer types. However, DOXO-induced cardiotoxicity is a limiting factor for its widespread use
and considerably affects patients’ quality of life. Farnesol (FSN) is a sesquiterpene with antioxidant,
anti-inflammatory, and anti-tumor properties. Thus, the current study explored the cardioprotective
effect of FSN against DOXO-induced cardiotoxicity. In this study, male Wistar rats were randomly
divided into five groups (n = 7) and treated for 14 days. Group I (Control): normal saline, p.o. daily
for 14 days; Group II (TOXIC): DOXO 2.4 mg/kg, i.p, thrice weekly for 14 days; Group III: FSN
100 mg/kg, p.o. daily for 14 days + DOXO similar to Group II; Group IV: FSN 200 mg/kg, p.o. daily
for 14 days + DOXO similar to Group II; Group V (Standard): nifedipine 10 mg/kg, p.o. daily for
14 days + DOXO similar to Group II. At the end of the study, animals were weighed, blood was
collected, and heart-weight was measured. The cardiac tissue was used to estimate biochemical
markers and for histopathological studies. The observed results revealed that the FSN-treated group
rats showed decrease in heart weight and heart weight/body weight ratio, reversed the oxidative
stress, cardiac-specific injury markers, proinflammatory and proapoptotic markers and histopatho-
logical aberrations towards normal, and showed cardioprotection. In summary, the FSN reduces
cardiac injuries caused by DOXO via its antioxidant, anti-inflammatory, and anti-apoptotic potential.
However, more detailed mechanism-based studies are needed to bring this drug into clinical use.

Keywords: farnesol; reactive oxygen species; caspase-3; NF-kB; inflammation; cardioprotection

1. Introduction

Doxorubicin (DOXO), belonging to the anthracycline family, is among the most effec-
tive antineoplastic drugs ever developed for oncology. DOXO has been found to be highly
effective in cancer chemotherapy, with notable success and well-known mechanisms for
treating hematological and solid malignancies [1]. However, the use of DOXO is limited
due to its major dose-dependent cardiotoxicity [2]. Cardiomyopathy induced by DOXO
is exponentially increasing as more and more patients are being treated for cancer [1,3].
The mechanism of DOXO-induced cardiotoxicity is multifactorial in origin and involves
complex pathways involving inflammation, oxidative stress, and apoptosis [4].

Increased oxidative stress and persistent increase in reactive oxygen species (ROS)
stimulate lipid peroxidation and cause oxidative damage to myocytes, mitochondria, and
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cell membranes, leading to cardiotoxic manifestations [1]. After exposure to DOXO, ox-
idative stress is increased, leading to the expression of various transcription factors, such
as nuclear factor kappa B (NF-κB), that further activate nucleotide-binding oligomeriza-
tion domain-NOD-Like Receptor Protein 3 (NLRP3 inflammasome) [5]. This causes an
increment in the release of proinflammatory cytokines from the myocardium, such as
interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) [5]. In the pathogenesis
of DOXO-induced cardiotoxicity, evidence shows that extrinsic and intrinsic pathways are
involved. DOXO triggers cell apoptosis through two mechanisms, (1) by localizing directly
into the mitochondria or (2) by increased calcium accumulation in cells and an increase
in oxidative stress [6]. These mechanisms stimulate the release of cytochrome C, which
further triggers apoptosis and causes cardiotoxicity [7].

Thus, looking into the complex and multifactorial mechanism of cardiotoxicity, more
rigorous approaches are needed to prevent and reduce DOXO-induced cardiotoxicity and
for its effective use in chemotherapy in clinical settings.

