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Abstract: Infant growth trajectory may influence later-life obesity. Human milk provides a wide range
of nutritional and bioactive components that are vital for infant growth. Compared to formula-fed
infants, breastfed infants are less likely to develop later-onset obesity, highlighting the potential role of
bioactive components present in human milk. Components of particular interest are the human milk
microbiota, human milk oligosaccharides (HMOs), short-chain fatty acids (SCFAs), and antimicrobial
proteins, each of which influence the infant gut microbiome, which in turn has been associated with
infant body composition. SCFAs and antimicrobial proteins from human milk may also systemically
influence infant metabolism. Although inconsistent, multiple studies have reported associations
between HMOs and infant growth, while studies on other bioactive components in relation to infant
growth are sparse. Moreover, these microbiome-related components may interact with each other
within the mammary gland. Here, we review the evidence around the impact of human milk microbes,
HMOs, SCFAs, and antimicrobial proteins on infant growth. Breastfeeding is a unique window of
opportunity to promote optimal infant growth, with aberrant growth trajectories potentially creating
short- and long-term public health burdens. Therefore, it is important to understand how bioactive
components of human milk influence infant growth.

Keywords: infant growth; human milk; human milk microbiome; infant gut microbiome; human
milk oligosaccharides; short chain fatty acids; lactoferrin; lysozyme

1. Introduction

Infant growth trajectory impacts both short- and long-term health outcomes. Excessive
weight gain during infancy has been associated with increased obesity risk, while stunted
growth has also been associated with obesity, along with delayed cognitive and motor skill
development and increased mortality [1–5]. Infant body mass index (BMI) trajectories as
early as 1 year can predict childhood obesity at 5 years of age [6]. Half of obese children
and 70–80% of obese adolescents remain obese into adulthood [7]; therefore, early higher
infant BMI can be a risk factor for later-life obesity. In addition, infants who have catch-up
growth during infancy are also more likely to develop obesity [5], suggesting that enduring
biological changes may occur during disturbances of infant growth trajectories.

As the optimal source of nutrients for infants, human milk is recommended by the
World Health Organisation as the exclusive food source for the first 6 months of life. In
addition to its protective effect against a wide array of transmissible and noncommunica-
ble diseases, breastfeeding also promotes healthy infant growth through its macro- and
micronutrient content (including carbohydrates, fat, protein, fatty acids, vitamins, and
minerals) and bioactive content (including hormones, growth factors, cytokines, microbes,
metabolites, and oligosaccharides) [8–10]. Given increasing evidence demonstrating a
link between the early-life microbiome and later-life body composition, this review will
discuss the influence of the milk microbiota and microbiome-modulating factors (human
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milk oligosaccharides (HMOs), milk short-chain fatty acids (SCFAs), and antimicrobial
proteins) on infant growth (Figure 1). In particular, we will focus on the potential of these
components of human milk to modulate the infant gut microbiome, and the role of the
gut microbiome in infant growth. By synergising data on various microbiome-related
human milk components, this narrative review will provide novel insights into the impact
of human milk on infant growth. Importantly, given that these microbiome and microbial-
related components may interact within the lactating breast, their influence on the infant
gut microbiome and growth should be considered holistically.
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Figure 1. Potential interactions between human milk oligosaccharides (HMOs), microbiota, antimi-
crobial proteins, and short-chain fatty acids (SCFAs), within the mammary gland, and their influence
on infant growth via the infant gut microbiota.

2. Review Methodology

A search was performed in PubMed (English) with the following keywords: hu-
man/breast milk microbiome, human/breast milk oligosaccharides, human/breast milk
short-chain fatty acids, short-chain fatty acids, lactoferrin, lysozyme, breastfeeding, infant
growth, infant body composition, infant anthropometrics, infant weight, and infant gut
microbiome. The search covers the period prior to November 2022.

3. The Infant Gut Microbiome Can Influence Infant Growth

The gut microbiota has been demonstrated to affect body composition via mechanisms
including energy harvesting and metabolic signalling [11,12]. Interestingly, animal studies
have revealed that antibiotic treatment in infancy can alter the gut microbiota and lead
to adiposity, and that adiposity persists to adulthood after the gut microbiota has recov-
ered [13,14]. Similar results are also reported in human studies [15,16]. Therefore, it is
likely that the early gut microbiota can influence infant growth and exert lifelong impacts
on host metabolism.

