
Citation: Zheng, Q.; Yang, R.; Ni, X.;

Yang, S.; Xiong, L.; Yan, D.; Xia, L.;

Yuan, J.; Wang, J.; Jiao, P.; et al.

Accurate Diagnosis and Survival

Prediction of Bladder Cancer Using

Deep Learning on Histological Slides.

Cancers 2022, 14, 5807. https://

doi.org/10.3390/cancers14235807

Academic Editor: Emiel A.M.

Janssen

Received: 26 October 2022

Accepted: 22 November 2022

Published: 25 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Accurate Diagnosis and Survival Prediction of Bladder Cancer
Using Deep Learning on Histological Slides
Qingyuan Zheng 1,2,† , Rui Yang 1,2,†, Xinmiao Ni 1,2, Song Yang 1,2, Lin Xiong 3, Dandan Yan 3, Lingli Xia 3,
Jingping Yuan 3, Jingsong Wang 1,2, Panpan Jiao 1,2, Jiejun Wu 1,2, Yiqun Hao 4, Jianguo Wang 5, Liantao Guo 6,
Zhengyu Jiang 1,2, Lei Wang 1,2, Zhiyuan Chen 1,2,* and Xiuheng Liu 1,2,*

1 Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
2 Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
3 Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
4 Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
5 Department of Hepatic-Biliary-Pancreatic Surgery, Renmin Hospital of Wuhan University,

Wuhan 430060, China
6 Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
* Correspondence: chenzhiyuan163@163.com (Z.C.); drxhliu@163.com (X.L.)
† These authors contributed equally to this work.

Simple Summary: Early diagnosis and treatment are essential to reduce the mortality rate of bladder
cancer. However, current techniques of diagnosis are susceptible to pathologist variability, and
histopathological prognostic methods are insufficient to cover all features of muscle-invasive bladder
cancer. In this work, we developed weakly supervised models based on deep learning for the
diagnosis of bladder cancer and prediction of overall survival in muscle-invasive bladder cancer
patients using whole slide digitized histological images in two cohorts. Encouragingly, results showed
that our models can not only assist clinicians in the accurate diagnosis of bladder cancer, but also
facilitate differential risk stratification in patients with muscle-invasive bladder cancer and improve
personalized treatment decisions accordingly. Furthermore, the regions most relevant for diagnosis or
prognosis can be further analyzed to increase the amount of information extracted from pathological
images. Finally, we identified six genes closely related to cancer progression based on the predicted
risk scores, which potentially led to new biomarker discoveries.

Abstract: (1) Background: Early diagnosis and treatment are essential to reduce the mortality rate of
bladder cancer (BLCA). We aimed to develop deep learning (DL)-based weakly supervised models
for the diagnosis of BLCA and prediction of overall survival (OS) in muscle-invasive bladder cancer
(MIBC) patients using whole slide digitized histological images (WSIs). (2) Methods: Diagnostic
and prognostic models were developed using 926 WSIs of 412 BLCA patients from The Cancer
Genome Atlas cohort. We collected 250 WSIs of 150 BLCA patients from the Renmin Hospital of
Wuhan University cohort for external validation of the models. Two DL models were developed:
a BLCA diagnostic model (named BlcaMIL) and an MIBC prognostic model (named MibcMLP).
(3) Results: The BlcaMIL model identified BLCA with accuracy 0.987 in the external validation
set, comparable to that of expert uropathologists and outperforming a junior pathologist. The
C-index values for the MibcMLP model on the internal and external validation sets were 0.631
and 0.622, respectively. The risk score predicted by MibcMLP was a strong predictor independent
of existing clinical or histopathologic indicators, as demonstrated by univariate Cox (HR = 2.390,
p < 0.0001) and multivariate Cox (HR = 2.414, p < 0.0001) analyses. The interpretability of DL
models can help in the analysis of critical regions associated with tumors to enrich the information
obtained from WSIs. Furthermore, the expression of six genes (ANAPC7, MAPKAPK5, COX19,
LINC01106, AL161431.1 and MYO16-AS1) was significantly associated with MibcMLP-predicted risk
scores, revealing possible potential biological correlations. (4) Conclusions: Our study developed
DL models for accurately diagnosing BLCA and predicting OS in MIBC patients, which will help
promote the precise pathological diagnosis of BLCA and risk stratification of MIBC to improve clinical
treatment decisions.
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1. Introduction

Bladder cancer (BLCA) is one of the most common tumors worldwide, with approx-
imately 573,000 new cases and 213,000 deaths in 2020 [1]. According to the IDENTIFY
study, the largest international prospective study of patients with suspected urinary tract
cancer, BLCA is the most prevalent cancer diagnosis in patients with hematuria [2]. The
five-year survival rate for patients with non-muscle-invasive bladder cancer (NMIBC) is es-
timated to be around 90%, but the five-year survival rate for patients with muscle-invasive
bladder cancer (MIBC) decreases dramatically as the tumor invades different layers of the
bladder [3]. Recently, the IDENTIFY study presents a multivariable prediction model for
the detection of urinary tract cancers, which assists clinicians in early risk assessment, but
only in patients with hematuria [4]. Despite the advances in surgery and other diagnosis
and treatment techniques over the past 30 years, clinical outcomes of BLCA have not
substantially improved [5]. Given that early detection, accurate diagnosis, and appropri-
ate therapeutic intervention are critical for reducing the mortality of BLCA, precise and
consistently effective methods of pathologic assessment are essential.

