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Abstract: Innovative strategies to re-establish the immune-mediated destruction of malignant cells is
paramount to the success of anti-cancer therapy. Accumulating evidence suggests that radiotherapy
and select chemotherapeutic drugs and small molecule inhibitors induce immunogenic cell stress on
tumors that results in improved immune recognition and targeting of the malignant cells. Through
immunogenic cell death, which entails the release of antigens and danger signals, and immunogenic
modulation, wherein the phenotype of stressed cells is altered to become more susceptible to im-
mune attack, radiotherapies, chemotherapies, and small-molecule inhibitors exert immune-mediated
anti-tumor responses. In this review, we discuss the mechanisms of immunogenic cell death and
immunogenic modulation and their relevance in the anti-tumor activity of radiotherapies, chemother-
apies, and small-molecule inhibitors. Our aim is to feature the immunological aspects of conventional
and targeted cancer therapies and highlight how these therapies may be compatible with emerging
immunotherapy approaches.

Keywords: immunogenic cell stress; immunogenic cell death; immunogenic modulation; chemother-
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1. Introduction

Conventional anti-cancer therapies were originally developed to negatively impact
rapidly dividing malignant cells while limiting damage to normal tissues. Typically, these
therapeutic regimens induce DNA damage or disrupt DNA repair and cell division ma-
chineries, resulting in tumor cell death and debulking of cancer lesions [1]. In addition to
these cytotoxic and cytostatic effects, some standard-of-care therapies such as radiotherapy,
select chemotherapies, and small-molecule inhibitors (SMIs) also trigger cell stress that
results in responses spanning from immunogenic cell death to immunogenic modulation.
Immunogenic cell death (ICD), wherein dying cells release signals that prompt dendritic
cells (DCs) to present tumor antigens to T cells, culminates in the activation and develop-
ment of immunological memory [2,3]. If the therapy-induced cell stress does not result
in cell death, the surviving tumor cells may be sensitized to immune cell targeting via
immunogenic modulation, which includes upregulated antigen presentation, pro-apoptotic
signaling molecules, and immune-cell-engaging molecules [4]. As immunotherapy emerges
as a new pillar among anti-cancer therapies, it is important to recognize the immunogenic
properties of conventional anti-cancer therapies and identify how these different treatment
modalities can be synthesized together in the clinic. In this review, we discuss preclinical
data on ICD and immunogenic modulation mediated by chemotherapy, radiotherapy, and
SMIs and clinical data on the immunostimulatory effects of these conventional cancer
treatments in the context of combination regimens with immunotherapy.
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1.1. Immunogenic Cell Death

ICD is defined as “a form of regulated cell death that is sufficient to activate an
adaptive immune response in immunocompetent hosts” [5]. ICD is a spatiotemporally
defined process that involves the induction of the cell-stress response pathways and entails
the release of antigens and danger signals from the dying cell that initiates the immune
response (Figure 1). The activation of endoplasmic reticulum (ER) and/or reactive oxygen
species (ROS) stress responses is essential for the initiation of ICD [6], and ICD inducers
can be classified according to how they elicit ER stress. Most ICD inducers are Type I ICD
inducers that instigate cell death by targeting organelles or molecules that are not directly
associated with the ER but cause “collateral” ER stress effects [7,8]. Type II ICD inducers,
on the other hand, directly target the ER to trigger ER stress and induce cell death [7,8].
Depending on dose and schedule, several anti-cancer therapies have been shown to cause
ICD as a consequence of cell stress, and in this review, we concentrate on the immunogenic
cell stress mediated by chemotherapy, radiotherapy, and SMIs. However, it should also be
noted that other treatment regimens, such as oncolytic viruses [9], oncolytic peptides [10,11],
the epithelial growth factor receptor (EGFR)-targeting monoclonal antibody cetuximab [12],
and nanopulse stimulation [13], have also been shown to induce immunogenic cell stress.

The anti-cancer adaptive immune response associated with ICD relies on two major
factors: (1) the antigenicity of the tumor cells and (2) the release of adjuvant signals from the
dying tumor cells [2]. Generally, tumor antigens can be characterized as tumor neoantigens,
which are products of non-synonymous mutations that are not covered by central tolerance,
or tumor-associated antigens (TAAs), which are non-mutated antigens to which central
tolerance is leaky or incomplete [14–16]. Epigenetic dysregulation of the cancer genome can
additionally trigger the expression of human endogenous retroviruses (HERVs), resulting
in tumor-specific or tumor-enriched HERV-derived antigens [17]. Some ICD inducers can
cause mutations or introduce post-translational modifications that produce neoantigens or
enhance the expression of neoantigens and TAAs [3,18–20].

The release of tumor antigens must be accompanied by pro-inflammatory signals
in order to elicit an immune response that culminates in the effective immune-mediated
killing of cancer cells [21]. Adjuvant signals generated during ICD come in the form of
damage-associated molecular patterns (DAMPs) that play key roles in the recruitment
and maturation of antigen presenting cells (APCs) [3,22]. Different ICD inducers gener-
ate different DAMPs due to variations in the cell-stress response activated by each ICD
inducer [3,23]. Examples of DAMPs commonly generated during ICD include calreti-
culin (CRT), high mobility group box 1 (HMGB1), adenosine triphosphate (ATP), and
type 1 interferons (IFN) [3,22,23]. CRT is an ER chaperone protein that translocates to the
plasma membrane during ICD and provides an “eat me” signal to APCs [24–27]. The
ligation of CRT to CD91 on APCs promotes phagocytosis of cellular debris and antigen
presentation [24]. HMGB1, which is passively released by dying cells during ICD, binds to
Toll-like receptor 4 (TLR4) on DCs, resulting in the efficient cross-presentation of antigens
from the dying tumor cells [28]. ATP, which is actively released via exocytosis during ICD,
provides a “find me” signal to DC precursors and macrophages [29]. Extracellular ATP
interacts with purinergic receptor P2Y2 (P2RY2) and directs APC chemotaxis to the site
of active ICD [30]. In addition, extracellular ATP can influence DC activation and antigen
presentation via IL-1b, which is expressed following activation of the NLRP3 (NOD-, LRR-,
and pyrin domain-containing protein (3) inflammasome downstream of ATP signaling
through P2RX7 on DCs [31]. Type 1 IFN secretion can be driven by nucleic acid species
from dying cells binding to different pattern recognition receptors (PRRs) [32]. Type I IFNs
exert immunostimulatory effects, including the enhancement of the cytotoxic functions
of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells [33,34], the promotion of
cross-priming capacity of APCs [35], and the production of the T cell chemoattractant,
CXCL10, by cancer cells [36]. Other DAMPs, such as annexin A1, heat shock protein (HSP)
70, and HSP90, have also been shown to be secreted or translocated by cells undergoing
ICD [22,23]. Emission of these DAMPs according to a specific spatiotemporal order is
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essential for the recruitment and activation of innate and adaptive immune cells in the
tumor lesion to mount an effective anti-cancer immune response [37].
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Figure 1. Radiotherapy, chemotherapy, and small-molecule inhibitors induce immunogenic cell stress
resulting in immunological responses spanning from immune modulation to immunogenic cell death.
Radiotherapy, select chemotherapy, and small-molecule inhibitors can induce immunogenic cell death,
which is characterized by the release of DAMPs that promote antigen presenting cells to phagocytose
the dying cells, process tumor antigens, and present tumor antigens to T cells. Tumor cells that were
not eradicated by radiotherapy, chemotherapy, or small-molecule inhibitors undergo immunogenic
modulation wherein the tumor phenotype is altered such that the malignant cells become more
sensitized to T cell targeting. Combining radiotherapy, chemotherapy, and small-molecule inhibitors
with immunotherapies that can engage, enhance, and enable effector T cells may result in improved
immune-mediated eradication of neoplastic cells. DAMP: damage-associated molecular patterns;
TAA: tumor-associated antigen; HMGB1: high-mobility group box 1; ATP: adenosine triphosphate;
IFN: interferon; MHC: major histocompatibility complex; TCR: T-cell receptor.