Recently, natural products such as essential oils have been extensively explored for
their possible pharmacological effect, especially for their cardioprotective potency [8,9].
Chemically, farnesol (FSN) is an alcoholic sesquiterpene used in the cleansing and cosmetic
industry and which is generally considered safe [9]. Moreover, FSN is approved by the
FDA for consumption by humans as a flavoring agent [10]. In terms of the pharmacological
attributes of FSN, it has been reported with anti-inflammatory, antioxidant, anticancer, anti-
hypertensive, anti-arrhythmic, and hepatoprotective effects [11–13]. Based on the previous
report on the cardioprotective potency of FSN, until now it has been explored only for the
anti-arrhythmic, anti-hypertensive, and hypertrophic model of isoproterenol and aortic
perfusion, preferably where cardiac contractility, echocardiographic and morphometric
parameters such as L-type Ca2+ currents, left developed ventricular pressure, coronary
pressure, and changes in ventricular action potential have been evaluated [14–18].

Until now, FSN has not been explored against DOXO-induced cardiotoxicity and for its
anti-inflammatory effect. Hence, in the present study, we have aimed to evaluate FSN’s anti-
inflammatory and cardioprotective potency against DOXO-induced cardiotoxic manifestations.

2. Materials and Methods
2.1. Drugs and Chemicals

DOXO (Adriamycin) was obtained from Pfizer, New York, NY, USA. Farnesol and
Nifedipine were procured from Sigma Aldrich (St. Louis, MO, USA). ELISA kit for TNF-α,
IL-10, IL-6, IL-1β were procured from Krishgen Biosystems, Mumbai, India. All other
chemicals and reagents used in the experiment were of analytical grade.

2.2. Animals

42 Wistar albino rats were obtained from a reliable animal facility for experimental
animals in Abha, Saudi Arabia. Najran University’s Scientific Ethical Committee approved
the project, and a certificate of ethics approval was granted with the reference number:
443-42-59216-DS. All investigations were carried out in conformity with internationally
established standards for the ethical treatment of animals (National Institutes of Health
Publications No. 8023, revised 1978). Animals were kept in an animal house facility
maintained at 25 ± 2 ◦C and with a 12-h dark-light cycle. Animals were fed with rat feed and
water ad libitum. Rats were kept in the animal house for two weeks before experiments.

2.3. Dosing Paradigm

Thirty-five male Wistar rats (180–200 g) were divided into 5 groups (n = 7). The
different groups received the treatment as follows:

Group I (control): normal saline, p.o. Daily for 14 days.
Group II (TOXIC): DOXO 2.4 mg/kg, i.p, thrice weekly for 2 weeks.
Group III: FSN 100 mg/kg, p.o. daily for 14 days + DOXO, similar to Group II
Group IV: FSN 200 mg/kg, p.o. daily for 14 days + DOXO, similar to Group II
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Group V (Standard): nifedipine 10 mg/kg, p.o. Daily for 14 days + DOXO, similar to Group
II. The graphical presentation of the treatment protocol is shown in Figure 1 [15,17].
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Figure 1. Showing the experimental design used in the study.

2.4. Serum and Tissue Preparation

On day 14, before sacrifice, animals were accurately weighed and anesthetized using
a mixture of ketamine and xylazine (100 mg/kg and 10 mg/kg, respectively). Blood was
collected by the cardiac puncture method. Collected blood was centrifuged at 3000 rpm
for 10 min, and serum was obtained and stored at −80 ◦C for biochemical analysis. Later,
animals were sacrificed using the carbon dioxide euthanasia method, and the animal hearts
from all the groups were removed, washed with ice-cold water, and weighed. Sections of
the heart were cut and stored in formalin for biochemical analysis, whereas the remaining
part was stored for histopathological analysis. Tissues of the heart were cut into two
transverse sections. The basal part was frozen using dry ice. Later, this section was
used for tissue homogenization using 0.1 M phosphate buffered saline at a pH of 7.4 and
processed in the liquid processor with high-intensity ultrasonic waves. These mixtures
were further centrifuged at 4 ◦C, and the supernatant obtained was used to determine the
tissue markers [19,20].