Currently, the diagnosis of BLCA is carried out by pathologists through biopsy, which
serves as the gold standard. This typically requires pathologists to manually review each
pathological slide and rely on personal expertise to make an accurate diagnosis. Such
manual analysis is not only time-consuming, labor-intensive, and tedious, but is also
subject to observer variability. Moreover, the shortage of expert pathologists has become a
global problem, which, to a certain extent, causes an increase in the workload of available
pathologists [6]. Hence, it is necessary to develop a convenient, efficient, and accurate
method to diagnose BLCA using pathological slide images.

The pathological type of BLCA can be low-grade or high-grade; high-grade BLCA
should be treated more aggressively and is more likely to result in death [7]. It turns out
that in most human cancers, including BLCA, prognosis is closely related to pathological
criteria [8]. Histopathological classification through the tumor-node-metastasis (TNM)
staging system jointly developed and established by the American Joint Committee on
Cancer (AJCC) and the Union International Committee on Cancer has some prognostic and
therapeutic value, but is insufficient to cover all clinical characteristics of BLCA patients
and the heterogeneity of patient outcomes [9]. Furthermore, risk stratification relying
on histopathological staging is susceptible to variability in observation and judgment
among pathologists. Accordingly, there is an urgent need to develop robust and repro-
ducible methods to identify predictive markers consistently associated with survival in
MIBC patients.

In recent years, the use of artificial intelligence has been greatly beneficial in pathology
and has tremendously facilitated the growth of digital pathology. The advent of deep
learning (DL) and the availability of thousands of digitized whole slide images (WSIs) may
provide new opportunities for the diagnosis and prediction of disease outcomes [10]. DL
can adaptively extract relevant image features according to learning objectives for tasks
such as classification, segmentation, and detection [11–13]. It has been reported that an
algorithm based on DL can identify bladder tumors with a specificity of up to 98.6% [14].
A previous study [15] used DL to successfully predict the molecular subtypes of MIBC by
processing hematoxylin and eosin (H&E) slides with a similar or superior performance
compared to that of pathologists.

There is growing evidence [16–19] indicating that automated analysis of WSIs can
improve disease diagnosis and prognosis prediction, thereby enhancing treatment options
and maximizing efficacy. To solve the time-consuming and laborious problem of man-
ual annotation, unsupervised or weakly supervised DL models are gaining popularity.
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Courtiol et al. [20,21] used DL to develop models that could accurately predict patient
survival in hepatocellular carcinoma and mesothelioma, respectively, without the need
for local annotated regions provided by any pathologist. Lu et al. [22] reported an in-
terpretable weakly supervised DL method for binary and multi-class WSI classification
using only slide-level labels without any additional manual annotations. Furthermore, DL
has been shown to predict the expression of differential genes or molecular biomarkers
from pathological images of BLCA, such as PD-L1 [23] and FGFR [24,25], which is cheaper,
more effective, and more robust than next-generation sequencing or immunohistochemical
staining methods. Therefore, a possible solution is to utilize DL to extract potential clinical
and/or biological information in WSIs for diagnosis and prediction of overall survival (OS)
in MIBC patients.

In this study, we developed a DL-based diagnostic model for BLCA patients and
a prognostic model for MIBC patients, named BlcaMIL and MibcMLP, respectively, and
demonstrated their effectiveness in tumor diagnosis and prognosis prediction on two
cohorts. The results showed that BlcaMIL can accurately distinguish between tumor and
normal tissues, and MibcMLP is more accurate than the use of most clinical information
and pathological features in predicting the OS in MIBC patients. By visualizing the region
of interest (ROI), it is possible to gain insights into the most relevant features of DL-models
for diagnosing and predicting patient outcomes.

2. Materials and Methods
2.1. Patient Cohorts

We retrospectively analyzed two cohorts of BLCA patients for this study. The first
cohort was from The Cancer Genome Atlas (TCGA) public dataset consisting of a total of
926 H&E-stained WSIs from 412 BLCA patients, of which 887 were tumor and 39 were
normal. Given that the uneven distribution of tumor and normal images in TCGA cohort,
the data augmentation technique was used to address this imbalance issue. An independent
external dataset was obtained from the Renmin Hospital of Wuhan University (RHWU;
Wuhan, Hubei, China) comprising 250 H&E-stained WSIs obtained from 150 BLCA patients
from 2017 to 2022, of which 150 were tumor and 100 were normal.

For the development of diagnostic model, the inclusion criteria for both cohorts
were (a) specific pathological diagnosis of BLCA and (b) availability of clear H&E-stained
pathological slides.

The TCGA cohort provides two types of H&E-stained WSIs: tissue slides and diag-
nostic slides. Tissue slides are sections of frozen tumor specimens that are often used
to determine whether tumor boundaries are clean. Diagnostic slides are formalin-fixed
paraffin-embedded sections, which generally preserve cell morphology better and are more
situable for computational analysis.

We adopted the following inclusion criteria for developing the prognostic model
once the criteria for the diagnostic model were met: (a) availability of clinicopathological
information, (b) availability of follow-up data, (c) specific pathological diagnosis of MIBC
and (d) use of diagnostic slides rather than tissue slides.

In addition, we collected the corresponding clinical data as well as biological and
pathological characteristics of the patients (including age, gender, lymphovascular invasion,
tumor size, OS, survival status, pathological grade and TNM staging (according to AJCC 8th
Edition Staging Manual [26]) for survival analysis of the prognostic model. The patient data
for the TCGA cohort were collected through the UCSC Xena database (https://xenabrowser.
net/datapages/, accessed on 22 October 2022), and patient data for the RHWU cohort were
obtained through the hospital information management system.