1.2. Immunogenic Modulation

Cell stress induced by certain anti-cancer treatments does not always translate to cell
death, but it can sensitize the surviving malignant cells to immune attack. Through the
process of immunogenic modulation, therapies such as chemotherapy, radiotherapy, and
SMIs alter the tumor phenotype to become more sensitive to CTL and NK cell killing [22,38].
Immunogenic modulation includes, but is not limited to, enhanced antigen presentation,
increased pro-apoptotic signals, and changes in surface marker expression of the tumor
cells (Figure 1) [4,22,38]. ICD and immunogenic modulation exist on a continuum and
represent a spectrum of outcomes resulting from immunogenic cell stress [22].

Similar to ICD, immunogenic modulation requires antigenic determinants on ma-
lignant cells to trigger anti-tumor responses. In addition to promoting the expression of
neoantigens and TAAs, immunogenic modulators upregulate different components of the
antigen processing machinery and promote the expression of MHC class I [18–20,39,40].
This increase in antigen processing and presentation has been shown to be associated
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with enhanced sensitivity of the treated neoplastic cells to TAA-specific CTLs [20]. Since
CTL-mediated killing may also be a form of ICD, the resulting anti-tumor effect following
ICD or immunogenic modulation can trigger antigen cascade and generate new CTLs
against other tumor antigens [41–43].

Immunogenic modulators also alter the tumor phenotype by promoting the expression
of surface markers that make the tumor cells more susceptible to attack by innate and adap-
tive immune cells. For example, cell surface translocation of CRT, which acts as an “eat me”
signal to APCs during ICD [24–27], also enables the myeloid cells to deliver stimulatory
signals to NK cells [44]. Additionally, immunogenic modulators induce the expression of
NK activating ligands on tumor cells such as MICA/B, ULPBs, and B7-H6 [45–47]. Further-
more, select immunogenic modulators also upregulate mannose-6-phosphate receptors
(M6PR) on the tumor cell surface, which augment cell membrane permeability to granzyme
B produced by activated NK cells and CTLs [48,49]. Tumor cells are also sensitized to
immune-mediated killing via the upregulation of death receptors, such as Fas and TRAIL
receptors, that can interact with death ligands expressed or secreted by CTLs and NK
cells [50,51]. Immunogenic modulators also support CTLs through the induction of costim-
ulatory molecules, including CD80, OX40L, and 41BBL [52,53]. Overall, these observations
demonstrate that chemotherapy, radiotherapy, and SMIs have capabilities that allow for
enhanced anti-tumor immunity that is distinct from but related to ICD [22].

1.3. Role of Immunogenic Cell-Stress Response in Anti-Tumor Response

Mechanistically, it is challenging to exactly elucidate to what extent ICD and immuno-
genic modulation contribute to improved disease outcomes in cancer patients. However,
a body of evidence demonstrates that activation of downstream immune-related com-
ponents of ICD and immunogenic modulation are correlated to therapeutic benefit in
several cancer types. For example, the occurrence of the abscopal effect (see Section 3.1)
with radiotherapy is good evidence of radiation-induced anti-tumor immunity that is
linked to ICD [54]. Furthermore, high CRT exposure on malignant cells has been linked
to enhanced immune activation and improved disease outcomes in patients with acute
myeloid leukemia and ovarian cancer [44,55,56]. Esophageal squamous cell carcinoma
patients who received pre-operative chemoradiotherapy were found to have elevated
HMGB1 compared to patients who did not receive the immunomodulating treatment
modality. Furthermore, in this patient cohort, elevated serum HMGB1 was associated
with antigen-specific T cell responses and the degree of HMGB1 expression in the tumor
microenvironment (TME) was correlated with improved patient survival [57]. On the other
hand, loss-of-function mutations in the TLR4 allele have been associated with reduced
progression-free survival and overall survival in patients with colorectal cancer receiving
oxaliplatin treatment [58], shorter disease-free survival in patients with head and neck
cancer receiving adjuvant systemic therapy including cisplatin and 5-fluoruracil [59], and
decreased time-to-metastasis in patients with non-metastatic breast cancer undergoing
surgery followed by anthracycline-based chemotherapy and local irradiation [28]. These
data suggest that ICD and immunogenic modulation play a role in the anti-tumor response
and can be exploited via combinatorial approaches, especially with immunotherapy, to
improve disease outcomes in cancer patients.

2. Chemotherapy and Immunogenic Cell Stress
2.1. Mechanisms of Chemotherapy-Induced Immunogenic Cell Stress

The use of chemotherapy as a treatment modality for cancer started in the mid-20th
century and has remained one of the pillars of cancer therapy [60,61]. Currently, chemother-
apy is a component of the first-line treatment option for several cancer types, including
breast [62], small-cell lung and non-small-cell lung [63,64], colorectal [65], pancreatic [66],
and bladder [67] cancer. As immunotherapy emerges as a new pillar of cancer therapy,
identifying how immunotherapy might synthesize with chemotherapy in this new era is
critical. Many chemotherapeutic agents have immunosuppressive side effects, such as de-
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pletion of effector cells [68]. Theoretically, this characteristic would make chemotherapeutic
drugs incompatible with immunotherapy. Paradoxically, depending on dose and schedule,
chemotherapy-induced lymphopenia may actually be beneficial for the expansion of tumor
antigen-specific effector cells, especially in the context of vaccine treatment and adoptive
cell transfer [4,69]. Chemotherapeutic agents also exert anti-cancer immunity by directly
interacting with immune cell subsets causing the selective depletion of immunosuppres-
sive cells and the activation of immune effector cells [70]. Lastly, chemotherapy induces
immunogenic modulation and ICD, allowing for improved immune targeting of tumor
cells [22].

Immunogenic modulation and ICD are consequences of cell stress; however, chemother-
apeutic agents do not directly target the ER. Different conventional chemotherapeutic agents
have diverse chemical structures and functions, yet their basic mechanisms involve tar-
geting the rudimentary functions of cell division [71]. Chemotherapeutic agents classified
as alkylating agents, antimetabolites, anti-tumor antibiotics, and topoisomerase inhibitors
primarily target the DNA or DNA replication machinery, whereas mitotic inhibitors disrupt
the microtubules [22,68]. These on-target effects also frequently result in inhibition of RNA
transcription, protein translation, and cell replication, inducing ER stress response via
secondary effects [22,72] that activate the protein kinase RNA (PKR)-like ER kinase (PERK)
signaling pathway, which ultimately promotes the cell-surface translocation of CRT, an
important DAMP involved in ICD and immunogenic modulation [73–76]. Notably, abro-
gating the ER stress response minimizes the immunogenicity of chemotherapy. Mutation or
knockdown of PERK and its downstream molecular components such as eIF2a, caspase-8,
BAP31, Bax, Bak, or SNAREs inhibits CRT translocation by anthracycline and oxaliplatin.
Interestingly, anthracyclines continue to stimulate cell death despite depletion of PERK,
caspase-8, or SNAREs but fail to induce ICD [76]. Furthermore, knockdown or blockade
of CRT reduces DC-mediated phagocytosis and immune responses to tumor cells treated
with anthracyclines [25]. In these studies, immunogenicity was restored via adsorption of
recombinant CRT on the tumor cell surface [25,76].

