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Abstract: 3-D cell cultures are being increasingly used as in vitro models are capable of better mimicry
of in vivo tissues, particularly in drug screenings where mass transfer limitations can affect the cancer
biology and response to drugs. Three-dimensional microscopy techniques, such as confocal and
multiphoton microscopy, have been used to elucidate data from 3-D cell cultures and whole organs,
but their reach inside the 3-D tissues is restrained by the light scattering of the tissues, limiting their
effective reach to 100–200 µm, which is simply not enough. Tissue clearing protocols, developed
mostly for larger specimens usually involve multiple steps of viscous liquid submersion, and are
not easily adaptable for much smaller spheroids and organoids. In this work, we have developed
a novel tissue clearing solution tailored for small spheroids and organoids. Our tissue clearing
protocol, called HyClear, uses a mixture of DMSO, HPG and urea to allow for one-step tissue clearing
of spheroids and organoids, and is compatible with high-throughput screening studies due to its
speed and simplicity. We have shown that our tissue clearing agent is superior to many of the
commonly used tissue clearing agents and allows for elucidating better quality data from drug
screening experiments.

Keywords: tissue clearing; spheroid; organoid; microscopy; 3-D; HPG; DMSO

1. Introduction

In vitro 3-D cultures have emerged as a better model of in vivo tissues compared to
monolayers. They result in a better mimicry of the in vivo tissues as they allow for the
cells to maintain stroma-cell interactions that control cell signalling, differentiation, and
development [1–3]. They can also generate mass transfer gradients similar to in vivo, which
can result in the accumulation of metabolites or depletion of oxygen and nutrients, which
can in turn change the cell metabolism and response to external stimuli (e.g., treatment
with anticancer agents) [4–7]. This can provide great opportunities for more efficient drug
screenings, especially when many promising drug candidates in in vitro studies fail in
further stages of animal and clinical tests, thus wasting a huge amount of time, effort
and capital.

The great promises of 3-D cell cultures, however, are impeded by the how difficult
elucidating data from 3-D cell cultures can be, especially from the cells in the inner cores of
the cultures where different responses to external stimuli is more likely to occur. The tradi-
tional methods involve the fixation of the tissues in membranes, physical sectioning using
microtomes and imaging each slice. This a process too laborious and time consuming to be
adapted in a high throughput drug screening processes [8]. 3-D microscopy techniques,
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such as confocal and multi-photon microscopy techniques, would provide a better alterna-
tive [9], but they are limited by the optical properties of the tissues. Thicker tissues scatter
the light passing through, resulting in poor z-stack resolution with increasingly dimmer
cores. This leaves the more interesting part of the spheroids, their inner core, for evaluation.
This is mostly due to scattering at the lipid (cell-membrane)-aqueous interface due to the
refractive index (RI) mismatch between the lipid-rich tissue and the surrounding aqueous
solutions [10,11]. While the signal attenuation might address some of these challenges
by modulating the laser intensity through the depth [12], the images will still be blurry
due to scattering. An example of such phenomenon is shown in Figure 1, and imaged
using a two-photon microscope (Olympus FV1000 MPE, as detailed in Section 2.3.1), which
depicts the gradual loss of signal and increased blurring with the increase of depths in an
optical section. Since some of the interesting phenomena with relevance to drug screening
(such as necrotic cores) begin to form in spheroids with a 400–600 µm diameter [13], the
lack of imaging access to those areas can defeat at least some of the purposes of using
3-D cell cultures.