2.2. WSI Preprocessing

The WSIs from the two cohorts had different magnifications. Specifically, WSIs from
the TCGA cohort had an original magnification of 40× (without fixed size, the image size
could be larger than 100,000 × 100,000 pixels), whereas those from the RHWU cohort

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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had an original magnification of 20× (64,000 × 58,000 pixels). Therefore, we uniformly
processed these WSIs to 20×magnification and used the resulting WSIs in the next step.

Since the WSIs contained extremely rich content (up to a resolution of 100,000× 100,000 pixels)
and could not be directly used for model training, they were pre-processed first. We
loaded WSIs at 10× magnification (0.5 µm/pixel), segmented out tissue regions using
an area threshold filtering-based approach, and then used the openslide-python toolkit
(https://openslide.org/, accessed on 22 October 2022) to divide WSIs into small images
of the same fixed-out size (448 × 448 pixels), each of which is called a patch. Each patch
had to contain 80% of the tissues to be included, and had the same label as the pathological
diagnosis of the WSI itself. A color threshold was used to exclude possible background
images from patches. Due to the heterogeneity in staining protocols used to obtain the
WSIs by different centers, we unified the colors of all patches using the structure-preserving
color normalization method proposed by Vahadane [27] and Anand [28].

2.3. Feature Extraction and Reduction

We used Resnet-50 to extract 2048 relevant features for each patch. The network was
pre-trained on the ImageNet dataset (over one million images) and had been shown to
accurately identify over a thousand categories [29]. At that point, we had constructed a
2000 × 2048 vector for each WSI. Because the data dimensions were too high and prone
to overfitting during model training, we used the trained autoencoder for dimensionality
reduction. This autoencoder included a hidden layer of 512 neurons, which reduced the
input dimension of the prediction part from 2048 to 512 to avoid potential problems of
overfitting, long processing time, and heavy usage of computational memory. We randomly
selected 200 patches (66,000 patches in total) from each WSI to train the autoencoder, and
the MSE loss was reduced to 0.0052 after 100 epochs.

2.4. Development of Diagnostic Model

BlcaMIL is an end-to-end weakly supervised neural network, which combines the
attention strategy with multiple instance learning (MIL) algorithm, and can be used for the
task of binary classification of the entire WSI. The theoretical basis of the MIL algorithm is
that, assuming a WSI is a bag, then all patches it contained are instances of the bag. When a
WSI is marked positive, at least one patch is positive; when a WSI is marked negative, then
all patches are negative. Based on the assumptions of the MIL algorithm, which had been
widely used for weakly supervised positive/negative binary classification, we added an
additional attention mechanism to it.

During training and inference, the attention network in the BlcaMIL assigned an
attention score to each patch, representing its importance to the overall WSI classification.
We input the extracted patch-level features into the BlcaMIL, and aggregated them into a
WSI-level representation through an average pooling function, which was used to predict
the probability score for the final diagnosis.

2.5. Development of Prognostic Model

MibcMLP is also a weakly supervised neural network consisting of a two-step algo-
rithm. To generate a risk score for each patch, we used a one-dimensional dense layer. The
dense layer was composed of 512 neurons. The 512 features extracted from each patch
were weighted and summed (the weights were obtained after model learning), and the risk
score was calculated. Subsequently, we sorted the risk scores of the 2000 patches, selected
the 25 highest and 25 lowest scoring patches, formed a vector of size 50, and used it as the
input for the final step. This operation allowed us to clearly understand which patches
were finally used as input for the risk prediction step, thereby facilitating subsequent
interpretation of the ROIs for the DL-model.

The final step was a multilayer perceptron consisting of two fully connected layers
with 200 and 100 neurons, each with a sigmoid activation function. This was a critical step

https://openslide.org/
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in predicting the prognosis of MIBC patients, and its function was to convert the 50-patch
risk scores into a survival-related risk score that was representative of the entire WSI.

The loss functions for the diagnostic and prognostic models used smooth top1 SVM
loss and the negative log-likelihood function of the Cox proportional hazards model,
respectively. The training set was repeatedly validated using a five-fold cross-validation
strategy, using internal and external validation. The layouts of the two DL models are
shown in Figure 1.
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Figure 1. Study flow chart and the layouts of the DL models. The framework of BlcaMIL is shown in
A and B and the framework of MibcMLP is shown in A and C. (A) Each WSI was first segmented into
tissue-containing regions (green border) and empty regions inside the tissue (blue border), and then
patches with 448 × 448 pixels were generated. (B) Feature extraction was performed on all patches
using ResNet-50, and dimensionality reduction was performed with Autoencoder. Through the MIL
model with attention mechanism, the extracted patch-level features were input into the BlcaMIL
model, the attention scores of these patches were output, and the average pooling function was used
to aggregate them into the WSI-level to make the final diagnosis. Heatmaps visualize ROIs for the
model. (C) Patch-level features were fed into the network along with survival information, and each
patch was assigned a risk score through an iterative learning process. Then, the 50 patches with the
highest and lowest scores were selected to be input to the MLP model to predict patient survival.
Finally, MIBC patients were stratified using the resulting risk scores. DL, deep learning; WSI, whole
slide image; MIL, multiple instance learning; ROI, region of interest; MLP, multi-layer perceptron;
MIBC, muscle invasive bladder cancer.
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2.6. Model Interpretability and Visualization

For the interpretability of the diagnostic model, the attention scores of BlcaMIL-
predicted categories were converted to percentiles and values between 0 and 1 (1 for the
most contribution, 0 for the least). The normalized scores were then converted to RGB
colors using a divergence colormap, mapped to their corresponding spatial locations in the
WSI to generate an attention heatmap. The color red represented areas to which the neural
network paid close attention, while the color blue represented areas receiving less attention.
Furthermore, the BlcaMIL also indicated some patches with high attention scores, which
was convenient for review, and helped in understanding the ROIs of the DL-model and
explaining the tumor-related pathological features.