2.5. Estimation of the Markers of Oxidative and Nitrative Stress

Markers for oxidative stress were estimated in the cardiac tissue. The level of lipid
peroxidation was evaluated according to the method of Okhawa et al., 1979, in which
the malondialdehyde (MDA) level signifies the extent of lipid peroxidation [21]. For this,
tissue homogenates were centrifuged, and the obtained supernatant was adequately mixed
with the Tris-HCL and incubated for 120 min. The resulting mixture was centrifuged at
1000 rpm for 10 min, and further trichloroacetic acid (10%) was mixed into it; absorbance
was recorded at 540 nm and represented as MDA/mg protein [22]. The enzymatic activity of
superoxide dismutase (SOD) was evaluated according to the previously published method
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by Marklund and Marklund, 1974 [23]. For this, the obtained supernatant was mixed with
Tris-HCL and pyrogallol, and the absorbance was recorded at 420 nm. SOD activity was
expressed as U/mg protein [24]. Catalase (CAT) activity was evaluated according to the
previously mentioned method, and the absorbance was recorded at 240 nm; values were
expressed as nmol H2O2/min/mg protein [25]. The activity of glutathione (GSH) was
estimated according to the method of Sadlak and Lindsay, 1968, and the absorbance was
recorded at 412 nm; values were expressed as µmol/mg of protein [25,26].

2.6. Estimation of Cardiac Injury Markers (LDH, CK-MB, BNPc, cTn-T and AST, ALT)

Markers of cardiac injury were estimated by determining the serum level of lactate
dehydrogenase (LDH), creatine kinase-MB (CK-MB), cardiac Troponin-T (cTn-T), B-type
natriuretic peptide (BNP), aspartate aminotransferase (AST), and alanine transaminase
(ALT) on day 14 with the help of standard assay kits using the auto analyzer and as per
the manufacturer’s instructions; the measured values were presented in IU/L. Specific
biomarkers of cardiac injury, such as cardiac troponin-I and T serum levels, were mea-
sured by ELISA kits purchased from Krishgen Biosystems, Mumbai, India. Values were
represented in ng/mL [27].

2.7. Examination of Cardiac TNF-α, IL-6, IL-10, and IL-1β Levels

Inflammatory markers were measured with the help of commercial kits based on
enzyme-linked immune sorbent assay (ELISA). TNF-α, IL-6, IL-10, and IL-1β levels in the
heart tissue were estimated using an ELISA kit for rats. Additionally, the level of nitric
oxide (NO) activity in the heart tissue was also determined using an ELISA kit for rats [28].

2.8. Cardiac Apoptosis Examination

The activity of caspase-3 was assessed using ELISA kits for rats procured from Krish-
gen Biosystems, Mumbai, India, and performed as per the manufacturer’s instructions [28].

2.9. Histopathological Assessment

The tissue sections were fixed for 48 h in 10% neutral buffer formalin. These samples
were dehydrated by passing alcohol, cleared with xylene to eliminate alcohol, and finally
fixed and hardened in paraffin. Later these blocks were cut into thin 5-µM sections with a
microtome and then allowed to float in a water bath. These floating sections were mounted
onto microscope slides, air dried at 60 ◦C for 20 min in an oven, and stained with H&E
(hematoxylin-eosin) dye to examine any histopathological changes using light microscopy
(Olympus CX31) [28].

3. Statistical Analysis

One-way ANOVA (Tukey’s multiple comparison test) was used for the statistical
analysis. p < 0.05 was considered significant. Values were presented as Mean ± SEM of
different groups.

4. Results
4.1. Effect of FSN on DOXO-Induced Change in Body and Heart Weight

Administration of DOXO (TOXIC group) caused a significant reduction in body weight
and increment in heart weight and ratio of HW/BW compared to the control group, which
signifies cardiac hypertrophy. When the animals were treated with FSN 100 and 200 mg/kg,
p.o, a dose of 200 mg/kg, p.o showed a reversal in the change in body weight and heart
weight and the ratio of HW/BW as compared to DOXO. Moreover, animals treated with
the standard (NIFI 10 mg) fully reversed the HW/BW ratio towards normal, as shown in
Table 1.
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Table 1. Showing the effect of FSN on DOXO-induced change in HW/BW ratio.