Several protocols and techniques (collectively called “tissue clearing”) have been
developed to address the problem of non-uniform intensity and blurring in 3-D microscopy.
The main reason these problems occur is the refractive index (RI) mismatch between the
solid parts of the tissues (RI ~1.45) and the water-based solutions (RI ~1.33) surrounding
them [10,14–16]. This results in scattering of the light passing through and the subsequent
dimming and blurring happening, especially at the centre of the spherical tissues in deeper
z-stack images, where compared to the edges, light must pass through more tissue to
reach the objective lens [17,18]. Thus, an effective strategy to overcome the problem of
scattering within tissues would be to reduce the refractive index (RI) disparity within the
tissues, by substituting the surrounding liquid with a “clearing agent” liquid of higher
refractive index [19–21]. An alternative approach could be to alter the optical properties
of the solid parts of the tissues such that the RI is reduced to something closer the sur-
rounding water-based solutions [22,23]. Additionally, other methods have been proposed
in which the scattering lipids have been completely removed after embedding the tissue in
a hydrogel [15].
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Figure 1. The gradual dimming and blurring in images of a z-stack with depth, taken using two-
photon microscopy (a) z-stack images of a spheroid made with EGFP-positive NCI-H1299 lung cancer
cells. Labels show the depth of each image in the spheroid. (b) 5× zoomed images of the center of the
images in row a and histogram-adjusted for better visibility in the higher depths. White and yellow
scale bars denote 100 µm and 10 µm, respectively.

Over the years, research groups have introduced many tissue clearing protocols, which
are mostly developed for larger tissues and involve steps such as solvent change, etc. These
are not easily implementable in smaller tissues, such as tumour spheroids, while taking a
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long time to perform in their original format [14] and causing morphological changes [24],
which makes them inconvenient or sometimes impossible to use for small tissues. We
have previously demonstrated an on-chip implementation of several important methods
described by other groups for clearing spheroids [25]. While the on-chip implementation of
clearing protocols can be beneficial for imaging spheroids in smaller experiments, it is not
a reliable method for imaging the large volume of samples as required in high-throughput
drug screening methods, which usually relies on familiar formats, such as well plates
to both grow and image the samples, and on liquid handling robots to manage the 3-D
cultures, such as spheroids, while conducting the drug screening experiment. For a tissue
clearing protocol to be usable for small 3-D cell cultures like spheroids, it should rely on a
rapid, single-step application of a clearing agent, which would be manageable for liquid
handling robots that is the current method for handling experiments at an industrial scale.
Moreover, a good tissue clearing agent for microtissues should be compatible with rather
sensitive fluorescent proteins used in many cell-based experiments and should preferably
introduce minimal auto-fluorescence and tissue shrinkage.

Here, we present a novel tissue clearing agent (HyClear) using DMSO and hyper-
branched polyglycerols (HPGs) to be used in the high throughput clearing of a large
number of microtissues. By reducing the mismatch between the tissue and the surrounding
liquid, the application of this clearing agent can reduce the light scattering and absorption
with increasing imaging depth, making imaging at higher depths possible with higher
signal intensity and less blurring. HyClear permits non-invasive endpoint imaging of
whole spheroids and other microtissues using a low-viscosity solution applied in a one-step
process that could be readily used in microfluidic systems and automated high-throughput
multi-well systems alike. In addition, it also permits the preservation of fluorescent proteins,
sustains morphological features of the microtissues, results in none to minimal autofluores-
cence in microtissues, and leads to higher or comparable clearing of tissues in comparison
to multistep clearing processes that are adaptable for spheroids and other microtissues.

2. Materials and Methods
2.1. Cell Culture and Spheroid Formation
2.1.1. Cancer Cell Culture

The NCI-H1299 lung cancer cells already transfected with GFP (ATCC), and the
NCI-HFL-1 lung cancer fibroblast cells (ATCC) in DMEM/F12 (Sigma-Aldrich, St. Louis,
MO, USA) that was supplemented with 10% fetal bovine serum (Sigma-Aldrich), 2.5 mM
L-glutamine and Anti-Anti (Invitrogen, Carlsbad, CA, USA). Cells were passaged upon
reaching confluence and were lifted off the surface by 0.25% Trypsin/EDTA (Invitrogen).
The H1299 and HFL-1 cells were kept in DMEM/F12 media (Corning, Corning, NY, USA)
with 10% Fetal Bovine Serum (Sigma-Aldrich) and Anti-Anti (Gibco, Grand Island, NY,
USA). The HUVEC cells (ATCC, Manassas, VA, USA) were cultured in EBM-2 (Lonza,
Basel, Switzerland) media supplemented with an EGM-2 bullet kit (Lonza). Standard cell
culture procedures were followed for the maintenance of the cells. Cells were incubated in
a humid atmosphere with 5% CO2 and 37 ◦C.