The interpretability of the prognostic model was high because we knew exactly which
patches were used to create the risk scores. We extracted the scores of all patches, selected
the 100 patches with the highest and 100 with the lowest scores after tiling and sorting,
and invited two expert uropathologists for the analysis of tumor-related pathological
characteristics. The uropathologists did not know the risk scores assigned to these patches
in advance, and then made statistical records of tumor-related pathological characteristics
for these 200 patches.

2.7. Statistical Analysis

The classification performance of the diagnostic model was assessed by the area under
the receiver-operator curve (AUC), as well as the accuracy, sensitivity, and specificity. A
two-sided McNemar’s test was performed to compare the differences in accuracy, sensi-
tivity, and specificity between the diagnostic model and the pathologists. Cohen’s kappa
coefficient was calculated to assess the diagnostic agreement between the diagnostic model
and the pathologists. We used Harrell’s concordance index (C-index) as an indicator to
evaluate the performance of the prognostic model in predicting OS. The Kaplan–Meier
survival curve was plotted using R software (Version 3.5.1, R Core Team, Vienna, Austria) to
evaluate the correlation between the risk scores generated by the prognostic model and the
OS of MIBC patients, and the Log-Rank test was performed. The R software package was
obtained from CRAN (https://cran.r-project.org, accessed on 22 October 2022). Pearson’s
correlation test was performed to assess the significance of the correlation between the
two covariates. Differences with p values lower than 0.05 were considered statistically
significant (two-tailed). Python (Version 3.8.13, CreateSpace, Scotts Valley, CA, USA) and
Pytroch (Version 1.10.0, Curran Associates, Inc., Vancouver, BC, Canada) were used for
model building and development.

3. Results
3.1. Patient Characteristics

After screening for the inclusion criteria of the diagnostic model, we included 412 BLCA
patients from the TCGA cohort and 150 BLCA patients from the RHWU cohort. A total of
926 WSIs from the TCGA cohort were obtained for training the BlcaMIL model. Through
data augmentation, 1627 WSIs (tumor: normal = 887:740) were finally used for the de-
velopment of the BlcaMIL model. Of those, 80% (N = 1302) were randomly selected as
the training set while the remaining 20% (N = 325) were used as the internal validation
set. 250 WSIs from the RHWU cohort were used for independent external validation. The
detailed data distribution is shown in Supplementary Table S1.

From the TCGA cohort, 326 patients were eligible according to the inclusion criteria
for the prognostic model to participate in the construction of MibcMLP. The TCGA cohort
comprised 326 WSIs, which were randomly assigned to the training set (N = 190) and
internal validation set (N = 136). The external validation set included 144 WSIs from the
RHWU cohort. Table 1 exhibits the baseline characteristics of the two cohorts used for the
prognostic model.

https://cran.r-project.org
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Table 1. Clinical, biological, and pathological features of the MIBC patients included in the prognostic
model (MibcMLP).

TCGA (N = 326) RHWU (N = 144)

Age (years) 68 (57, 79) 66 (26, 87)
Sex
female 87 (26.69%) 21 (14.58%)
male 239 (73.31%) 123 (85.42%)
pT stage
pT2 99 (30.37%) 58 (40.28%)
pT3 158 (48.47%) 67 (46.53%)
pT4 42 (12.88%) 19 (13.19%)
pTx 27 (8.28%) 0 (0%)
pN stage
pN0 179 (54.91%) 71 (49.31%)
pN1 38 (11.66%) 37 (25.69%)
pN2 67 (20.55%) 20 (13.89%)
pN3 6 (1.84%) 16 (11.11%)
pNx 36 (11.04%) 0 (0%)
pM stage
pM0 138 (42.33%) 140 (97.22%)
pM1 8 (2.45%) 4 (2.78%)
pMx 180 (55.22%) 0 (0%)
pTNM stage
Stage II 106 (32.52%) 41 (28.47%)
Stage III 104 (31.90%) 81 (56.25%)
Stage IV 115 (35.28%) 22 (15.28%)
Missing 1 (0.31%) 0 (0%)
Lymphovascular invasion
No 100 (30.67%) 91 (63.19%)
Yes 121 (37.12%) 53 (36.81%)
Missing 105 (32.21%) 0 (0%)
Survival status
Alive 180 (55.21%) 79 (54.86%)
Dead 146 (44.79%) 65 (45.14%)
OS time (months) 18.1 (0, 165.6) 16.0 (1.9, 66.0)

MIBC, Muscle-invasive bladder cancer.

3.2. Performance of the Diagnostic Model

A previous study has shown that the discriminative ability of the MIL model for
images was optimal at 10×magnification compared to other magnifications [17]. Accord-
ingly, we loaded all WSIs at 10×magnification and extracted a total of 13,115,687 patches
(448 × 448 pixels). The labels of these patches were consistent with the corresponding
WSI labels. Relevant features were extracted for each WSI using Resnet-50, a pre-trained
convolutional neural network based on ImageNet, before training the model.