The level of immunogenicity, which can range from immunogenic modulation to
ICD, of a particular chemotherapy is associated with the intensity and kinetics of the
ER stress response it induces [22,72,77]. Traditional chemotherapeutic agents that are
considered bona fide ICD inducers include several anthracyclines such as doxorubicin,
epirubicin, idarubicin, and mitoxantrone, as well as some alkylating agents such as cy-
clophosphamide and oxaliplatin [8]. Other chemotherapeutic agents do not induce ICD
but are still immunogenic, albeit to lesser degrees. Non-ICD-inducing chemotherapies
including, but not limited to, anti-metabolites (i.e., 5-fluorouracil, 5′-aza-2′deoxycytidine,
and gemcitabine), mitotic inhibitors (docetaxel, vinorelbine, and paclitaxel), and alkylating
agents (cisplatin, melphalan, and carboplatin) have been reported to promote immunogenic
modulation and sensitize tumor cells to immune attack through phenotypic alterations,
including increased tumor antigen expression and presentation, increased apoptotic sig-
naling, upregulated expression of activating NK ligands, and augmented cell membrane
permeability [4,22,38,78]. For instance, in studies exploring the effects of docetaxel and
cisplatin/vinorelbine in diverse human cancer cell lines, it was shown that the chemother-
apies enhanced TAA expression and upregulated components of the antigen processing
and presentation machinery, including MHC-I, peptide transporters, chaperones, and
immunoproteasome subunits [20,79]. Notably, blocking MHC-I was shown to decrease
CTL-mediated killing of chemotherapy-treated tumor cells, establishing the role of upregu-
lated MHC-I in the chemotherapy-induced immunogenic response. In addition, docetaxel
and cisplatin/vinorelbine promoted pro-apoptotic signals and enhanced sensitivity to
CTL-mediated killing, specifically via upregulation of Fas and ICAM-1 [20,79].

The characteristics (structural, chemical, mechanistic, etc.) that enable chemotherapy
to induce ICD, immunogenic modulation, or both are currently unknown. Cisplatin, despite
its similarity to the ICD-inducer oxaliplatin, is unable to induce the strong ER response
needed for the surface exposure of CRT and thus is incapable of promoting bona fide
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ICD [80,81]. Nevertheless, cisplatin is capable of inducing immunogenic modulation such
as the upregulation of MHC class I, M6PR, and Fas expression on tumor cells, thereby
sensitizing the tumor cells to immune attack [48,82–84]. Meanwhile, some chemotherapies
that are capable of promoting CRT translocation are incapable of inducing bona fide
ICD [78]. For example, docetaxel treatment increased CTL-mediated killing of tumor cells
via CRT translocation and increased antigen processing but did not induce DAMP (ATP or
HMGB1) secretion required for ICD [20]. Even with the gaps in knowledge on what exactly
dictates ICD versus immunogenic modulation, it appears that both are part of the same
spectrum that results from immunogenic cell stress [22].

2.2. Chemotherapy-Induced Immunogenic Cell-Stress Response in Preclinical Models

The immunogenic properties of chemotherapy could be harnessed to potentiate the
anti-tumor activity of immunotherapeutic regimens. Immune checkpoint inhibitors (ICIs)
targeting CTLA-4 and the PD-1/PD-L1 axis have shown promising clinical activity in
multiple cancer types, but so far only a limited population of patients benefits from these
therapies [85]. Several preclinical findings suggest that chemotherapy and ICIs are comple-
mentary to one another and thus may be rational combination partners to elicit synergistic
or additive anti-tumor effects. First, tumors with an inflamed phenotype have higher
response rates to ICIs [86,87]. In several murine tumor models, chemotherapy, via ICD
and/or direct effects on immune cells, has been shown to promote immune infiltration
into the TME, thereby increasing the efficacy of ICIs [78,88–91]. One study indicated that
immunogenic chemotherapy may be capable of converting immunologically cold lesions
into hot tumors [88]. Pfirschke, et al. reported that autochthonous tumors lacking T cell
infiltrates could be sensitized to anti-tumor immunity when suitable ICD inducers, such as
oxaliplatin and cyclophosphamide, were combined with anti-PD-1 and/or anti-CTLA-4.
They also found that the immune-mediated tumor rejection was due to the direct action of
the chemotherapeutic drugs on the tumor cells, was dependent on innate immune sens-
ing through TLR-4 signaling, and required CD8+ T cell activity [88]. Second, numerous
chemotherapies have been reported to upregulate the expression of PD-L1 on tumor or
myeloid cells [86,92–95], which reduces treatment efficacy but paradoxically increases the
target for ICIs that can impede this immunosuppressive effect. Grabosch, et al. demon-
strated that cisplatin induced PD-L1 expression on murine ovarian cancer partly via the
cGAS/STING pathway and the combination of cisplatin with anti-PD-L1 improved the
overall survival of tumor-bearing mice [95].

The ability of some chemotherapeutic agents to increase TAA expression and promote
antigen processing and presentation makes them a feasible combination partner for cancer
vaccines [4,96]. In one study, recombinant poxvirus vaccine in combination with docetaxel
was shown to inhibit tumor growth in a murine colorectal cancer model. The tumor
growth suppression was associated with the expansion of vaccine antigen-specific CD8+ T
cells as well as antigen cascade that generated other T cells specific to vaccine-unrelated
antigens [97]. In another study, cisplatin/vinorelbine in combination with a yeast-based
vaccine promoted an antigen-specific CD8+ T cell response and increased the tumor surface
expression of Fas, which increases sensitivity to CTL-mediated killing, thereby improving
the survival of non-small-cell lung-cancer-bearing mice [98]. In these studies, chemotherapy
also had a direct effect on the immune cells, including regulatory T cell (Treg) depletion
and effector T cell expansion, which additionally contributed to the enhanced anti-tumor
response [97,98].

2.3. Chemotherapy-Induced Immunogenic Cell-Stress Response in the Clinic

Chemotherapy in combination with immunotherapy, such as ICIs and other tumor-
targeting monoclonal antibodies, has been approved in multiple cancer settings [99–102].
However, the contribution of chemotherapy-mediated ICD and immunogenic modulation
to the immunological response in these combinations is largely unknown. Elucidating the
link between immunogenic cell stress response and therapeutic response in the clinic is
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limited by several factors, including the gap in knowledge with regard to the most effective
chemotherapy dose and schedule to induce immunogenic cell stress, lack of systemic
biomarkers, and difficulty in obtaining appropriate patient samples for monitoring [103].
In most cases, chemotherapeutic agents are used at or near their maximum tolerated dose,
which is effective at inducing tumor cell death but may also result in toxicities [104]. Alter-
native chemotherapy dosing schedules such as metronomic chemotherapy (i.e., frequent
low doses of chemotherapy) and medium-dose intermittent chemotherapy are currently
being explored [105–107]. Clinical trials identifying ICD-related biomarkers are underway
but thus far have given mixed results. For example, in breast cancer, one study showed
that chemotherapy was associated with decreased serum HMGB1, which correlated with
treatment efficacy [108], while a separate study demonstrated that complete loss of HMGB1
was linked to poor response [109]. In an ongoing study investigating colorectal liver metas-
tases for markers of ICD (NCT01516710), it was observed that patients who had received
neoadjuvant chemotherapy (including oxaliplatin) exhibited a gene signature related to
toll-like receptor signaling, IFN response, and leukocyte infiltration [110]. However, a
follow-up study showed that there was no association between neoadjuvant chemotherapy
and intratumoral T cell density within colorectal liver metastases. Investigating further, it
appeared that this discrepancy may have been temporal in nature, being associated with a
transient increase in T cell density, as there was a significant difference in T cell infiltrate
between patients who received neoadjuvant chemotherapy fewer than 9.5 weeks before
resection of liver metastases and those who did not receive chemotherapy or those who
had a longer interval between treatment and resection [111]. The implications of these
findings not only described possible biomarkers but also gave better comprehension that
can inform optimal treatment schedules combining chemotherapy and immunotherapy.