Multiple large cohort studies have reported an association between the infant gut mi-
crobiota and growth [17–21]. Higher levels of Bacteroides spp., especially Bacteroides fragilis,
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and lower levels of Staphylococcus have been consistently reported to be associated with
higher BMI in infancy, and to be predictive of childhood obesity [17,18,20,21]. One study
of 49 children observed lower numbers of faecal Bifidobacterium and higher numbers of
faecal Staphylococcus aureus at 6 and 12 months in infants who later developed overweight
and obesity at 7 years of age [22]. In the CHILD cohort, increased diversity (richness) of the
infant gut microbiota at 3–4 months of age was associated with higher risk of overweight at
1 year of age [23]. Conversely, another study of the same cohort later found that lower gut
microbial diversity (Shannon index) at 1 year of age was associated with a rapid increase in
BMI over the first 5 years of age [24]. The disparate results from these two studies may be
due to the different time points at which faecal samples were analysed. Indeed, in the same
cohort, diversity at 3 months was negatively associated with diversity at 1 year, perhaps
suggesting that high diversity in early life may hamper the colonisation of new bacteria
later in infancy [24]. While the relationship between the infant gut microbiome and growth
remains complex, it may be that the cumulative change in the gut microbiome, rather than
the state of the microbiome at a particular time point, influences infant growth [24]. Indeed,
the primary influence may be the development of the gut microbiome as an ecological
system and the sequential order of colonisation and succession within the infant gut. From
this perspective, factors that influence the fitness of the microbiome, such as substrates for
and products of bacterial metabolism and antibacterial compounds, should be considered
when analysing the relationship between the infant gut microbiome and growth. An early
window of opportunity exists for the development of the gut microbiota in relation to body
composition, and perturbation during this period can lay the foundations for differing
growth trajectories for life.

4. Development of Infant Gut Microbiota and Breastfeeding

Although the “sterile womb” theory is widely accepted, recent findings suggested
that infants may be exposed to a low titre of microbes prior to delivery, with viable bacteria
and bacterial DNA identified in placentas and amniotic fluid from healthy-term preg-
nancies [25,26]. However, this theory remains controversial, with opposing results also
published [27,28]. Regardless of whether microbial exposure begins in utero, neonates
harbour a low-biomass and low-diversity gut microbiome at birth, which develops in
terms of diversity, complexity, and microbial load over time until a relatively stable stage
is reached [29,30]. However, due to the short-term study design of many studies of the
early-life gut microbiome (typically 1–3 years), it is difficult to say when the gut micro-
biome “matures” to an adult-like state. Recent evidence suggests that the gut microbiome
of school-age children (5–12 years), differs significantly to that of adults in terms of both
composition and function [31–33]. Gut microbiome development is therefore likely to be a
gradual process that continues throughout childhood. Nonetheless, the first 2–3 years of life
appear to be a particularly dynamic and unstable time within the gut microbiome [31–34].
From birth, the richness and complexity of the infant gut microbiota gradually increases
and eventually reaches a stage that is relatively ecologically stable. During this time, the
composition of infant gut microbiome can be influenced by multiple factors, including
mode of delivery at birth, gestational age, feeding mode, maternal diet, and antibiotic
usage [35–39]. Of all these factors, breastfeeding has been reported to be the most impactful
factor, followed by birth mode [32]. Similarly, in another large cohort study of 903 children,
intake of human milk was the primary factor associated with the composition and function
of the infant gut microbiome [34]. Additionally, consumption of human milk was associated
with lower diversity and higher levels of Bifidobacterium spp. in the infant gut [34]. While
higher gut microbiome diversity is generally considered optimal for adults, low gut diver-
sity is considered optimal during infancy, especially during breastfeeding. Infants who are
breastfed exhibit lower gut microbiome diversity than those who receive formula [23,40],
with a strong dominance of Bifidobacterium species [41–44]. Therefore, early maturation,
predicted by higher diversity, may potentially impact the overall development of the gut
microbiota negatively. Another study showed that the cessation of breastfeeding, rather
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than the introduction of solid food, is pivotal in infant gut microbiome diversification,
highlighting the role of the bioactive components in human milk [45]. These bioactive
components include HMOs, microbes, short-chain fatty acids, and antimicrobial proteins,
which together influence the assembly of the infant gut microbiome and infant growth.