2.1.2. Cell Line Generation

For the screening study that was used here as an example, we used NCI-H1299
epithelial lung cancer cell line NCI-HFL-1, lung fibroblasts and HUVEC cells. To identify
the cells visually without the need for subsequent staining, we made fluorescent cell lines of
these cells. We acquired lentiviral plasmids (pLV-mCherry and pLV-eGFP) from Addgene.
We chose the lentiviral transfection of our cells to obtain stable fluorescent cell lines.

The plasmids were multiplied using the prescribed protocols of the MiniPrep and
MaxiPrep kits. Then, 7.5 million HEK 293T (ATCC) cells per 10 cm plate were seeded in cell
culture petri dishes in standard grow media (DMEM + 10% FBS + 1% Pen-Strep) and were
grown overnight to 90% confluence. On the day after, for each cell culture dish, we mixed
the prepared DNA solution (500 µL OptiMEM + 20 µg total DNA) with the Lipofectamine
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solution (500 µL OptiMEM + 40 µL Lipofectamine 3000 (2 µL/µg DNA), mixed and incu-
bated for 5 min at room temperature) and incubated it for 20 min at room temperature. The
mixture was then added to the cell culture plates and incubated for 4–6 h in the incubator.
The culture was then rinsed with PBS. Afterwards, 6 mL of a media mixture containing
Opti-MEM reduced serum media (Gibco 31985070) + 5% FBS + 1% non-essential amino
acid (NEAA) + 1% Na-pyruvate was added to the cells. After 24 h, the supernatant was
collected, and another fresh 6 mL of the same media was added again and collected after
an additional 16 h. The lentivirus in the supernatant was then concentrated using Lenti-
X™ concentrator using the manufacturer protocol, was aliquoted in 20–50 µL volumes in
cryotubes, flash-frozen in liquid nitrogen and kept in −80 ◦C.

To infect the cells using the produced viruses, we trypsinized the intended cells from a
T25 flask, centrifuged and resuspended them in 4 mL of DMEM with 8 µL/mL polybrene.
Then, we divided the mixture into 4 wells of a 6-well plate (1 mL per well). Add 30 µL of
the intended lentivirus solution to each well, except for a well kept as control. The 6-well
plate was then spun at 3200× g at 25 ◦C for 5 min, and then for 1 h at 2500× g at 25 ◦C.
Afterwards, we rinsed the virus with wash media twice and added 2 mL of the respective
growth media to each well. The cultures were monitored for growth and infection rate
after a day and transferred to a bigger culture vessel when near confluent. After reaching
the desirable number, the cells were sorted using the BD Influx Cell Sorter (at UBC Flow
Cytometry Facility) machine for a further selection of the fluorescent cells. The sorted cells
were plated again and frozen later for future use.

2.1.3. Tumour Spheroid Formation

For the mono-culture spheroids, H1299 cells were detached from the surface, counted
using a hemocytometer, and diluted to the desired concentration so that a certain number
of cells is plated in each well. 200 µL of the cell solution was pipetted into each well of an ul-
tralow attachment 96-well plate (Corning, CAT# 4515) such that it contains 1000–2500 cells
per well. The initial number of cells was selected depending on the desired size and harvest
date of the spheroids. The spheroids formed within 96 h. Media had to be changed if they
were to be kept for more than a week.