Two recent Trial Watch publications identified over 150 ongoing or recently completed
clinical trials that included at least one ICD-inducing chemotherapeutic agent [112,113],
and we have identified 10 additional trials on the ClinicalTrials.gov database (http://www.
clinicaltrials.gov/, accessed on 1 November 2022) examining or utilizing chemotherapy-
mediated immunogenic cell-stress responses that were initiated since 2019 (Table 1). In
line with the current interest in combining standard-of-care chemotherapy with ICIs, most
of these studies employ cyclophosphamide, oxaliplatin, or doxorubicin in combination
with anti-PD-1 [78,112,113]. Furthermore, a number of these studies are being applied
in the breast cancer setting. The TONIC trial (NCT02499367) aims to identify strategies,
including no treatment induction versus radiotherapy, cisplatin, cyclophosphamide, or
doxorubicin, that could sensitize metastatic triple negative breast carcinoma (TNBC) to
PD-1 blockade [114]. Preliminary reports suggest that the overall objective response rate
was 20% and that the majority of responses were observed with doxorubicin, then with
cisplatin. Furthermore, RNA analysis revealed an upregulation of gene signatures in-
volved in PD-1/PD-L1 and T cell cytotoxicity pathways after induction with doxorubicin
and cisplatin [114]. Furthermore, there was a trend towards improved T cell infiltra-
tion and increased T-cell receptor (TCR) diversity in the doxorubicin cohort, which is
currently expanded in the TONIC-2 trial (NCT04159818). In two parallel randomized
Phase IIb studies, one in metastatic TNBC (ALICE; NCT03164993 [115]) and the other in
hormone positive breast cancer (ICON; NCT03409198 [116]), pegylated liposomal doxoru-
bicin and cyclophosphamide are being investigated in combination with atezolizumab and
nivolumab plus ipilimumab, respectively. The hypothesis is that the semi-metronomic
chemotherapy regimen will induce ICD and counter immunosuppressive cells, thereby
sensitizing patients to ICIs. The primary objective of these studies is to investigate the safety
and efficacy of adding ICIs to the immunogenic chemotherapeutic regimen. In addition,
these studies will include a comprehensive assessment of quality of life, examination of
changes in the immunological milieu, analysis of biomarkers, and mechanisms of resis-
tance [115,116]. The results of these trials will inform the development of combinatorial
therapeutic interventions involving immunogenic chemotherapies and ICIs.

http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/
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Table 1. Clinical trials investigating immunogenic cell stress mediated by chemotherapy.

Clinical Trial Trial Title Conditions Treatment Phases

NCT03801304

Trial to Evaluate Safety and
Efficacy of Vinorelbine With

Metronomic Administration in
Combination With

Atezolizumab as Second-line
Treatment for Patients With

Stage IV Non-small
Cell Lung Cancer

Non-small-cell lung cancer Atezolizumab
Vinorelbine Phase II

NCT04159818

Immune Induction Strategies
to Improve Response to

Immune Checkpoint Blockade
in Triple Negative Breast

Cancer (TNBC)
Patients (TONIC-2)

Metastatic breast cancer

Nivolumab
Cisplatin
Low-dose

doxorubicin

Phase II

NCT04043195

Nivolumab and Ipilimumab in
Combination With

Immunogenic Chemotherapy
for Patients With Advanced

NSCLC

Advanced non-small cell lung
cancer (NSCLC)

Oxaliplatin
Nivolumab
Ipilimumab

Phase I
Phase II

NCT04463368

Isolated Hepatic Perfusion in
Combination With

Ipilimumab and Nivolumab in
Patients With Uveal

Melanoma Metastases
(SCANDIUM II)

Uveal melanoma
Liver metastases

Melphalan
Ipilimumab
Nivolumab

Phase I

NCT04072263
Adoptive T Cell Therapy in

Patients With Recurrent
Ovarian Cancer (OVACURE)

Recurrent ovarian cancer

Tumor-infiltrating
lymphocytes

Interferon alfa 2A
Carboplatin

Paclitaxel

Phase I
Phase II

NCT04262687

Chemotherapy and
Immunotherapy as Treatment
for MSS Metastatic Colorectal

Cancer with High Immune
Infiltrate (POCHI)

Metastatic colorectal cancer
High immune infiltrate

Microsatellite stable (MSS)

Capecitabine
Oxaliplatin

Bevacizumab
Pembrolizumab

Phase II

NCT05420584

Neoadjuvant Arterial
Embolization Chemotherapy
Combined PD-1 Inhibitor for

Locally Advanced Rectal
Cancer (NECI)

Rectal neoplasms

Tislelizumab
Capecitabine
Oxaliplatin Phase II

NCT04989218

Durvalumab and
Tremelimumab with

Platinum-based Chemo-
therapy in Intrahepatic

Cholangiocarcinoma (ICC)

Cholangiocarcinoma

Gemcitabine
Cisplatin

Tremelimumab
Durvalumab

Phase I
Phase II
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Table 1. Cont.

Clinical Trial Trial Title Conditions Treatment Phases

NCT05144698 RAPA-201 Therapy of
Solid Tumors

Breast cancer
Small cell and non-small cell

lung cancer
Triple negative breast cancer

Gastric cancer
Esophageal adenocarcinoma

Gastric junction adeno-
carcinoma

Esophageal squamous cell
carcinoma

Head and neck cancer
Squamous cell carcinoma of

oral cavity
Squamous cell carcinoma of

larynx
Squamous cell carcinoma of

nasopharynx
Squamous cell carcinoma of
other specified sites of skin

Carcinoma of unknown
primary

Bladder cancer
Malignant melanoma

RAPA-201 cells
Carboplatin

Paclitaxel
Phase II

NCT05307198

Rectal Artery Infusion
Chemotherapy Combined with

Anti-PD1 Antibody for MSS
LARC (RAIC)

Rectal neoplasms
Capecitabine
Oxaliplatin
Sintilimab

Phase II

NCT02499367

Nivolumab After Induction
Treatment in Triple-negative

Breast Cancer (TNBC)
Patients (TONIC)

Breast cancer

Nivolumab
Radiation therapy

Low dose
doxorubicin

Cyclophosphamide
Cisplatin

Phase II

NCT03409198

Phase IIb Study Evaluating
Immunogenic Chemotherapy
Combined with Ipilimumab

and Nivolumab in Breast
Cancer (ICON)

Breast cancer
Hormone receptor positive

tumor
Metastatic breast cancer

Ipilimumab
Nivolumab
Pegylated
liposomal

doxorubicin
Cyclophosphamide

Phase II

NCT03164993

Atezolizumab Combined with
Immunogenic Chemotherapy

in Patients with Metastatic
Triple-negative Breast

Cancer (ALICE)

Breast cancer
Triple-negative breast cancer

Atezolizumab
Pegylated
liposomal

doxorubicin
Cyclophosphamide

Phase II

NCT02649855
Docetaxel and PROSTVAC for
Metastatic Castration-Sensitive

Prostate Cancer

Prostate cancer
Prostate neoplasms

PROSTVAC-V
PROSTVAC-F

Docetaxel
Phase II

PD-1: programmed cell death protein 1, RAPA-201: rapamycin-resistant T cells, PROSTVAC: vaccine targeting
prostate-specific antigen.

In the clinic, cancer vaccines have proven safe, although thus far have shown only
modest therapeutic efficacy [117]. Several clinical trials have been designed to test the
synergistic or additive effect of combining immune-modulating chemotherapies with vac-
cines. One previously concluded Phase II study assessed docetaxel alone versus docetaxel
combined with PANVAC in metastatic breast cancer [118]. PANVAC consists of viral
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vectors, including a priming dose with vaccinia vector and subsequent boosting doses
with fowlfox vector, recombinant for human CEA and MUC-1 genes together with trans-
genes for a triad of costimulatory molecules B7.1, ICAM-1, and LFA-3 (TRICOM). The
docetaxel + PANVAC combination resulted in progression-free survival (PFS) of 7.9 months
compared to 3.9 months in the docetaxel arm alone. In the combination arm, 11/16 (69%)
evaluable patients developed T cell specific responses to CEA or MUC-1, while in the
docetaxel arm alone, 8/15 (53%) patients developed T cell responses to the vaccine-targeted
TAAs [118]. This indicated that there was no correlation between generation of T cell
specific immune response and time to progression, but rather supported the observation
that docetaxel-induced immunogenic modulation was sufficient to mediate the improved
outcome in PFS.