5. The Human Milk Microbiome

The human milk microbiome comprises all kingdoms of microorganisms, including
bacteria, archaea, microeukaryotes, and viruses, with the bacterial community being the
most abundant and well characterised [45]. These microbes may originate from maternal
body sites (gut, skin, or the secretions from the pregnant mammary gland) [45–47] or
from the infant oral cavity via retrograde flow during milk ejections that occur during
breastfeeding [48]. In human milk, the most prevalent and abundant bacterial genera are
Streptococcus and Staphylococcus, which together typically make up over half of the total
profile [49]. Other taxa vary between populations and geographical locations, likely due
to maternal and environmental factors, and only constitute a small portion of the milk
microbiota [50].

5.1. Human Milk Microbes Colonise the Infant Gut

The infant gut microbiota are acquired both vertically from mother to infant, and
horizontally from shared environments and social contacts [51]. One important function
of human milk microbiota is the contribution via vertical transmission of microbes from
mother to infant, as a small number of shared bacterial strains have been repetitively
identified in mother–infant pairs, particularly bifidobacterial strains [52–55]. Milani et al.
reported vertical transmission of Bifidobacterium breve and Bifidobacterium longum subsp.
longum strains from milk to the infant gut, which was confirmed by strain isolation and
whole-genome sequencing [55]. While B. longum was present in both maternal stool and
milk samples, B. breve was only found in milk but not in the maternal gut, although it
may have been undetectable in the maternal gut due to low abundance [55]. B. breve has
been reported to only contribute to 0.07% of the maternal gut microbiota, but 28.44% and
67.7% of the milk and infant gut microbiota, respectively [56]. However, it should be
noted that the mechanism by which these microbes are transferred from the maternal gut
to the mammary gland remains unclear. Interestingly, these two species, B. longum and
B. breve, together dominate the bifidobacterial genus of exclusively breastfed infants and
persist in the infant gut at 6 months of age [57]. This implies a role of milk microbes in
the development of the infant gut microbiome, although strain-level studies repeatedly
identify only a very small number of shared taxa [46,52,55,58].

5.2. The Potential Role of the Human Milk Microbiota in Infant Growth

The human milk microbiome may influence infant growth by shaping the infant
gut microbiota, as indicated by albeit weak evidence to date. Currently, only one study
has assessed the relationship between the human milk microbiota and infant growth.
Cheema et al. reported significant associations between the milk microbiome and infant
body composition at 3 months of age (n = 60) [59]. In this study, the relative abundances of
Staphylococcus epidermidis, Streptococcus parasanguis, and Streptococcus lactarius were posi-
tively associated with infant anthropometry, adiposity, and fat-free mass, and S. epidermidis
was negatively associated with infant length. Associations between the milk microbiome
and infant body composition also varied by maternal HMO secretor status. In infants of non-
secretor mothers (those which lack the Se gene for the production of fucosylated HMOs),
Streptococcus mitis was negatively associated with anthropometry and S. parasanguis was
positively associated with BMI-for-age z-score. Interestingly, they also reported associa-
tions between maternal anthropometry and body composition with specific milk microbes.
Maternal weight, fat mass, fat-free mass, and fat mass index were negatively associated
with the relative abundance of S. epidermidis, and fat-free mass was positively associated
with Veillonella nakazawae. These results indicate a possible cross-generation transmission



Nutrients 2022, 14, 5148 5 of 16

of body composition via milk microbiota. Future research should include matching human
milk and infant faecal samples with whole-genome sequencing analysis, along with human
milk HMO composition, to increase our evidence on associations between the human milk
microbiome and composition as a mediator of infant growth.

5.3. The Milk Microbiome as a Potential Contributor to the Intergenerational Transmission of
Body Composition

Altered gut bacterial patterns observed in overweight mothers are echoed in their
milk microbiome and in infants who later become overweight. Collado et al. reported that
the total counts of Bacteroides and Staphylococcus were significantly higher in the gut of
overweight women, as measured by fluorescent in situ hybridisation (FISH) and quantita-
tive polymerase chain reaction (qPCR) [60]. During pregnancy, women who experienced
higher weight gain had higher counts of Bacteroides and lower counts of Bifidobacterium
in their gut. In the same overweight population, higher counts of Staphylococcus and
Lactobacillus and lower counts of Bifidobacteria were found in milk samples collected
at 1 month and 6 months postnatally [61]. Similarly, lower counts of Bifidobacteria and
higher counts of Staphylococcus aureus findings were reported in the stool samples of a
group of infants who later became overweight in childhood [22]. These findings suggest
that overweight mothers harbor a distinct gut microbiota profile that is reflected in their
milk microbiome. Such differences in the maternal microbiome may have consequences for
infant gut microbiome colonisation and body composition. However, it remains unclear
whether this similarity in the gut microbiome of overweight mothers and their infants who
later become overweight is transmitted via the milk microbiome or influenced by other
factors such as a shared environment.