For tri-culture spheroids, we trypsinized and counted the cells, and diluted them
such that there were approximately 500–2000 cells in each 200 µL of the cell solution going
inside each well. The exact number of those cells is detailed in Section 3.4. For co-cultures,
the different cell types were mixed from the beginning. The settling of the cells in the
bottom can be helped with a brief spinning using a centrifuge. If the cell cultures required
a different media, a 1:1 mixture of their respective media was used. The spheroids formed
after almost 4 days. If the spheroids were intended to be kept for more than a week, 50 µL
of the media can be added to the wells to feed the cells.

2.1.4. Spheroid Fixation

Spheroids were fixed using 2% para-formaldehyde (Ted Pella, Redding, CA, USA) in
PBS at room temperature overnight. To fix the spheroids in the 96-well plates, an amount
of 4% PFA, equal to that of the supernatant media in each well was added to each well,
which would bring the PFA concentration to the desired 2%.

2.2. Tissue Clearing
2.2.1. SeeDB Tissue Clearing

Fructose (Bio Basic, Markham, ON, Canada) solutions of 20%, 40%, 60%. 80%, 100%
and 115% wt/vol fructose were dissolved in ultrapure water, after which α-thioglycerol
was added to them to reach a final concentration of 0.5%. All solutions were made at room
temperature, except the 100% and 115% that were dissolved at 65 ◦C and then cooled down
prior to the addition of α-thioglycerol [19].
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2.2.2. ClearT2 Tissue Clearing

A 40% polyethylene glycol (PEG) solution in ultrapure water was prepared by dis-
solving PEG 8000 (Bio Basic, Markham, ON, Canada) in warm water. 50% formamide/
20% PEG 8000 and 25% formamide/10% PEG solutions were made by mixing formamide
with the previously made solution and water [20].

2.2.3. ScaleSQ(0) Tissue Clearing

We chose the ScaleSQ(0) solution among the ScaleS protocols for its rapid clearing and
absence of detergents. A solution of 9.1 M urea and 22.5% (w/v) sorbitol in ultrapure water
was prepared by dissolving urea (Anachemia, Richmond, BC, USA) and sorbitol (Bio Basic)
in warm water [23]. The solution was always kept above 30 ◦C during the experiment by
using hot packs and lens warmers to prevent precipitation of the highly concentrated urea.

2.2.4. HyClear Tissue Clearing

Different HPG formulations with molecular weights were prepared to the concentra-
tions used in the experiments. The HPG solutions were mixed with DMSO and PBS to the
desired concentration and applied through a microfluidic chip (when compared to other
clearing protocols) or added to 96-well plates containing spheroids. HPGs (HPG-1K (Mn-
1000 Da) and HPG 3 K (Mn-3000 Da) were synthesized in the Kizhakkedathu laboratory
following protocols described in recent publications [26,27].

2.2.5. Tissue Clearing Setup

After fixing the spheroids, the fixative was removed and they were washed carefully
with PBS in the original well plate and loaded into glass-bottom 96-well plates for imaging.
All the pipetting was done using wide-bore pipette tips to prevent damaging spheroids
during transfer to the glass-bottom plate, and while washing the spheroids. The spheroids
were imaged while in PBS, then the PBS was carefully removed and HyClear clearing
solutions were added to the desired wells. The plate was spun briefly to bring the spheroids
to the bottom of the wells, after which the spheroids were imaged again after waiting for at
least 20 min.

For clearing whole organs, the fixed mouse organs were immersed overnight in the
HyClear solution on a rocking shaker.

2.3. Imaging
2.3.1. Microscopy

Imaging was conducted using two microscopes based on availability and access, but
care was taken to compare images only within the same system and settings:

1. Olympus FV1000 MPE microscope and excited by a MaiTai DeepSee Ti:Sapphire
laser, with a 25× water dipping objective lens optimized for TPM (XLPLN25XWMP)
with an NA of 1.05 and a working distance of 2 mm for all imaging, combined with
495–540 nm (green) and 576–630 nm (red) filters.

2. Zeiss LSM 880 AxioObserver microscope with Plan-Apochromat 20×/0.8 M27 and
N-Achroplan 10×/0.25 Ph1 M27_b lenses, with the laser set at 405, 488 and 594 nm.
The spheroids were transferred to a 96-well plate with flat cover glass #17 before
imaging. Unless specified, all the images are taken using this microscope.