Groups Body Weight (in g) Heart Weight (in mg) HW/BW (mg/g)

Control 253.5 ± 4.12 839.9 ± 7.16 3.31 ± 0.04

TOXIC 230 ± 4.85 974.7 ± 5.34 *** 4.23 ± 0.03

FSN 100 248.3 ± 4.82 963.5 ± 7.12 ns 3.88 ± 0.02

FSN 200 241.7 ± 3.07 855.4 ± 6.64 ### 3.53 ± 0.02

NIFI 10 245 ± 2.58 833.2 ± 2.18 ### 3.39 ± 0.03

FSN; farnesol, NIFI; Nifedipine. *** p < 0.001 compared to normal control group; ### p < 0.001 compared to TOXIC
group. ns is non-significant versus TOXIC.

4.2. Effect of FSN on DOXO-Induced Cardiac Injury Markers (LDH, CK-MB, cTn-T, and BNP)

Administration of DOXO caused a significant (p < 0.001) elevation in the level of
cardiac-specific markers, and thus validated cardiac injury as compared to the control
group. When the animals were treated with FSN 100, the levels of CK-MB and LDH showed
a significant reduction, whereas a nonsignificant effect was observed against cTn-T and BNP.
Similarly, treatment with FSN 200 and NIFI 10 significantly reduced CK-MB, LDH, cTn-T,
and BNP levels. Moreover, when we compared the effect between FSN 100 and FSN 200,
a significant difference was observed for LDH, CK-MB, and cTnT, whereas no significant
difference was observed for BNP. However, upon comparing the cardioprotective effect
of FSN 200 and NIFI 10, NIFI 10 showed numerically higher cardioprotection, as shown
in Figure 2. Notably, FSN 200 per se showed similar changes in the level of cardiac injury
markers, as exhibited by the control group. Hence, the safety of FSN 200 was also validated.
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Molecules 2022, 27, 8589 6 of 13

4.3. Effect of FSN on DOXO-Induced Cardiac Injury Markers (ALT and AST)

The administration of DOXO caused a significant elevation in ALT and AST levels
compared to the control group. When the animals were treated with FSN 100, ALT and AST
levels showed mild reduction compared to the DOXO-treated group. Similarly, treatment
with FSN 200 and NIFI 10 significantly reduced ALT and AST levels. Upon comparing
the cardioprotective effect of FSN 200 and NIFI 10, NIFI 10 showed numerically higher
cardioprotection, as shown in Figure 3. Moreover, when we compared the effect between
FSN 100 and FSN 200, a significant difference was observed for ALT, whereas no significant
difference was observed for AST. Notably, FSN 200 per se showed a similar change in the
level of liver injury markers, as exhibited by the control group. Hence, the safety of FSN
200 was also validated.
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4.4. Effect of FSN on DOXO-Induced Oxidative and Nitrative Stress

Administration of DOXO caused a significant elevation in the level of TBARS and
NO, whereas, it reduced the enzymatic activity of SOD, CAT, and antioxidant level of
GSH compared to the control group and hence showed oxidative and nitrative stress.
When the animals were treated with FSN 100, no significant difference in the level of
TBARS, and a mild reduction in the level of NO and elevation in the enzymatic activity of
CAT, were observed compared to the DOXO-treated group. However, FSN 100 showed
a mild increment in the enzymatic activity of SOD and level of GSH as compared to the
DOXO-treated group. However, treatment with FSN 200 and NIFI 10 showed a significant
reduction in MDA, TBARS, and NO levels. It reversed the enzymatic activity of SOD, CAT,
and antioxidant levels of GSH towards normal. Moreover, when we compared the effect
between FSN 100 and FSN 200, a significant difference was observed for SOD, CAT, GSH,
TBARS, and NO. However, upon comparing the antioxidant potential and cardioprotective
effect of FSN 200 and NIFI 10, FSN 200 showed a numerically higher antioxidant effect,
as shown in Figure 4. Notably, FSN 200 per se showed a similar change in the markers
of oxidative stress, as exhibited by the control group. Hence, the safety of FSN 200 was
also validated.