In the diagnostic model, the accuracy of the training set and that of the internal
validation set were both 0.998 (AUC, 1.000). Even in the external validation set, the
generalization ability of BlcaMIL was still strong with an accuracy of 0.987 (AUC, 0.993)
(Table 2a). In addition, we invited two expert uropathologists A and B, who were chief
or associate chief uropathologists, and a junior pathologist C who was under training
to judge 250 WSIs from the external validation set. Our diagnostic model BlcaMIL was
better than that of the junior pathologist C (Accuracy = 0.876) (p < 0.0001, paired Chi-
squared test). There was no significant difference when using BlcaMIL compared to
expert uropathologist A (Accuracy = 0.991) (p > 0.05, paired Chi-squared test) or expert
uropathologist B (Accuracy = 0.993) (p > 0.05, paired Chi-squared test). Moreover, BlcaMIL
achieved decent inter-observer agreement with the expert uropathologists (kappa = 0.909
and 0.925, respectively) (Table 2b).
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Table 2. Accuracy, sensitivity, specificity, and AUC of the diagnostic model (BlcaMIL) and human pathologists.

a. Accuracy, Sensitivity, and Specificity in the Diagnostic Model (BlcaMIL)

Accuracy (95%
CI)

Sensitivity (95%
CI)

Specificity
(95% CI)

AUC
(95% CI)

Training set 0.998
(0.996, 0.999)

0.999
(0.998, 1.000)

0.998
(0.996, 0.999)

1.000
(1.000, 1.000)

Internal validation set 0.998
(0.996, 1.000)

1.000
(1.000, 1.000)

0.996
(0.992, 1.000)

1.000
(1.000, 1.000)

External validation set 0.987
(0.981, 0.994)

0.984
(0.971, 0.998)

0.986
(0.979, 0.993)

0.993
(0.990, 0.997)

b. Comparison of the BlcaMIL model and human pathologists in the external validation set

Accuracy (95% CI) Sensitivity (95%
CI)

Specificity (95%
CI) p-Value * Kappa #

BlcaMIL Model 0.987
(0.981, 0.994) 0.984 (0.971, 0.998) 0.986 (0.979, 0.993) - -

Expert Uropathologist A 0.991 (0.987, 0.995) 0.988 (0.981, 0.995) 0.996 (0.989, 1.000) 1.000 0.909
Expert Uropathologist B 0.993 (0.991, 0.995) 0.991 (0.987, 0.995) 0.996 (0.989, 1.000) 1.000 0.925

Junior Pathologist C 0.876 (0.852, 0.900) 0.834 (0.811, 0.858) 0.940 (0.904, 0.976) <0.0001 0.711

* A paired Chi-squared test (McNemar’s test) was used to examine differences in accuracy between the BlcaMIL
model and each uropathologist. # Inter-observer agreement between the BlcaMIL model and each uropathologist
assessed by the Cohen kappa coefficient. CI, Confidence Interval.

3.3. Performance of the Prognostic Model

We used the C-index metric to assess the ability of the model to predict OS. We
found that the MibcMLP model performed well on both the training set and the internal
validation set, with C-index values of 0.744 and 0.631, respectively. Based on the input
WSI, the MibcMLP model we trained was able to assign each patient a risk score. In
contrast to the classification of histopathology, the score was a continuous numerical value
rather than a discrete classification. We divided MIBC patients into high-risk and low-risk
score groups using the median risk score in the training set as a cut-off point. We then
adopted Kaplan-Meier plots and univariate and multivariate Cox models to assess the
association between the risk scores and survival outcomes in MIBC patients. In the training
set, the risk score predicted by MibcMLP was a strong predictor of OS in univariate analysis
(HR = 3.896, p < 0.001, Cox analysis; Supplementary Table S2, Supplementary Figure S1).
After retaining significant prognostic indicators in univariate analysis (pT stage, pN stage,
pM stage, pTNM stage, and Lymphovascular invasion), the risk score remained strongly
predictive in multivariate analysis (HR = 3.557, p < 0.001, Cox analysis; Supplementary
Table S2).

In the internal validation set, the MibcMLP model stratified the MIBC population
more accurately than any other clinical or pathological variable in Cox univariate analysis
(HR = 3.274, p < 0.001, Figure 2A). Even after adjusting for significant prognostic indicators
in univariate analysis (pT stage, pN stage, pM stage, and Lymphovascular invasion), the risk
score predicted survival outcomes in the multivariate analysis (HR = 3.157, p < 0.001, Cox
analysis; Figure 2C). The risk score predicted by MibcMLP had independent prognostic
value (p = 2 × 10−5, Log-rank test; Figure 2B), even between among other subgroups
(such as age, gender, pT stage, pN stage, pM stage, pTNM stage, histological grade and
lymphovascular invasion; Figure 2D–L). These results indicated that the pathological
features captured by MibcMLP were not redundant with the existing clinicopathological
features, and constituted an effective prognostic method independent of current AJCC
TNM staging.
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Figure 2. Prognostic value of MibcMLP-generated risk scores in the internal validation set. HR and
95% CI for MibcMLP and other clinicopathological features to predict survival in (A) univariate Cox
and (B) multivariate Cox analyses. MibcMLP model scores were converted to binary scores (high risk
or low risk) using the median risk score of the training set as a cut-off. K-M survival curves for (C) the
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entire internal validation set and the following subgroups: (D) age ≥70; (E) male; (F) pT stage 3–4;
(G) pN stage 0–1; (H) pN stage 2–3; (I) pTNM stage 1–2; (J) pTNM stage 3–4; (K) no lymphovascular
invasion; (L) high histologic grade. ***, p < 0.001; **, p < 0.01; *, p < 0.05; HR, hazard ratio; CI,
confidence interval.