An ongoing clinical trial employing the TRICOM vaccine platform targeting the TAA
PSA (PROSTVAC) aimed to evaluate the optimal sequence of PROSTVAC and docetaxel
in metastatic castration-sensitive prostate cancer (NCT02649855). The study design is
composed of three arms with androgen deprivation therapy (ADT) followed by docetaxel
plus PROSTVAC versus ADT, followed by sequential docetaxel then PROSTVAC versus
ADT followed by PROSTVAC then docetaxel. Preliminary analysis showed that of the
patients who received ADT followed by docetaxel and then PROSTVAC, 31%, 50%, and
50% had CD4/CD8 responses to tumor antigens PSA, MUC-1, and brachyury, respectively.
Meanwhile, the cohort that received concurrent docetaxel and PROSTVAC had 50%, 58%,
and 42% responses, and the cohort that received PROSTVAC and then docetaxel had 72%,
39%, and 71% responses to PSA, MUC-1, and brachyury, respectively. These preliminary
data suggest that scheduling the vaccine followed by chemotherapy generated the most
robust immune activation [119]. Associations between immune responses and clinical
outcomes are yet to be reported.

3. Radiation and Immunogenic Cell Stress
3.1. Mechanisms of Radiation-Induced Immunogenic Cell Stress

While radiation is primarily purposed as a cytotoxic therapy, an immunogenic po-
tential for this therapeutic intervention has also been recognized for more than two
decades [120,121]. In 2002, Friedman summarized what was known of this immuno-
genic potential of radiotherapy, employing Matzinger’s danger model of immunity [122],
and made a call-to-action to elucidate the mechanisms of radiation-induced immunogenic-
ity, envisioning that these could be exploited in the field of immuno-oncology [120]. Since
then, it has become well-established that radiotherapy-mediated immunogenic cell stress
involves the induction of DNA damage and the generation of reactive oxygen species
(ROS), effectuating an ER stress response and culminating in the release of DAMPs and/or
immunogenic alterations in tumor phenotype [76,123–126].

The abscopal effect—a rare clinical phenomenon whereby irradiation of a primary
lesion leads to regression of a distal lesion outside of the radiation field in metastatic
disease—served as early evidence of the immunogenic potential of radiotherapy. In a land-
mark case report, a patient with metastatic melanoma receiving maintenance ipilimumab
experienced surprising and remarkable regression of their metastatic disease following
radiotherapy of a paraspinal lesion [127]. Preclinical studies in murine tumor models
have been instrumental in providing mechanistic understanding of the contribution of
immunogenic cell stress in mediating radiation-induced systemic anti-tumor immunity
responsible for the abscopal effect [128]. Utilizing a murine model of mammary carcinoma,
Demaria, et al. emphasized that the abscopal effect observed when radiotherapy was
combined with a dendritic cell growth factor (Flt3L) was immune-mediated, as it was not
recapitulated in nude mice, and antigen-specific, as abscopal regression was not evident
in a distal lymphoma lesion of disparate antigenicity [129]. In a study that employed a
three-dimensional volume-based lattice radiation modality to deliver high-dose radiation
to whole versus partial tumor volumes, it was observed that 20% volume irradiation in two
10% volume lattices mediated equivalent tumor regression as whole volume irradiation in
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both the primary tumor (i.e., bystander effect) and distal tumor (i.e., abscopal effect) [130].
Furthermore, the tumor regression observed with partial volume irradiation was associ-
ated with a robust Th1 immune response, as well as an anti-angiogenic phenotype [130].
Similarly, localized radiotherapy in combination with TAA-targeted vaccine resulted not
only in the induction of vaccine-derived TAA-specific T cells but also the activation of
T cells against antigens not encoded by the vaccine. This antigen cascade stimulated by
radiotherapy and vaccine induced the regression of the primary TAA-expressing tumor,
but more remarkably, it also mediated the regression of a distal tumor that was of the same
origin as the primary tumor but negative for the TAA targeted by the vaccine [131].

The immunogenic cell stress generated by radiotherapy alters the tumor phenotypic
profile, sensitizing the surviving fraction of tumor cells to immune targeting. Radiation,
even at sublethal doses, was found to promote surface translocation of CRT, whereas the
reduction of surface CRT, either by blockade or siRNA knockdown, abrogated this en-
hanced effect following radiation exposure [132]. Furthermore, siRNA knockdown of PERK
interrupted CRT translocation to the plasma membrane, emphasizing the role of ER stress
and CRT translocation in enhancing CTL-mediated lysis of radiation-exposed tumor cells.
Radiotherapy is also able to upregulate TAA expression (e.g., CEA and MUC1) and the
expression of components of the antigen processing and presentation machinery (MHC-I,
peptide transporters, chaperones, and immunoproteasome subunits) [18,132–134]. Notably,
radiation exposure could diversify the peptide pool being presented by MHC-I on the tumor
cell surface, which has profound implications in terms of antigen cascade [134]. Radiother-
apy may also shift the balance between pro-apoptotic and anti-apoptotic machinery toward
a more precarious state poised for immune-mediated cell death. For example, radiotherapy
has been reported to augment Fas and ICAM-1 expression [18,50,133,135]. These molecules
may contribute to, but individually are not sole determinants of, radiotherapy-induced
immunogenicity, since some radiation-exposed tumor cells that did not upregulate Fas
or possessed defective Fas signaling were still susceptible to CTL-mediated killings [18],
whereas blocking ICAM-1 did not abrogate CTL-mediated lysis [50]. Nevertheless, in
studies employing a murine colorectal cancer model, the sustained upregulation of Fas
by radiotherapy in combination with TAA-specific CTL adoptive transfer or vaccine was
associated with tumor rejection [50,135]. Furthermore, the anti-tumor efficacy of the ra-
diotherapy and vaccine combination was abrogated in mice defective for Fas signaling,
establishing a role for Fas receptor as a mediator of immunogenic cell-stress response fol-
lowing radiotherapy [135]. Lastly, radiotherapy could upregulate costimulatory molecules
to facilitate T cell activation. OX40L and 41BBL were reported to increase in three hu-
man prostate carcinoma models after radiation exposure, which translated to significantly
increased CTL reactivity to target antigen [53].

Overall, these studies confirm that radiotherapy induces cell stress that results in
immunogenic modulation and ICD. Similar to what was observed with chemotherapy,
these two responses exist on a continuum. A study by Gameiro, et al. observed increas-
ing secretion of ATP and HMGB1 in a dose-dependent manner from sublethal to lethal
irradiations. Notably, ATP and HMGB1 were secreted in some tumor models even at
sublethal doses of radiation, while CRT surface translocation, classically a cardinal sign of
immunogenic cell death, occurred in all tumor models at sublethal doses of radiation [132].
This was corroborated in another study demonstrating significantly enhanced ATP and
HMGB1 secretion following sublethal radiation exposure, in conjunction with upregulated
immunogenic DAMPs and cytokines [136].