4.5. Effect of FSN on DOXO-Induced Cardiac Inflammation and Apoptosis

Administration of DOXO caused a significant elevation in the level of proinflamma-
tory cytokines (TNF-α, IL-6, and IL-1β), whereas it reduced the level of anti-inflammatory
cytokines (IL-10) when compared to the control group and hence showed cardiac inflamma-
tion. Similarly, DOXO treatment showed an increased level of caspase-3 compared to the
control group and the cardiac apoptosis that cumulatively led to cardiotoxic manifestations.
When the animals were treated with FSN 100, a mild reduction in the level of TNF-α was
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found, whereas no significant difference in the level of IL-6, IL-1β, IL-10, and caspase-3
was found compared to the DOXO-treated group. However, treatment with FSN 200 and
NIFI 10 showed a significant reduction in the level of TNF-α, IL-6, IL-1β, and caspase-3
and an increased level of IL-10. However, upon comparing the anti-inflammatory and
cardioprotective effects of FSN 200 and NIFI 10, FSN 200 showed numerically higher
anti-inflammatory effects, as shown in Figure 5. When we compared the effect between
FSN 100 and FSN 200, a significant difference was observed for TNF-α, IL-6, IL-1β, IL-10,
and caspase-3. Notably, FSN 200 per se showed similar changes in the level of cardiac
inflammation and apoptosis markers, as exhibited by the control group. Hence, the safety
of FSN 200 was also validated.
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oxide dismutase (SOD) (A), Catalase (B), glutathione (GSH) (C), malondialdehyde (MDA) (D) and ni-
tric oxide (NO) (E). ### p < 0.001 significant versus control; * p < 0.05, ** p < 0.01, *** p < 0.001 significant
versus TOXIC, and ns is non-significant versus TOXIC.

4.6. Effect of FSN on DOXO-Induced Histopathological Aberrations

Based on the histopathological analysis, the normal control group showed well-
organized myocardial tissue with no sign of cellular integration, pyknosis, hemorrhage, or
macrophagic/lymphocytic infiltrate. However, in the DOXO-treated group (TOXIC), my-
ocardial disintegration, pyknotic nucleus, and damaged cellular architecture were found.
Treatment with FSN 100 showed no significant improvement against DOXO-induced
structural damage. In contrast, FSN 200 and NIFI 10 considerably reversed the histomor-
phological aberrations towards normal and showed a cardioprotective effect, as shown
in Figure 6. Notably, FSN 200 per se showed similar histopathological attributes as those
exhibited by the control group. Hence, the safety of FSN 200 was also validated.
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5. Discussion

Based on the recently published evidence, the incidence and prevalence of cancer
are increasing exponentially, and so is the use of various chemotherapeutic drugs [29].
DOXO is an extensively used anticancer drug that has significantly increased patients’
survival duration. However, cardiotoxic manifestation as a side effect of DOXO is a major
limitation of its use. Scientific evidence has shown acute and chronic cardiotoxicity caused
by DOXO [3,4]. Thus, the FDA has approved dexrazoxane as an adjuvant to prevent
DOXO-induced cardiotoxicity [30]. However, apart from this adjuvant, no other drug is
available to take care of this situation.

Moreover, in recent times, natural bioactive compound use has increased extensively
because of its multifactorial mechanisms of action [31–33]. Thus, various attempts are being
made to explore natural products’ cardioprotective potency so that they can be used as
an adjuvant. In line with that, we have explored the cardioprotective potential of FSN
against DOXO-induced cardiotoxic manifestations. Since DOXO causes significant cardiac
inflammation and apoptosis, we tried to generate scientific evidence of FSN for its cardio-
protective potential. Data from this study proved that treatment with FSN ameliorated the
cardiac injury induced by DOXO, reduced inflammation and apoptosis, and restored the
antioxidant capacity, pointing toward the protective effects of FSN against DOXO-induced
cardiac injury [15–18]. This study highlights the therapeutic advantages of FSN when it
will be combined with DOXO-like anticancer agents.