We assessed the robustness of the MibcMLP model by testing it on an independent
RHWU cohort. A total of 144 BLCA patients met the inclusion criteria (Table 1). Of these,
65 patients died, and the OS was lower than that in the TCGA cohort (median 16.0 vs.
18.1, p = 0.330, Kruskal-Wallis nonparametric test). The following variables were collected
and included in subsequent analyses: age, gender, tumor size, pT stage, pN stage, pM
stage, pTNM stage, lymphovascular invasion and histological grade. The MibcMLP model
extracted and processed patches of 144 WSIs corresponding to 144 patients with a predicted
survival C-index of 0.622. We divided the RHWU cohort patients into subclass of high-risk
and low-risk using stratification cut-off point from the training set. The results showed that
the risk score predicted by MibcMLP was significantly better than other clinicopathological
features in the Cox univariate analysis (HR = 2.390, p < 0.001, Cox analysis; Figure 3A) and
was an independent prognostic factor (p = 1 × 10−4 Log-rank test; Figure 3B). Multivariate
Cox regression analysis showed that MibcMLP was also an independent prognostic variable
(HR = 2.414, p < 0.001, Cox analysis; Figure 3C) after adjustment for important prognostic
indicators. MibcMLP predicted survival well even after stratification for other common
clinicopathological features (such as age, gender, pT stage, pN stage, pM stage, pTNM
stage, histological grade, tumor size and lymphovascular invasion; Figure 3D–L).

3.4. Visualization of DL Models

The BlcaMIL model assigned an attention score to each patch, which represents the
degree of contribution to the prediction result. We converted the attention scores into
heatmaps to visualize the ROIs of the model. As shown in Figure 4, the high-attention areas
mostly consisted of tumor cells with a dense arrangement, hyperchromatic nuclei, and high
atypia, while the low-attention areas comprised mostly normal tissue or background. This
demonstrated a high degree of concordance with annotations of the pathologists regardless
of the pathological stage of BLCA, which was consistent with the established experience
of detecting tumor regions, in line with human pathology expertise. This simple and
intuitive interpretability and visualization technique allowed us to gain insight into the
morphological patterns predicted by the model.

For the MibcMLP model, we aggregated all patches together, obtained the risk score
of each patch through MibcMLP, picked out the patches with the highest scores (n = 100)
and the lowest scores (n = 100), and tried to interpret their histopathological features. The
patches were independently reviewed by two expert uropathologists who were unaware of
the scores assigned, and the associated pathological features were recorded. The results
showed that most of the patches associated with poor survival were mainly located in
the stromal region, not within the tumor region (ratio, low [resp. high] survival patches
in stroma = 94/100 (resp. 10/100, Chi-squared test, p = 1.4 × 10−32). Among the patho-
logical features recorded, the features most predictive of high risk were the presence of
vascular space (Chi-squared test, p = 3.1 × 10−20), high cytological atypia (Chi-squared
test, p = 4.8 × 10−34), and high nuclear pigmentation (Chi-squared test, p = 2.7 × 10−33).
The feature most predictive of low risk was immune cell infiltration (Chi-squared test,
p = 2.0 × 10−17) (Figure 5). Taken together, the above results demonstrated that the BlcaMIL
and MibcMLP models can detect histopathological features related to diagnosis and sur-
vival in BLCA.
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(A) univariate Cox and (B) multivariate Cox analyses are exhibited. Using the median risk score in
the training set as the cut-off point, (C) K-M survival curves for the entire external validation set and
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the following subgroups: (D) age ≥70; (E) male; (F) pT stage 3–4; (G) pN stage 0–1; (H) pM stage 0;
(I) pTNM stage 3–4; (J) lymphovascular invasion; (K) tumor size <5cm; (L) high histologic grade.
***, p < 0.001; **, p < 0.01; *, p < 0.05.
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Figure 4. Heatmaps of the diagnostic model on WSIs at different pathological stages. A representative
WSI for each pathological stage was annotated by a uropathologist who roughly delineated the tumor
tissue area (first column), including (A) AJCC TNM stage I, (B) stage II, (C) stage III and (D) stage IV.
The attention scores of the predicted categories of patches are calculated by the model, and the
attention heatmap corresponding to each WSI was generated and overlaid onto it (second column).
It is then further zoomed in to show the heatmap of the ROI, highlighting the tumor and normal
borders (third column). Patches with the highest attention (red border) often exhibit well-known
tumor morphology, while patches of low interest (blue border) tend to be normal tissue or background
(fourth column).