2.3.2. Image Processing

The following protocol was used for the image processing as the spheroids were large
and often did not fit within the boundaries of the images. A circular region in the centre of
the spheroid was chosen in each z-stack image, in which the average signal intensity was
measured and corrected versus the background (using Fiji). The corrected signal intensities
were used to calculate the average intensity as a measure of the overall brightness of the
fluorescence in the whole stack and each depth throughout the whole stack and in each
depth. Then, we analyzed the signals within the spheroid region. We also calculated the
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standard deviation within the spheroid region, which gives a measure of the blurriness of
the image detected within the spheroid region, with a wider range of intensities indicative
of less blurriness and higher contrast. This is like how contrast-detection autofocus systems
work, that is, by trying to maximize the standard deviation of the detected image through
the focus range.

3. Results
3.1. Mixture of DMSO and HPG Solution Increases Fluorescence Imaging Penetration Depth

To develop a clearing solution with the characteristics suitable for clearing large arrays
of spheroids and other 3-D micro-cultures, we started by using dimethyl sulfoxide (DMSO).
It has a refraction index of 1.48 and viscosity of 1.99 cP at 25 ◦C (water has a 0.890 cP
and common honey varieties range between ~2000–23,000 cP [28]). DMSO has also been
investigated as a clearing agent for clearing skin samples for bright-field microscopy, with
possible topical application in human patients [29,30]. Given its high refractive index and
relatively low viscosity DMSO can be a good candidate for use in clearing solutions. Our
preliminary applications of DMSO for tissue clearing showed that pure DMSO quenches
the fluorescence of proteins. This was mostly due to the removal of the water necessary
for protein fluorescing [14], which has been found to stabilize the excited state of some
proteins [31]. We found that using 75% DMSO in PBS (RI = 1.45) could help with the
quenching of the fluorescence of proteins.

Rawat et al. have reported that polyethylene glycol (PEG) solutions can have a
stabilizing effect on proteins, due to the binding of PEG molecules with proteins [32].
In fact, this has been used for reducing the fluorescence quenching in the ClearT tissue
clearing protocol. We investigated other polymers that can have the same effect on protein
stabilization, thus preserving fluorescent signals in proteins when in contact with DMSO,
while having a high refractive index at a relatively low concentration and viscosity. To
this end, we tested PEG molecules of different molecular weights (MW) as well as other
similar polymers, such as methoxy-PEG, polyvinyl alcohol (PVA), and hyperbranched
polyglycerols (HPG), checked different stable mixtures of them to stabilize the fluorophores
while maintaining strong clearing capability.

An interesting class of polymers that we found to have similar effects with PEG in
preventing fluorescent protein quenching were hyperbranched polyglycerols (HPG). HPGs
are a class of ultra-compact hydrophilic polymers with globular structures that have a
50–65% dendrimeric structure, are chemically stable and have low intrinsic viscosity [26].
Compared to the linear PEG molecules, an extremely high concentration of HPG solutions
could be made, while also keeping the solutions less viscous and free-flowing.

We came up with the prototype of HyClear by mixing a 1.56 g/mL HPG 1 K solution
in PBS (the concentration at which the HPG solution had an RI = 1.49) with the 75% (v/v)
DMSO solution we tried before at a 1:1 ratio. Figure 2 compares the z-stack images of
the spheroids obtained through TPM at equivalents depths (different due to moderate
shrinkage of the spheroids after clearing), before and after clearing using the perfusion of
the 0.78 g/mL HPG 1 K + 37.5% DMSO solution (hereafter referred to as HyClear-Pre1)
in a microfluidic device, as was done in our previous work [25]. The perfusion of the
clearing solution resulted in the clearing of the samples in less than 5 min, increasing the
fluorescence signal in the samples by more than 4-fold on average in depths higher than
100 µm.