In the current study, treatment with DOXO for 14 days induced an increase in heart
weight as well as HW/BW ratio. The increase in heart weight may be attributed to the en-
larged, dilated, and hypertrophic atrium and ventricles [34–38]. After 14 days of treatment
with FSN, results proved that FSN partly or fully inhibited the tissue apoptosis/necrosis
process, thus preventing myofibrillar and cardiomyocyte loss and ameliorating the increase
of the heart weight (Table 1). Our findings corroborate with the findings of de Souza et al.,
2020, who reported that FSN significantly reversed isoproterenol-induced pathological
cardiac hypertrophy in rats [14].

Specific and non-specific markers of cardiac injuries, such as LDH, CK-MB, cTn-I, BNP,
and cTn-T, are released from the cardiac tissue when myocardial cells become damaged
due to necrosis and the permeability of the cell membrane increases. Because cardiac
tissue damage happens in response to toxic exposure, these enzymes enter the bloodstream,
thus increasing their concentration in the serum [8,39]. Thus, serum enzymes such as
CK-MB, BNP AST, ALT, and LDH are known and well-validated diagnostic markers for
cardiotoxicity [38]. Troponin-T and Troponin-I are cardiac-specific troponins involved in
myocardial cell injury [40]. In the current study, increased expression of ALT, AST, CK-MB,
LDH, and increased levels of cTnT and cTnI were seen in the DOXO treatment group.
When animals were treated with FSN, a dose-dependent reduction in the serum level of
these cardiac injury markers was found, which signifies the cardioprotective potential of
FSN. We thus concluded that a decrease in the activity of these enzymes was noted in test
group animals (FSN-treated) which caused a reduction in the myocardial damage induced
by DOXO, thus restricting the leakage of enzymes into the bloodstream; this proves the
protective effect of FSN on myocardial tissues.

The cardiotoxic role of persistent oxidative and nitrative stress is well-established in
various preclinical and clinical studies. Several cardiotoxic agents exhibit cardiotoxicity via
inducing oxidative and nitrative stress, whereas cardioprotective agents showed its effect
via scavenging these free radicals [41–43]. Considering these facts, in the present study,
DOXO administration caused a significant increase in lipid peroxidation, exhibited by
distinct elevations of TBARS, along with an increase in the level of NO [42]. Increased ROS
have been reported to cause oxidation of myocardial lipid component that results in the
increased level of TBARS. Increased TBARS on the one hand aggravates the ROS production,
whereas on the other hand it increases the production of proinflammatory cytokines such
as COX-2, TNFα, and IL-6, to name a few [44,45]. Moreover, DOXO administration also
reduced the enzymatic activity of SOD, CAT, and antioxidant level of GSH that further
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aggravates oxidative stress [42]. When the animals were treated with FSN 100, FSN 200,
and NIFI 10, FSN 200 showed the most potent antioxidant activity, followed by the NIFI 10.
In contrast, FSN 100 failed to reverse the derailed level of MDA, NO, and other antioxidant
enzymes to normal.