3.5. Gene Expression Correlation with Risk Scores

We obtained gene expression data of TCGA MIBC patients from the UCSC Xena
database, with up to 56,536 genes. The association between risk scores and gene ex-
pression levels in each patient was examined by Pearson correlation analysis, reveal-
ing possible potential biological correlations. The expression of six genes was signifi-
cantly associated with MibcMLP-predicted risk scores: ANAPC7 (correlation = −0.407;
Pearson’s correlation test, p = 6.9 × 10−5), MAPKAPK5 (correlation = −0.443; Pearson’s
correlation test, p = 1.2 × 10−5), COX19 (correlation = −0.412; Pearson’s correlation test,
p = 5.4 × 10−5), LINC01106 (correlation =−0.410; Pearson’s correlation test, p = 6.2× 10−5),
AL161431.1 (correlation = 0.393; Pearson correlation test, p = 3.4 × 10−4) and MYO16-AS1
(correlation = 0.497; Pearson correlation test, p = 7.1 × 10−4) (Figure 6).
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Figure 5. Representative examples of patches classified as high or low risk by the MibcMLP model.
The top 200 most predictive patches were analyzed by expert uropathologists who was unaware of
the risk scores. (A) Features predicting a high mortality risk included cellular atypia and vascular
space. (B) Features predicting a low risk of death was the presence of immune cells.
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(N = 90 samples), (C) the COX19 expression (N = 90 samples), (D) the LINC01106 expression
(N = 90 samples), (E) the Al161431.1 expression (N = 78 samples), and (F) the MYO16-AS1 expression
(N = 43 samples) available for the TCGA dataset.

4. Discussion

BLCA is a disease with complex molecular features, severe morbidity, and high mortal-
ity. Mining of potentially robust clinical and/or biological features will aid in the diagnosis
and risk stratification of BLCA patients to facilitate personalized treatment. A recent series
of studies has explored the impact of immunohistochemical assays [30], conventional serum
and histological biomarkers [31–35], and adjuvant therapy [36,37] on longitudinal monitor-
ing and prognosis definition in BLCA patients. In this study, we utilized DL to develop a
diagnostic model, BlcaMIL, and a prognostic model, MibcMLP, using WSIs for accurate
diagnosis of BLCA and prognosis prediction of MIBC patients. Encouragingly, our BlcaMIL
accurately differentiated BLCA from normal pathological images (AUC close to 1), with a
performance comparable to that of expert uropathologists and better than that of a junior
pathologist. Our MibcMLP not only had excellent performance in the training set (C-index
= 0.744) and internal validation set (C-index = 0.631), but also exhibited robust performance
on the independent external validation set (C-index = 0.622). Furthermore, univariate and
multivariate Cox analyses demonstrated that the risk score predicted by MibcMLP was
an independent prognostic factor, a beneficial complement to existing markers, and more
accurate than classical clinical, biological, and pathological features in predicting OS.

In recent years, data-driven machine learning and DL have been widely used in the
processing and analysis of medical images, providing new tools for disease diagnosis and
prognosis prediction. A novel approach combining radiomics and machine learning has
brought encouraging results in the diagnosis and prediction of urological cancers [38–40].
Previously, our team developed a DL-model based on cystoscopy for clinical real-time
recognition of bladder tumors with an accuracy comparable to that of experienced clin-
ical experts [41]. In this study, we adopted DL to analyze digitized H&E-stained BLCA
pathological images. There have been some DL studies based on WSIs where the diagnosis
and survival prognosis of tumor patients have been successfully analyzed in soft tissue
sarcoma [42], brain glioma [43], gastric cancer [17], and rectal cancer [19]. This type of
research has been emerging also in the field of BLCA. Wetteland et al. [44] proposed a
DL pipeline that identified diagnostic-relevant regions in WSI and predicted the grade.
Fuster et al. [45] analyzed pathological images of NMIBC patients and proposed a multi-
scale DL model that detected cancerous areas patterns across WSIs for accurate T1 staging.
Woerl et al. [15] successfully identified molecular subtypes of MIBC patients based on con-
volutional neural networks, and visualized the consequent ROIs. Lucas et al. [46] performed
an analysis of relapse-prone NMIBC and confirmed that using DL in conjunction with WSIs
and clinical data could improve relapse prediction in BLCA patients. However, these recent
studies did not attempt to make an accurate diagnosis using the WSIs, nor did they directly
analyze the association between WSIs and survival outcomes in MIBC patients.

An increasing number of studies have used BLCA gene expression profiling or genetic
testing approaches to predict OS in BLCA patients [47–50]. Next-generation sequencing
approaches can provide the wealth of information required to molecularly classify BLCA pa-
tients, thereby identifying potential therapeutic targets [51]. Recently, Lindskrog et al. [52]
conducted a comprehensive multi-omics analysis of 834 NMIBC patients from the URO-
MOL project. Their results demonstrated the independent prognostic value of transcrip-
tomic subtyping and chromosomal instability levels over clinicopathological features and
were confirmed in 1228 validation samples. However, implementation of these high-
throughput gene expression profiling/RNA-sequencing technologies in clinical practice
is currently hindered by high costs, the requirement of nucleic acid extraction, and issues
of standardization and reproducibility. In contrast, our diagnostic and prognostic models
require only H&E-stained digitized slide images as inputs to make a diagnosis or output a
risk score associated with survival. Such slides are readily obtained in a surgical treatment
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setting due to the abundance of histological material available during surgery. Moreover,
the collected WSIs do not require professional pathologists for the annotation of ROIs, as
the trained model can automatically identify specific regions associated with tumors in
WSIs, greatly reducing the need for pathologists, as well as lowering the time and effort
to annotate ahead of time. Furthermore, WSIs contain a wealth of potential information
that is often difficult to detect by pathologists. Traditional histological stage and patho-
logical grade prognostic methods are likely to include inter-observer variation, whereas
the DL-based method reduces human intervention and potentially improves reproducibil-
ity. Consequently, we believe that our methods are more helpful for the diagnosis and
risk prediction of BLCA patients in economically underdeveloped areas with a shortage
of pathologists.