3.2. Different Modalities of Radiotherapy Induce Immunogenic Cell Stress

As the field of radiation oncology evolves with more diverse and advanced modes
of radiation delivery [137], the question arises whether each of these different radiation
modalities is capable of inducing immunogenic cell stress in the same way as has been
described in the above studies, each of which employed photon radiation sources (Figure 2).
Radiotherapy involving beta (β−) particle emitters has been shown to induce immunogenic
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cell stress responses. After exposure to β− particle emission using Sm-153, a bone-seeking
radionuclide used to palliate metastatic bone pain, different human tumor cell lines demon-
strated upregulation of at least two of the following markers: Fas, MHC-1, ICAM-1, CEA,
and MUC-1 [133]. Sm-153 exposure also resulted in enhanced CTL-mediated lysis specific
for MUC-1, CEA, and PSA. In another study employing a β− particle emitter, anti-CEA
monoclonal antibody radiolabeled with yttrium-90 (Y-90) was combined with CEA-targeted
vaccine to treat mice implanted with CEA+ murine carcinoma tumors [138]. This combina-
tion resulted in increased survival of tumor-bearing mice when compared to either modality
alone. This survival advantage was mediated by the engagement of the Fas/Fas ligand
pathway and was also associated with antigen cascade and increased tumor infiltration of
CEA-specific T cells. Interestingly, this study further showed that the tumor-infiltrating
CD8+ T cells were less radiation-sensitive than naïve CD8+ T cells. This observation was
corroborated by an earlier study, which demonstrated that memory CD8+ T cells were
more resistant to apoptosis than naïve CD8+ T cells following whole-body irradiation in a
murine model [139].
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Figure 2. Sublethal exposure to photon, proton, or alpha radiation increases CTL lysis of prostate
carcinoma cells in vitro. (A) Sublethal exposure of LNCaP prostate tumor cells in vitro to photon,
proton radiation, or alpha radiation (223Ra) has minimal effect on cell viability. Human prostate
carcinoma cells were mock-irradiated (0 Gy) or treated with either 8 Gy of photon radiation, 8 Gy
proton radiation, or 8 Gy of 223Ra. Radiation-treated cells were cultured for an additional 72–96 h,
and viability was determined by AO/PI viability dye. Depicted is % viable cells. (B) Human LNCaP
prostate carcinoma cells were mock-irradiated (0 Gy, open bars) or treated with either 8 Gy of photon
radiation (closed bars), 8 Gy proton radiation (closed bars), 4 Gy of of 223Ra (gray bars), or 10 Gy of
223Ra (closed bars). Radiation treated cells were cultured for an additional 72–96 h and then used as
targets in an overnight CTL lysis assay. CEA-, MUC-1-, and brachyury-specific CD8+ T cells were
used as effectors at an E:T ratio of 30:1. Experiments were repeated 1–3 times with similar results.
* = p < 0.05. Adapted from [132,140,141].

Compared to β- particle radiation, alpha particle radiation has a shorter path length
and larger linear energy transfer, which translates to less myelosuppression in the adjacent
bone marrow compartment [142]. When Ra-223, an alpha particle emitter that complexes to
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metastatic bone lesions, was used to irradiate different human carcinoma cell lines, it was
observed that Ra-223 induced ER stress and upregulated MHC-I and CRT expression [138].
Moreover, exposure to Ra-223 enhanced CTL-mediated lysis, which was dependent upon
CRT surface expression, as this effect was abrogated with the addition of calreticulin-
blocking peptide.

Proton particle radiation is a new and impressive radiation modality that is capable
of delivering high doses of radiation in a precise and accurate manner such that adjacent
healthy tissues can be spared, as in cases of spinal cord or skull base tumors [139]. In
a study using a diverse set of human cancer cell lines, it was demonstrated that proton
particle radiation could upregulate MHC-1, ICAM-1, and TAAs, as well as surface translo-
cation of CRT [137]. Proton particle radiation also mediated enhanced CTL-mediated lysis,
which was dependent on CRT. Intriguingly, the study further demonstrated that resident
cancer stem cells were more viable following radiotherapy than non-cancer stem cells
yet maintained upregulation of calreticulin, thus suggesting that while cancer stem cells
are more recalcitrant to the cytotoxic effects of radiotherapy, they remain susceptible to
radiation-induced immunogenic cell stress.

Radiofrequency ablation (RFA) is a type of thermal ablation modality [143], as op-
posed to ionizing radiation (IR), as illustrated by the examples above. When sublethal
hyperthermia was applied to a CEA-expressing murine colorectal carcinoma in vitro, it
induced Fas, MHC-I, and CEA upregulation, which translated to enhanced CTL-mediated
lysis [144]. In vivo, RFA also induced immunogenic modulation, and when combined
with CEA-targeting vaccine, promoted tumor regression and abscopal effect, which was
associated with CD4 immune responses to CEA and cascade antigens [144].

Another non-ionizing radiotherapy that induces immunogenic cell stress is photother-
apy [7,8]. Phototherapy destroys cancer cells by utilizing light to trigger photosensitizers
that produce ROS (photodynamic therapy) or photothermal agents that generate heat (pho-
tothermal therapy) [145,146]. When appropriate photoagents and light doses are employed,
phototherapies can promote the release of TAAs and DAMPs [8,147]. This immunogenic
cell stress response can be further exploited to enhance antitumor activity through combina-
tion with immunotherapy, including checkpoint blockade, metabolic modulators, targeted
antibodies, and CAR T cells (reviewed here: [148,149]). Furthermore, immunotherapy and
phototherapy can be integrated such that monoclonal antibodies that recognize tumor
antigens are conjugated with photoagents (ex. IR700), allowing for highly targeted pho-
toimmunotherapy (PIT) that is activated by exposure to near infrared light (NIR) [150].
A preclinical study utilizing avelumab, an anti-PD-L1 antibody, that is conjugated with
IR700 (avelumab-IR700) showed specific binding and killing of tumor cells after exposure
to near-infrared light [151]. Importantly, NIR-PIT using avelumab-IR700 was shown to
suppress tumor growth and improve survival in a lung adenocarcinoma model. In the
clinic, several trials investigating EGFR-targeting cetuximab-IR700 (RM1929) in head and
neck cancer are underway (NCT05265013, NCT05182866, NCT03769506, NCT04305795).

Finally, stereotactic ablative radiotherapy (SABR) represents a technological advance-
ment in the field of radiation oncology that can deliver high doses of photon radiotherapy
with high precision and accuracy [152]. Along with these advances come questions regard-
ing optimal scheduling, dosing, and fractionation in order to maximally induce and, in
turn, exploit the resulting immunogenic cell stress (reviewed here: [153]).

3.3. Radiotherapy-Induced Immunogenic Cell Stress Response in the Clinic

Observations from several early studies have lent credence to the immunogenic poten-
tial of radiotherapy in the clinic. Select ongoing studies on the ClinicalTrials.gov database
(http://www.clinicaltrials.gov/, Accessed on 1 November 2022) examining the immuno-
logical aspect of radiotherapy are listed in Table 2. In a study by Nesslinger, et al. comparing
pre- and post-treatment serum samples in patients with nonmetastatic prostate cancer, it
was demonstrated that 4 of 29 (13.8%) patients receiving external beam radiotherapy and
5 of 20 (25%) patients receiving brachytherapy developed antibody responses to TAAs

http://www.clinicaltrials.gov/
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following treatment, as compared to 0 of 14 (0%) patients receiving radical prostatectomy
and 2 of 36 (5.6%) patients who chose watchful waiting, serving as control [154]. Mean-
while, Schaue, et al. demonstrated that survivin-specific CD8+ T cells were increased
in 9 of 13 (69%) colorectal cancer patients and in 7 of 11 (64%) prostate cancer patients
receiving chemoradiotherapy and radiotherapy, respectively [155]. Collectively, these early
observations suggested that standard-of-care radiotherapy had the capacity to elicit a
TAA-specific immune response. An ongoing observational clinical study in nonmetastatic
prostate cancer aims to characterize the immunomodulatory effects of radiotherapy on the
T cell, NK cell, B cell, Treg, and Breg compartments (NCT04774133), which will further
elucidate the immunogenic potential of radiotherapy.

Table 2. Clinical trials investigating immunogenic cell stress mediated by radiotherapy.

Clinical Trial Trial Title Conditions Treatment Phases

NCT04774133
The Immunodynamic Effect of

Radiotherapy in Prostate
Cancer Patients

Prostate cancer Radiation N/A

NCT03942328

Modified Immune Cells
(Autologous Dendritic Cells)

and a Vaccine (Prevnar)
After High-Dose External

Beam Radiation Therapy in
Treating Patients With

Unresectable Liver Cancer

Hepatocellular carcinoma
Intrahepatic

cholangiocarcinoma

External beam
radiation,

therapeutic
autologous

dendritic cells,
Pneumococcal

13-valent conjugate
vaccine

Phase I

NCT03789097 Vaccination With Flt3L,
Radiation, and Poly-ICLC

Non-Hodgkin’s lymphoma
Metastatic breast cancer

Head-and-neck squamous-cell
carcinoma

Subtherapeutic
radiation

Fl3tL
Poly-ICLC

Pembrolizumab

Phase I
Phase II

NCT03646617

Ipilimumab and Nivolumab
With or Without

Hypofractionated
Radiotherapy in Patients With

Metastatic Melanoma
(RadVax)

Metastatic melanoma

Hypofractionated
radiation

Ipilimumab
Nivolumab

Phase II

NCT03313804
Priming Immunotherapy in

Advanced Disease
With Radiation

Non-small-cell lung cancer
Head-and-neck

squamous-cell carcinoma

Stereotactic body
radiation or
fractionated

radiation
Nivolumab or

pembrolizumab or
atezolizumab

Phase II

NCT04454528
BreastVAX: Radiation Boost to
Enhance Immune Checkpoint
Blockade Therapy (BreastVAX)

Breast cancer
Hypofractionated

radiation
Pembrolizumab

Phase I
Phase II

Flt3L: an immune cell growth factor, Poly-ICLC: immune activating factor.