Apart from cardiac oxidative stress, cardiac tissue inflammation exhibited by DOXO
is yet another major pathological attribute that leads to cardiotoxic manifestations [46].
DOXO administration leads to an increase in NF-κB expression and stimulates its nuclear
translocation. Mechanistically, exposure of DOXO directly or DOXO-induced oxidative
causes phosphorylation of iκB that withdraws the inhibitory action from NFκB for nuclear
translocation, hence causingNFκB to undergo nuclear translocation. In the nucleus, it binds
on the specific DNA sequence and regulates the transcription of various pro-inflammatory
cytokines [47], such as TNF-α, IL-1β, and IL-6 [8,48]. Moreover, DOXO-induced oxidative
stress and increased lipid peroxidation trigger the inflammatory reaction and cause acti-
vation of proinflammatory cytokines [8]. Apart from modulation of cytokine production,
DOXO administration also increases the activity of transforming growth factor beta (TGF-β)
and p38 mitogen-activated protein kinases, and affects nuclear factor erythroid 2–related
factor 2, heme oxygenase–1 pathways, and cJUN pathways, leading to cardiotoxic mani-
festations. FSN possesses strong antioxidant and anti-inflammatory potential in various
published reports [49]. Considering these facts, in the present study, DOXO administra-
tion caused a significant increase in the level of proinflammatory cytokines. When the
animals were treated with FSN 100, FSN 200, and NIFI 10, FSN 200 showed the most potent
anti-inflammatory activity, followed by NIFI 10. In contrast, FSN 100 failed to reverse the
derailed cardiac inflammation toward normal.

One of the mechanisms of DOXO-induced cardiotoxicity is stimulation of cardiomy-
ocyte apoptosis via the activation of caspase-3 [50]. The mechanism of cardiac apoptosis is
the direct consequence of DOXO and the indirect effect of DOXO-mediated oxidative stress
and inflammation [50]. Mechanistically, exposure to DOXO directly or indirectly causes
DOXO-induced oxidative stress and inflammation, which affects the calcium homeostasis
via endoplasmic reticulum and mitochondrial stress. This leads to increase levels of calcium
that damage the mitochondrial membrane integrity, followed by the discrete release of
cytochrome C. Increased cytochrome C then regulates the formation of caspase-3 via apop-
tosome and ultimately causes myocardial apoptosis [51–53]. According to previous reports,
FSN has shown modulation of calcium homeostasis leading to cardioprotection. Thus,
in our present study, we also evaluated the antiapoptotic potential of FSN. A significant
elevation in the level of caspase-3 was found and confirmed the DOXO-mediated apoptosis.
When the animals were treated with FSN 100, FSN 200, and NIFI 10, FSN 200 showed the
most potent antiapoptotic activity, followed by the NIFI 10. In contrast, FSN 100 failed
to reverse the myocardial apoptosis towards normal. These findings are consistent with
the previous reports that FSN decreased the ERK1/2, Bax, and caspase-3 activation and
increased AKT and Bcl-2 protein expression, which could be associated both with the
pathological cardiac remodeling and with cardioprotection [11–14].

Histopathological aberrations are always considered concrete evidence of cardiac
toxicity [54]. Two weeks of DOXO treatment caused the myofibrillar loss, perinuclear
vacuolization, myocardial swelling, and disarray of myocardial fibers with cytoplasmic
vacuolization. These histopathological damages were significantly reversed with the FSN
200 and NIFI 10, thus restoring the structural integrity of the cardiomyocytes.

6. Conclusions

In summary, the results of this study showed that oral administration of FSN for
a duration of 14 days decreased the extent of oxidative stress and nitrative stress and
reduced the extent of myocardial damage via reducing the serum level of cardiac injury
markers. Moreover, FSN treatment exhibited potent anti-inflammatory and anti-apoptotic
effects, thus reversing the histopathological injury caused by DOXO. Meanwhile, FSN
100 showed negligible or mild cardioprotection compared to the FSN 200 and NIFI 10.
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The explanation for this could be the pharmacokinetic limitation of FSN, which failed
to achieve the therapeutic window at the lower dose. Thus, based on the outcome of
the present study, we conclude that FSN could be a potent cardioprotective agent, but
pharmacokinetic limitations should be considered before bringing this agent from the bench
to the bedside. We further suggest exploring the cardioprotective activity of FSN 100 in a
nano carrier-based drug delivery system so that the existing pharmacokinetic limitations
can be overcome and the maximum pharmacological effect can be obtained at a much
lower dose.
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