Current knowledge implies a plausible route for the transmission of body composition
from mother to offspring: overweight and obesity status may change the maternal gut
microbiome during pregnancy, which may influence the infant gut microbiome via the
milk microbiota during breastfeeding, and ultimately impact infant growth. However,
while studies support the notion that gut bacteria influence infant growth [17,19], and
that bacteria are vertically transferred from mother to infant via milk [55], the effects
of horizontal transmission and host–gene interactions on the development of infant gut
microbiota are also likely important [51].

6. Human Milk Oligosaccharides (HMOs)

Beyond the milk microbiome, other components in milk, such as HMOs, have addi-
tional effects on the infant gut microbiome and potentially infant growth. HMOs are a
group of structurally distinct glycans in human milk [62]. They are the third most abundant
solid in human milk after lactose and lipids, and are more abundant than protein [63]. More
than 200 different HMOs have been identified, though a group of 19 make up more than
90% of the HMO profile [64]. The composition and concentration of HMOs varies between
each mother and across lactation [65,66]. Genetically, the HMO profile can be classified
into four groups according to the expression of the genes Se and Le, which are respon-
sible for the expression of two enzymes involved in the synthesis of fucosylated HMOs,
α1-2-fucosyltransferase (FUT2) (encoded by the Se gene) and α1-3/4-fucosyltransferase
(FUT3) (encoded by the Le gene) [62]. Although the nongenetic factors that influence HMO
composition remain largely unknown, some studies have suggested that HMO composi-
tion is associated with stage of lactation [67–71], maternal diet [43,70,72–76], and maternal
BMI [59,70,73,77–79].

Despite the high abundance of HMOs in human milk, they are largely indigestible
by the infant. Instead, they serve as an energy source for the microbiota in the infant gut,
mainly Bifidobacterium, which degrade HMOs to create metabolites, including short-chain
fatty acids (SCFAs) [64]. A recent in vitro study cultivated infant gut microbiota together
with three groups of HMO(s), 2′FL only, 2′FL + LNnT, and a mixture of six HMOs (2′FL,
LNnT, LNT, diFL, 3′SL, 6′SL) [80]. They found that although all HMOs increased SCFA
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levels, only the latter two promoted the growth of Bifidobacterium, while the predominant
SCFA producer, Ruminococcus, was particularly boosted by the group of six HMOs. These
results suggest that HMOs may function synergistically to have a greater influence on
colonisation of the infant gut microbiome.

To degrade HMOs into monosaccharides, multiple enzymes from microbes are re-
quired for the breakdown of different linkages. In the gut, certain bacterial species express
the whole set of enzymes for the digestion of all HMOs, such as Bifidobacterium infantis,
Bacteroides fragilis, and Bacteroides vulgatus, while some are only capable of metabolising
a subset of the HMOs, such as Bifidobacterium breve and Bifidobacterium longum [81]. The
breakdown of HMOs usually occurs in an ordered manner, with modifications removed be-
fore the core structures can be degraded [82]. Therefore, some bacteria, such as B. breve, can
only function in the presence of bacteria that perform the preceding breakdown steps [83].
This cross-feeding behaviour, especially in the bifidobacterial genus, results in a synergis-
tic thriving of beneficial bacteria. During breastfeeding, these HMO-consuming bacteria
thrive, and as a result, suppress the growth of other bacteria, including potential pathogens.
Therefore, each mother’s characteristic HMO profile may shape the infant gut microbiome
in an individualised way.

HMOs Are Associated with Infant Growth

Multiple studies, although inconsistent, have identified various associations between
individual HMOs and/or HMO diversity and infant growth [77,83–91]. Most of the pre-
vious studies have measured HMOs using high-performance liquid chromatography–mass
spectrometry (HPLC-MS) in conjunction with fluorescent derivatisation [59,77,78,84–88,90,91],
and two have used nano-LC-chip/time-of-flight (TOF)-MS [83,89]. However, differences
in study populations and design, including sample time point(s) and reporting styles
for infant growth data, make it difficult to identify any consensus between studies, with
contradictory associations reported for some HMOs (Table 1).