Clinical trials examining the capability of enhancing TAA-specific immune responses
using vaccines in combination with radiotherapy have previously been undertaken. Ra-
diotherapy was combined with PROSTVAC in a randomized Phase II clinical study in
patients with localized prostate cancer, and investigation of TAA-specific immune responses
demonstrated at least a three-fold increase in PSA-specific T cells in 13 of 17 patients re-
ceiving radiotherapy and vaccine, as compared to no detectable increases in 11 patients
receiving radiotherapy alone [156]. Furthermore, antigen cascade was observed in six of
eight evaluable patients, with TAA-specific T cell responses to PSMA, PAP, PSCA, and/or
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MUC-1. Another Phase II trial utilizing PROSTVAC, this time in combination with Sm-153,
in patients with metastatic prostate cancer with bone lesions having failed prior docetaxel
therapy demonstrated a significant increase in progression-free survival to 3.7 months
with radiation and vaccine, as compared to 1.7 months with radiation alone (p = 0.041;
HR = 0.51, p = 0.046) [157]. Collectively, these studies challenged the traditional dogma
that radiotherapy was immunosuppressive and demonstrated that radiotherapy can be
combined with vaccines.

A study employing intratumoral injection of poly-ICLC (TLR3 agonist) in combination
with an autologous dendritic cell vaccine in heavily pre-treated patients with progres-
sive metastatic solid tumors saw 5 of 10 patients achieve stable disease as their best re-
sponse [158]. Remarkably, when a second cohort was recruited with the added combination
of SABR, five of six patients achieved stable disease as their best response, illustrating a
rational partnership between DC vaccine and radiotherapy. There are ongoing clinical
trials exploring this rational partnership employing external beam radiotherapy in com-
bination with autologous dendritic cell adoptive cell transfer and pneumococcal vaccine
(to induce a Th1 milieu) in patients with unresectable liver cancer (NCT03942328) and
another employing subtherapeutic radiotherapy in combination with intratumoral injection
of poly-ICLC (TLR3 agonist) and Flt3L (dendritic cell growth factor), in addition to systemic
pembrolizumab (anti-PD-1) in patients with non-Hodgkin’s lymphoma, head and neck
squamous cell carcinoma, or metastatic breast cancer (NCT03789097).

In a study investigating the combination of radiotherapy and ipilimumab in metastatic
melanoma, as best response, 5 of 22 (22.7%) patients achieved partial response and 3 of
22 (13.6%) achieved stable disease [159]. Remarkably, of the patients who progressed
and received salvage pembrolizumab, 6 of 12 (50%) responded favorably with long-term
survival. In an interim analysis of this clinical trial, Victor, et al. employed the B16-F10
murine melanoma model and demonstrated in the group receiving combination radio-
therapy and anti-CTLA4 that distal lesions resistant to abscopal regression had marked
upregulation of PD-L1 as a dominant mechanism mediating resistance [160]. Accordingly,
they demonstrated that resistance to abscopal regression was surmounted with the addition
of PD-1/PD-L1 axis blockade, and that the triple combination was superior to dual check-
point blockade without radiotherapy. Analysis of tumor-infiltrating lymphocytes (TILs)
implicated that anti-CTLA4 predominantly mediated a decrease in the Treg compartment,
whereas anti-PD-L1 promoted a strong increase in CD8+ TILs. Moreover, the combination
synergistically increased the CD8+/Treg ratio. Finally, while radiation had a small positive
impact on CD8+ TILs, the predominant effect brought on by radiation was in diversifying
TCR clonotypes, again demonstrating the impact of antigen cascade as a consequence of
immunogenic cell stress.

Based on these observations, an ongoing Phase II clinical trial was launched in the
setting of metastatic melanoma to investigate the triple combination of radiotherapy plus
ipilimumab plus nivolumab (NCT03646617). There is also another ongoing study in the
setting of metastatic non-small-cell lung cancer and head-and-neck squamous-cell carci-
noma investigating the combination of immune checkpoint inhibition (pembrolizumab or
nivolumab or atezolizumab) followed by radiotherapy within 14 days, hypothesizing that
a robust effector immune response active at the time of immunogenic cell stress induction
with radiotherapy will best exploit this combination (NCT03313804). Another group is
investigating the safety and efficacy of different radiotherapy schedules in combination
with pembrolizumab in an ongoing clinical trial in the setting of early/operable breast
cancer (NCT04454528). All patients will undergo surgery on day 0: arm one will receive
radiotherapy on day -14 followed by pembrolizumab on day -7; arm two will receive the
reverse schedule; arm three will receive only pembrolizumab on day -14; and arm four will
not receive neoadjuvant therapy.
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4. Small-Molecule Inhibitors and Immunogenic Cell Stress
Mechanisms of SMI-Induced Immunogenic Cell Stress

Like chemotherapy and radiation, select SMIs have been reported to promote im-
munogenic cell stress responses [2]. SMIs are drugs, usually less than 500 Da in size,
that can target both extracellular and intracellular proteins including receptors, kinases,
epigenetic regulatory proteins, DNA damage repair enzymes, and proteasomes [161,162].
As of December 2020, 89 SMIs have been approved in the US and in China for application
in different cancer settings [162].

One of the SMIs best described to induce immunogenic cell stress is bortezomib, a
proteasome inhibitor approved for the treatment of multiple myeloma (MM) and mantle cell
lymphoma (MCL) [163]. As a proteosome inhibitor, bortezomib causes the accumulation of
unfolded proteins and increases ER stress [164]. Accordingly, bortezomib has been shown to
promote the surface translocation of CRT and HSP90, increasing DC phagocytosis of dying
MM cells, which in turn was shown to increase effector memory CD4+ and CD8+ T cell
responses in co-culture [165,166]. CRT surface translocation was required for the induction
of immune response, as the knockout of the CRT gene in MM cells abolishes the efficacy of
the bortezomib-killed cells to protect against tumor rechallenge in immunocompetent mice.
Furthermore, bortezomib induced the expression of ICD-related genes, most of which were
identified as IFN-stimulated genes, in the CRT-expressing cells but not in CRT-deficient
ones. Moreover, the type-1 IFN response induced by bortezomib was demonstrated to be
mediated by the cGAS/STING pathway [166]. This study implicates a broader potential for
bortezomib in mediating anti-tumor effects, especially in combination with immunotherapy.
Currently, this proteasome inhibitor is being evaluated with ICIs (Table 3).