Although DL tools have produced extremely reliable results so far, the inference
process of these models is often highly opaque, making it difficult or impossible for us, and
even for a domain expert, to understand. This so-called “black box” model undermines
the credibility of the results and limits the practical application of DL in pathology [53].
In our models, we extracted the patches that were identified as the most relevant to
diagnosis or prognosis for pathological interpretation. This transparent and interpretable
process allowed us to further submit these patches to expert uropathologists for review
and analysis. Our results indicated that histopathological features obtained by DL-models,
such as high cytological atypia and high nuclear pigmentation, are currently used features
for diagnosis and prognosis by pathologists. Moreover, the presence of vascular space is
strongly associated with high-risk patients with low OS, which is consistent with the current
findings [54]. For low-risk patches, immune cell infiltration is an extremely important
feature. The tumor microenvironment plays a crucial role in tumor progression, and
massive immune cell infiltration is often associated with molecular subtypes with better
prognosis, not only in BLCA but also in other cancers [55–57]. Therefore, we believe that
the novel features extracted by the DL-model not only enable reliable prognostic analysis of
MIBC patients, but also make essential contributions to dissect tumor molecular subtypes.

We also further investigated the association between risk scores and gene expression
levels in MIBC patients, in which ANAPC7, MAPKAPK5, COX19, and LINC01106 were
negatively correlated with predicted risk scores, and AL161431.1 and MYO16-AS1 were
positively correlated with risk scores. Previous studies have shown that these six genes
play important roles in promoting or inhibiting the occurrence and development of tumors.
ANAPC7 has been identified as a sponge of miR-373 that inhibits tumor growth in vitro
and in vivo by regulating the cell cycle [58]. MAPKAPK5 upregulation is associated with
high expression of the transcriptional regulator YAP and poor prognosis in clinical tumor
samples, and its positive regulation of YAP activity plays an important role in human
cancers [59]. COX19 may affect the assembly of cytochrome C oxidase (COX) subunits,
which in turn affects the activity of COX and apoptosis [60]. COX19 has been confirmed to
be a key factor in the inhibition of tumor cell apoptosis by microRNA-21, and inhibition
of COX19 expression may enhance apoptosis and reduce tumor cell proliferation [61].
LINC01106 has been shown to promote the progression of BLCA and its expression is
enhanced in BLCA. Knockdown of LINC01106 results in the inhibition of proliferation,
migration, and invasion of BLCA cells, making LINC01106 a potential target for the
treatment of BLCA patients [62]. AL161431.1 is a long non-coding RNA associated with
tumor hypoxia and autophagy [63,64]. It exhibits an elevated level in pancreatic cancer [65],
endometrial cancer [66] and lung cancer [67], and may promote the migration and invasion
of tumor cells. MYO16-AS1 is a strong prognostic factor in MIBC, and its upregulation is
associated with longer OS in MIBC patients, suggesting that it plays a cancer-promoting
role in MIBC [68]. Therefore, some genes closely related to the progression of MIBC
can be identified through the predicted risk score, which can provide a reference for the
development of new therapeutic targets.

There are still some limitations in our study. First, the datasets we used to train and
validate the two DL-models are not sufficiently large. Further incorporation of multicen-
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ter data to improve the generalization performance of the models will be an important
consideration in the future before the models are widely used in clinical practice. Second,
since our study is a retrospective one, our diagnostic and prognostic DL-models need to be
further validated based on prospective, randomized, multicenter clinical trial formulated
by SPIRIT-AI and CONSORT-AI [69], to improve clinicopathological information related to
treatment and prognosis [7], including variant histology, adjuvant chemotherapy, type of
surgery and comorbidities. Third, pathological slides obtained from different laboratories
show variations due to differences among labs in sample collection, fabrication techniques,
staining materials, and digital scans. Although we used a staining normalization ap-
proach and demonstrated decent performance for both models on an external validation
set, challenges related to data normalization remain. Hence, it is necessary to establish a
standardized procedure for the production of pathological slide images to improve the
quality of the dataset.

5. Conclusions

We developed weakly supervised models for diagnosing BLCA and predicting OS
based on DL using digital H&E-stained images of BLCA patients. The performance of the
diagnostic model was comparable to that of expert uropathologists, and the prognostic
model showed better prognostic value than any other clinical, biological, and patholog-
ical features. Our models can not only assist clinicians in recognizing BLCA, but also
help stratify MIBC patients and improve subsequent personalized treatment decisions.
Finally, further analysis of the critical tumor-related regions and MibcMLP-predicted risk
scores increased the amount of knowledge garnered from WSIs and potentially led to new
biomarker discoveries.
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mdpi.com/article/10.3390/cancers14235807/s1, Figure S1. Heatmaps of diagnostic model (BlcaMIL)
on WSI at different pathological stages in the RHWU cohort. A–C, pathological original images,
corresponding heatmaps and representative patches with pathological TNM stage II(A), III (B), and
IV(C) from the RHWU cohort, respectively. Figure S2. Prognostic value of MibcMLP-generated risk
scores in training set. The p-value was evaluated by Log-Rank test; Table S1a. Dataset distribution of
patients and corresponding images in the diagnostic model (BlcaMIL); Table S1b. Dataset distribution
of patients and corresponding images in the prognostic model (MibcMLP); Table S1c. Dataset
distribution of images in the training, internal validation and external validation sets. Table S2. Cox
analyses of prognostic factors in the training set.
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