Associations between infant anthropometrics and the most abundant HMO, 3′SL (3′

sialyllactose), are widely reported [59,77,78,83,86,87,89,90]. Concentrations of 3′SL have
been positively associated with infant weight [89], length [77], head circumference [77,83],
weight for length [88], fat mass [78], and fat-free mass [59,90], except in one study that
reported a negative association with infant length [88]. This discrepancy may be due
to the time at which infant anthropometrics were measured (birth to 4 months in one
study, and 5 and 9 months in the other) [77,88]. Further research is needed to determine
if the relationship between HMOs and infant body composition changes over the course
of lactation.

Further, relationships are likely to vary depending on whether HMO concentration or
intake is measured [45,59]. Intake of 3′SL at 2 months of age has been positively associated
with infant weight, length, and fat-free mass, which is consistent with studies measuring
3′SL concentrations [59,78,90]. However, results in relation to intake are not always consis-
tent with that of the concentration. While 3′SL intake was also associated with infant fat
mass [78], such association has not been reported in concentration studies. Cheema et al.
measured both HMO concentrations and intakes and found that except for 3′SL, none of
the associations between HMO intakes and infant growth held true for concentrations,
suggesting that concentration itself is not adequate for assessing associations between
HMO and infant growth [59]. However, results also differ between studies in which intakes
were measured. While both Saben et al. and Cheema et al. identified positive associations
between 3′SL and 3FL (3 fucosyllactose) and infant growth, 6′SL (6′ sialyllactose) was
positively associated with infant fat mass in one study and negatively in the other [59,78].
Similarly, many associations were identified in one study but not the other. This discrep-
ancy is likely due to differences in the measurement of milk intake [59,78]. Saben et al.
estimated the intake by measuring body weight before and after one feed and the feeding
frequency, while Cheema et al. measured the total intake over 24 h. Nevertheless, the
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collective evidence demonstrates that infant intake of HMOs appears to be one of the
factors that can regulate infant growth.

Table 1. Summary of associations between HMOs and infant growth outcomes. Weight includes
growth outcomes of weight z score (weight compared to a standard of the same sex), change in
weight z score, weight for age z score (weight compared to a standard of the same age and sex), and
change in weight for age z score; length includes length z score, change in length z score, length for
age z score, and change in length for age z score. Weight for length includes both weight for length z
score (weight compared to a standard of the same length and sex) and change in weight for length
z score. Head circumference includes head circumference z score, change in head circumference z
score, head circumference for age z score, and change in head circumference for age z score. Body
mass index includes growth outcomes of body mass index and body mass index for age z score. Fat
mass includes fat mass, percentage of fat mass (weight of body fat), and fat mass index (calculated as
(fat mass)/height2). Fat-free mass includes fat-free mass (weight of body par that do not contain fat),
percentage of fat-free mass, and fat-free mass index (calculated as (fat-free mass)/height2).

Anthropometrics
Positive
3′SL * [59,78,87,89], LNnT [84], 2′FL * [59,77,87], LNFP II [78], 3FL * [59,78,87], DSLNT [84],
DFLac * [59,77,87], LSTb ** [78], DFLNH * [59], DSLNH ** [78], DFLNT [59], 6′GL [91]

Weight
Negative
LNnT [77,87], 6′SL ** [59], LNFP II [84], LNT [83], LNFP I [85], LSTb [87], LSTc [89],
DFLNH [77], MFLNH III [91]
Positive
3′SL * [59,86], LNnT [86], 2′FL [87,90], 3FL ** [59], DFLNH * [59], A-tetra [90], DFLNT [59],
LNnDFH [91]

Length
Negative
3′SL [88], LNnT [59,86–88], LNT [86], 3FL [91], LNFP I [86], LSTb [87], MFLNH III [91],
LNFP V [86], FLNH [86]
Positive
3′SL [88], LNFP II [78], LNT [78], 3FL ** [78], LSTb ** [78], LSTc [88], LDFT [83], IFLNH 1 [83]

Weight for length
Negative
LNFP II [83], LNT [83], LSTa [83], DFLNHc [83]
Positive
3′SL [77,83], 6′SL [90], LNFP III [88], DFLac [77], MFLNH III [88], LDFT [91], A-tetra [88],
LNDFH I [91], LNnDFH [91]