Poly (ADP-ribose) polymerase (PARP) inhibitors prevent the repair of single-strand
DNA breaks and have been shown to cause synthetic lethality in homologous recombi-
nation repair deficient tumors, such as those with BRCA mutations [167]. As such, PARP
inhibitors have been approved for the treatment of BRCA-mutated ovarian, breast, and
pancreatic cancer. In addition to inducing synthetic lethality, PARP inhibitors have re-
cently been shown to induce immunogenic modulation. In vitro studies showed that the
PARP inhibitor olaparib upregulated surface expression of Fas and TRAIL-R2 [168,169].
In turn, olaparib-treated prostate cancer cells were more susceptible to NK cell-mediated
killing, and knocking out TRAIL-R2 was shown to abrogate this enhanced effect [169]. In
a preclinical study, the PARP inhibitor veliparib in combination with ionizing radiation
significantly increased MHC-I and PD-L1 expression on murine colorectal cancer cells
compared to radiation or veliparib alone [170]. However, the addition of veliparib did
not improve radiation-induced calreticulin surface translocation, indicating that radiation
was the main inducer of ER stress in this combination. Nevertheless, the combination of
veliparib, radiation, and PD-1 blockade delayed tumor growth and prolonged survival in
tumor-bearing mice compared to any other permutation this triple therapy tested. How-
ever, the contribution of veliparib-induced immunogenic modulation to the therapeutic
benefit remains to be elucidated. Clinical trials assessing PARP inhibitors with ICIs have
recently been reviewed by Wu et al. [171].
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Table 3. Clinical trials investigating the combination of small molecule inhibitors with immune
checkpoint blockade.

Clinical Trial Trial Title Conditions Treatment Phases

NCT04265872
Bortezomib Followed by

Pembrolizumab and Cisplatin
in metTNBC

Breast cancer
Bortezomib

Pembrolizumab
Cisplatin

Phase 1

NCT04258683

A Study of Pembrolizumab
Added to the Standard
First-Line Therapy of
Cyclophosphamide,

Bortezomib, and
Dexamethasone (CyBorD) for

NDMM NTE

Multiple myeloma

Cyclophosphamide
Bortezomib

Dexamethasone
Pembrolizumab

Phase 2

NCT04191096
NCT04934722

Efficacy and Safety of
Pembrolizumab (MK-3475)

Plus Enzalutamide Plus
Androgen Deprivation

Therapy (ADT) Versus Placebo
Plus Enzalutamide Plus ADT

in Participants With Metastatic
Hormone-Sensitive Prostate
Cancer (mHSPC) (MK-3475-

991/KEYNOTE-991)

Metastatic hormone-sensitive
prostate cancer

Enzalutamide
Pembrolizumab Phase 3

NCT04471974

ZEN-3694, Enzalutamide, and
Pembrolizumab for the
Treatment of Metastatic

Castration-Resistant
Prostate Cancer

Castration-resistant prostate
carcinoma

Metastatic prostate adeno-
carcinoma

Metastatic prostate small cell
carcinoma

Stage IV/IVA/IVB prostate
cancer AJCC v8

ZEN-3694
Enzalutamide

Pembrolizumab
Phase 2

NCT04946370

Maximizing Responses to
Anti-PD1 Immunotherapy

With PSMA-targeted Alpha
Therapy in mCRPC

Prostate cancer

225Ac-J591
Pembrolizumab

Androgen receptor
pathway inhibitor

Phase 1
Phase 2

NCT04262154

Study of Abiraterone Acetate,
Atezolizumab, GnRH Analog

and Radiation
Therapy in Men With Newly

Diagnosed Hormone-
sensitive Prostate Cancer

Metastatic prostate cancer

Atezolizumab
Abiraterone acetate

Prednisone
Lupron®(leuprolide)

SBRT
Enzalutamide

Phase 2

NCT04190056

Pembrolizumab and
Tamoxifen With or Without

Vorinostat for the Treatment of
Estrogen Receptor Positive

Breast Cancer

Breast cancer
Pembrolizumab

Tamoxifen
Vorinostat

Phase 2

225Ac-J591: alpha-emitter actinium-225 conjugated to the anti-PSMA antibody J591; NDMM: newly diagnosed
multiple myeloma; NTE: not transplant eligible; SBRT: stereotactic body radiotherapy; ZEN-3694: BET bromod-
omain inhibitor.

Different SMIs that are being applied as endocrine therapy in patients with hormone-
sensitive breast and prostate cancer [172] have been shown to promote immunogenic
modulation. Androgen-receptor (AR) antagonists, enzalutamide, and abiraterone sen-
sitized murine and human prostate tumor cells to T cell-mediated lysis [173,174]. The
immunomodulatory capacity of these antagonists was associated with the downregulated
anti-apoptotic molecule neuronal apoptosis inhibitory protein (NAIP) in AR+ cells [173]
and upregulated cell surface expression of Fas and MHC-1 [174]. Combinatorial treatment
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in the spontaneous prostate cancer mouse model TRAMP with enzalutamide and TAA-
targeting yeast-based vaccine improved overall survival compared to control mice or mice
receiving vaccine or enzalutamide alone [174]. Furthermore, the combination was shown to
induce antigen cascade, broadening the immunological response. Although AR antagonists
are normally used as a standard of care for prostate cancer, androgen deprivation agents
have additionally shown anti-tumor efficacy against breast cancer in preclinical studies as
well. Enzalutamide and abiraterone were shown to sensitize breast cancer cells to CTL-
mediated lysis independent of detectable AR expression [175]. This effect was linked to
increased cell surface expression of TRAIL-R1/R2, as well as decreased expression of osteo-
protegerin (OPG). Traditionally, OPG functions to inhibit osteoclastogenesis during bone
remodeling, but it was shown in this model that OPG served as a soluble decoy receptor for
TRAIL and, accordingly, inhibited TRAIL-mediated apoptosis. Thus, downregulation of
OPG in the context of antigen deprivation mitigated this antagonistic effect and enhanced
TRAIL-mediated apoptosis [175].

Fulvestrant (selective estrogen degrader (SERD)) and tamoxifen (selective estrogen re-
ceptor modulator (SERM)) are two additional endocrine deprivation therapies that mediate
estrogen receptor antagonism and have been shown to promote immunogenic modulation
in triple-negative breast cancer [176]. Treatment with fulvestrant and the tamoxifen metabo-
lite 4-OHT upregulated Fas and TRAIL-R1/R2 and resulted in increased NK cell-mediated
lysis of breast cancer cells regardless of estrogen receptor (ER) status [176]. Furthermore,
RNA analysis identified G-protein-coupled receptor for estrogen (GPR30) as a putative
player in the immunogenic modulation induced by fulvestrant and 4-OHT. Targeted activa-
tion of GPR30 using its specific agonist, G-1, resulted in increased NK cell killing, while
the knockdown of this receptor abrogated the NK cell killing mediated by fulvestrant and
4-OHT [176]. Finally, the combination of fulvestrant with the IL-15 superagonist, N803,
which has been shown to enhance NK cell activity [177], was found to result in superior
anti-tumor activity in a TNBC murine model. Overall, these preclinical studies demonstrate
the immunogenic potential of endocrine deprivation therapy using SMIs. Some of the
clinical trials on the ClinicalTrials.gov database (http://www.clinicaltrials.gov/, Accessed
on 1 November 2022) that opened since January 2020 combining endocrine deprivation
therapy with immunotherapy are listed in Table 3.

5. Conclusions

The ability of radiotherapies, chemotherapies, and SMIs to induce ICD and immuno-
genic modulation serves as an important anti-cancer modality that may be able to enhance
or complement the activity of other anti-cancer treatments, specifically immunotherapy. In
fact, combination therapy with chemotherapy and immune checkpoint blockade is already
approved in several indications [99]. Moreover, some clinical studies combining conven-
tional therapy and immune checkpoint blockade have demonstrated improved overall
survival [178,179]. The role of immunogenic cell stress in the clinical response in these
combination therapies remains largely unknown and it can be expected that the application
of combination therapy with conventional therapeutic agents and immune checkpoint
blockade may be expanded and improved as more mechanistic data emerge.

Ongoing clinical studies combining chemotherapy, radiotherapy, and SMIs with im-
munotherapy involve examining the changes in immune cell milieu and will give important
data on the synergistic/additive immunological effects of conventional and/or targeted
therapies with immunotherapies. Furthermore, some of these studies will help elucidate
the appropriate dosage and sequence of these anti-cancer agents. Promising results have
already been obtained; however, a more detailed investigation on the collaboration of
immunogenic cell stress with immunotherapy will contribute to improving the formulation
of combinatorial therapies that result in superior clinical benefits.
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