Head circumference Negative
6′SL [83], LNFP III [89], LNT [83], LNFP I [89], DFLNH [77], MFLNH III [91], LNnFP [86],
DFLNHa [89], LNFP V [86]
Positive
DFLac ** [59], LSTb ** [59], DFLNT ** [59]

Body mass index
Negative
LNnT [87], 2′FL [86], 6′SL [77], LNT [86], LNnFP [86], LNFP V [86]

Body composition

Fat mass

Positive
3′SL ** [78], 2′FL * [59], 6′SL ** [78], LNFP III ** [78], LNFP II * [78,85], DSLNT * [78,85],
LSTb ** [78], FDSLNH [85], DSLNH ** [78], DFLNT [59]
Negative
LNnT [77,85], 6′SL ** [59], LNFP III ** [59] LNFP I [85], DFLNH [77]
Positive
3′SL * [59,90], 3FL ** [59], DFLac ** [59], DFLNH * [59], DFLNT ** [59]

Fat-free mass Negative
LNT [90], LNFP I [85], LSTc [90]

Fat mass/fat-free mass ratio Negative
LNFP III ** [59]

Abbreviations: 3′SL: 3′-Sialyllactose, LNnT: Lacto-n-neotatraose, 2’FL: 2′-Fucosyllactose, 6’SL: 6′-Sialyllactose,
LNFP III: Lacto-N-fucopentaose III, LNFP II: Lacto-N-fucopentaose II, LNT: Lacto-N-Tetraose, 3FL: 3-
Fucosyllactose, DSLNT: disialyllacto-N-tetraose, DFLac: difucosyllactose, LNFP I: Lacto-N-fucopentaose I,
LSTb: sialyl-lacto-N-tetraose, LSTc: sialyl-lacto-N-tetraose, DFLNH: Difucosyllacto-N-hexaose, MFLNH III:
Monofucosyllacto-N-hexaose III, LDFT: lactodifucotetraose, A-tetra: A-tetrasaccharide, IFLNH I: fucosyl-paralacto-
N-hexaose I, FDSLNH: Fucosyl-disialyllacto-N-hexose, DSLNH: disialyllacto-N-hexaose, DFLNT: difucosyllacto-
N-tetrose, LNDFH I: Lacto-N-difucohexaose I, LNnDFH: lactoN-neodifucohexaose, 6′GL: 6′galactosyllactose,
LNnFP: lacto-N-neofucopentaose, DFLNHa: difucosyllacto-N-hexaose (a), LSTa: LS-Tetrasaccharide a, DFLNHc:
difucosyllacto-N-hexaose c, LNFP V: lacto-N-fucopentaose-V, FLNH: fucosyllacto-N-hexaose. * Associations with
both concentration and infant intake. ** Associations with infant intake only.
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Maternal secretor status influences HMO composition, particularly 2′FL (2′ fucosyl-
lactose) and LNnT (lacto-N-neotetraose), both of which have been added to commercial
formulas [92]. 2′FL concentration has been positively associated with infant weight [77,87],
length [89,90], and fat mass [77] in both healthy and malnourished populations. 2′FL intake
also has been positively associated with weight and fat mass [59]. Another typical secretor,
HMO LNnT, which is negatively correlated with 2′FL, is negatively associated with infant
weight [77,87], length [86,87], BMI [77], fat mass [77], and fat mass percentage [85]. An
opposing result with infant weight gain has also been reported, but only in non-secretor
mothers [84]. Although some studies have reported different outcomes between individual
HMOs and infant growth depending on maternal secretor status, secretor status by itself
does not predict infant growth trajectory. Therefore, the role of HMOs in infant growth
may be independent of secretion status, or potentially these results have been impaired by
measuring concentrations instead of total infant intakes.

7. Short-Chain Fatty Acids

Short-chain fatty acids are the microbial metabolites of fibre fermentation that are pro-
duced in the colon. Some SCFAs, particularly butyrate, are absorbed locally by colonocytes,
while the rest are transported to the portal vein and metabolised by the liver or distributed
systemically around the body [93]. Although only a small concentration of SCFAs enter the
peripheral circulation, they participate in a wide range of metabolic processes by regulating
gene expression and binding to G-protein-coupled receptors (GPRs) [94]. In adults, SCFAs
have been proposed to affect appetite control, energy harvesting, energy expenditure,
and glucose homeostasis [95,96]. In vitro, acetate, butyrate, and propionate have been
shown to stimulate the production of the satiety hormone peptide YY and glucagon-like
peptide 1 [97,98]. Rodent studies have indicated that acetate can cross the blood–brain
barrier and reach the hypothalamus, where it suppresses appetite [99]. Moreover, greater
levels of energy expenditure after SCFA administration have been observed in both mouse
studies and human studies [100–102] indicating potential for interventions designed to
optimise the development of body composition early in life. This evidence supports the
direct influence of SCFAs on host metabolism through multiple mechanisms.

In addition to direct influence, SCFAs may also indirectly influence host metabolism
by impacting the gut microbiome. SCFAs are not only products of but also substrates for
microbial metabolisms. Unlike acetate, which can be produced by a wide range of bacteria,
pathways for propionate and butyrate production are relatively conserved in a few bacterial
genera [103,104]. During the production of SCFAs, intermediate products such as succinate
and lactate will be further utilised by a subset of bacteria. Additionally, acetate can be
directly utilised by the butyrate-producing bacteria through the acetyl-CoA pathway [105].
This cross-feeding behaviour during the production of SCFA has been shown to promote
the growth of certain bacteria and the diversity of microbiota in the gut, which in turn may
influence host metabolism [106].

Human Milk SCFAs and Infant Growth

The SCFAs acetate, butyrate, and formate have been identified in human milk [107–109].
Given that SCFAs participate in host metabolism, it is likely that SCFAs in human milk may
influence infant growth. Currently, only one study has assessed the associations between
milk SCFA levels and infant growth outcomes. Prentice et al. analysed SCFA levels in milk
samples taken 4–8 weeks postpartum (N = 619) [107]. Child weight, length, and skinfold
thicknesses (triceps, subscapular, flank, quadriceps) were measured at 3, 12, and 24 months
of age. Human milk butyrate was negatively associated with infant BMI and skinfold
thicknesses at 12 months of age, formate was negatively associated with infant BMI at
all time points, and acetate was negatively associated with infant skinfold thickness at 3
and 24 months of age. These results highlighted the potential of SCFAs in human milk to
influence infant growth, even beyond the period of exclusive breast feeding.
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However, due to the dearth of studies on human milk SCFAs, their functions and
mechanisms of action remain largely unclear. SCFAs may be transported to the milk from
the maternal gut via the circulatory system, or they may be produced locally since milk
contains both microbes and HMOs. Compared to the SCFAs identified in faeces and blood,
the major SCFA propionate has not been identified in human milk [107–109]. Current
studies focus on the function of SCFAs produced in the colon, but whether they can survive
when consumed by infants in milk and reach the gut intact remains unknown. Therefore,
more mechanistic studies are needed to identify both the source and function of human
milk SCFAs.

8. Antimicrobial Proteins—Lactoferrin and Lysozyme

Lactoferrin and lysozyme are two of the most studied antimicrobial proteins in
human milk [110]. Lactoferrin functions as carrier of iron in human milk [111,112]. It
has been shown to inhibit infections of pathogenic bacteria [113–115], viruses [116–118],
fungi [119–121], and parasites [122–124]. Conversely, lactoferrin peptides also have a strong
bifidogenic effect and promote some species of lactobacilli, both of which are thought of
as beneficial infant gut taxa [125–127]. As one of the major enzymes of human milk,
lysozyme lyses Gram-positive bacteria, and when in corporation with lactoferrin, some
Gram-negative bacteria as well [128,129]. A piglet model has shown that consumption of
lysozyme-rich milk results in an increase in Bifidobacteriaceae and Lactobacillaceae and a
decrease in pathogens in the gut [130]. The influence of lysozyme on the gut microbiome
was also identified in a drosophila model [131]. Therefore, these antimicrobial proteins may
influence infant growth indirectly through the modification of the infant gut microbiome.
Apart from their antimicrobial properties, lactoferrin also stimulates intestinal and bone
cell proliferation [132–134], which may directly influence infant growth.

Evidence for lactoferrin and lysozyme influencing infant growth is sparse. Bovine
lactoferrin supplementation in formula (N = 10–12) has been associated with increased
infant weight (6 months) and length (4 and 6 months) [135]. Similar results (increased
length/height) were reported in a group of older children (12–36 months; N = 26) who re-
ceived direct bovine lactoferrin supplementation [136]. However, it is difficult to make any
conclusions as human milk lactoferrin is not comparable to bovine lactoferrin. Lysozyme
supplementation of donor milk (N = 64) and higher concentrations in human milk (N = 42)
are both associated with increased infant weight [137,138]. Gridneva et al. measured the
total intake of lactoferrin and lysozyme (N = 20; 2–12 months) and found that the intake
of lactoferrin was negatively associated with fat-free mass and lysozyme positively with
fat mass [139]. Although weak evidence supports the associations between lactoferrin and
lysozyme and infant growth, the mechanisms remain to be unveiled. Further studies are
needed to elucidate the association between antimicrobial proteins in human milk and
infant growth.

9. Interactions of Microbiome and Microbiome-Related Components within the
Lactating Mammary Gland

As both HMOs and SCFAs can influence the infant gut microbiota, they may also
modify the human milk microbiota through the same mechanisms. HMOs may feed a
certain group of bacteria in human milk, creating SCFAs as a by-product (Figure 1). SCFAs
may also be metabolised by bacteria within the lactating mammary gland. In addition, as
known for their antimicrobial property, lactoferrin and lysozyme may also participate in
this interaction.

Although it is currently unclear whether digestion of HMOs occurs within the mam-
mary gland, several studies have suggested that the composition of HMOs is associated
with the milk microbiota composition. Aakko et al. observed a positive correlation between
total HMO concentration and counts of Bifidobacterium spp. in colostrum in a small study
(N = 11) [140]. This association was more pronounced when HMOs were grouped by
structure. Positive associations were identified between B. breve and sialylated HMOs and
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between B. longum and non-fucosylated/non-sialylated HMOs. Similarly, another larger
cohort study has demonstrated an association between milk microbiota and individual
HMOs (N = 393) [141]. Specifically, the relative abundance of Bifidobacterium was nega-
tively associated with the concentration of DLNH, and in non-secretors only the relative
abundance of Staphylococcus was positively associated with concentration of sialylated
HMOs. These findings together imply a potential role of HMO in modifying the milk
microbiota before reaching the infant gut.

Unlike studies in HMOs, to date no study has examined the associations between
microbiota and SCFAs in human milk. If SCFAs are produced from bacterial HMO fer-
mentation within the mammary gland, they may be associated with both the HMO and
microbiota content of human milk. Milk SCFAs may also act as a substrate for milk bacterial
metabolism independently of HMOs.

Although currently no studies have been carried out to assess the influence of lactofer-
rin and lysozyme on the human milk microbiome, they also have the potential to influence
microbiome composition for their antimicrobial properties. They may interact with the
human milk microbiota in a similar manner as in the gut microbiome, as shown in animal
and human studies [130,131]. Like other microbiome-related products in human milk,
antimicrobial proteins are likely to participate in the regulation of microbiota in human
milk and infant gut.

Further studies are needed to elucidate the association between milk SCFAs, mi-
crobiota, HMOs, and antimicrobial proteins. If they interact with each other within the
mammary gland, they may influence infant growth in an integrated manner. This high-
lights the importance of viewing lactation as a biological system, with human milk as a
whole, promoting healthy infant growth. This may also partially explain why associations
between HMOs and infant growth/body composition are inconsistent, as other human
milk components may be involved.

10. Summary and Future Directions

In this review, we summarised the current evidence regarding the potential function
of the human milk microbiome and microbiome-related products on infant growth, po-
tentially via the modification of the infant gut microbiome and other mechanisms. As
these components may interact with one another, they may synergistically influence the
human milk microbiome, the infant gut microbiome, and infant growth. While numer-
ous studies have assessed the influence of HMOs on infant growth, evidence for other
components is limited. Given the fact that the infant gut microbiome is dynamic in early
life, longitudinal studies of larger sample sizes are needed to assess associations between
these milk components, the infant microbiome, and infant growth. Importantly, given the
potential interactions between these components, an integrative approach is required to
holistically assess the impact of human milk on infant growth. This review also highlighted
the importance of analysing intakes rather than concentrations of human milk components.
Future studies should measure daily intake when possible, to more accurately assess the
impact of human milk components on infant growth. Integrated longitudinal studies are
required to ascertain the influence of the human milk microbiota and microbiome-related
products on growth throughout infancy and beyond, with a focus on their interactions with
the infant gut microbiome.
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