The HyClear-Pre1 solution was compared to the other clearing protocols of its class,
using a microfluidic chip, as implemented in our previous study [25]. The clearing solution
presented in this work results in mostly a higher increase of fluorescence signal on average
(Figure 3a) and through the depth of the spheroids (Figure 3b), as compared to the protocols
we adapted in our previous work. While the clearing performance of the SeeDB protocol
among all the others is closer to our protocol, it should be noted that SeeDB relies on several
steps and works with very high viscous solution, which makes SeeDB a slow (<1 h) and
complicated clearing process for microtissues, even in our on-chip adaptation of it [25].



Cells 2022, 11, 3854 7 of 20

However, the HyClear-Pre1 solution uses a free-flowing low-viscosity solution in a one-step
process that can be completed in less than 5 min, making it well-suited to use for clearing
spheroids and other microtissues in both lab-on-a-chip and in high-throughput multi-well
plate systems.
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3.2. Optimizing the DMSO and HPG Mixture Tissue Clearing Protocol

While we found that the aforementioned DMSO and HPG 1 K mixture works well in
clearing microtissues compared to the other common tissue clearing techniques, we wanted
to further investigate whether we can improve its efficiency by changing the properties of
HPG, such as its MW, and also try to find out whether the shrinking of tissues after clearing
can be reduced without compromising the tissue clearing capability. To this end, we have
tested several modifications in a design of experiments that considered many different
modifications to the 0.78 g/mL HPG 1 K + 37.5% DMSO formula. The tests were done
on spheroids made with NCI-H1299 cells and was fixed, as described earlier. There were
five–six spheroids for any condition tested.

A slightly lower amount of DMSO (30% vs. 37.5%) has been used in the experiments
described in this section. Unlike the microfluidic chips used in the previous section and
in [25], we cannot completely remove the existing liquid in the well-plates containing the
spheroids since it might result in the collapse of the larger 3-D tissues (20 µL of liquid was
left to avoid that). This would inadvertently result in the undesirable subsequent dilution
of the clearing solutions. To overcome that, we tried adding 80 µL of a 1.25× concentrated
clearing solution that would become the 1× desired solution once added to the well.
However, we found that having DMSO at a higher concentration than 37.5% v/v will
result in precipitations. Thus, we had to keep the DMSO at 37.5% v/v, which resulted in a
30% v/v solution upon addition to the wells.

In the first modification to our formula, we investigated using other variants of HPG
with higher molecular weight (HPG 1 K vs. HPG 3 K). The compositions can be found in
Table 1.

Table 1. The different formulations tested for optimizing HyClear.

Solution
HPG

Concentration
(g/mL)

HPG Molecular
Weight (Da)

DMSO
Concentration

(v/v)

Urea
Concentration

(mol/L)

HyClear-Pre1 0.78 1K 30% 0
HyClear-Pre2 0.78 3K 30% 0
HyClear-Pre3 0.78 1K 30% 1.6
HyClear-Pre4 0.78 1K 30% 3.2
HyClear-Pre5 0.78 1K 30% 6.4

Figure 4a shows the change of intensity in clearing solutions made with different
molecular weights of HPG. The results show that HPG 1K and 3K work very similarly
in terms of how much they increase the intensity of fluorescence before and after tissue
clearing (Figure 4a), with very similar tissue shrinkage profiles (Figure 4b). HPG 3 K has a
higher viscosity than HPG 1K in solutions of a similar concentration, and HyClear-Pre2
(with HPG 3K) did not result in any significant improvement over HyClear-Pre1, thus
showing that we should continue using HPG 1K in our formula and we should try to
optimize it with other additives to address the considerable amount of tissue shrinkage in
the HyClear-Pre1 results.

In order to address the problem of tissue shrinkage, we investigated the use of urea to
hyper-hydrate the membranes of the tissue and thus prevent tissue shrinkage, as has been
described before [22,23]. The tested formulations can be found in Table 1. The maximum
concentration of urea we tested was 6.4 M, as we found that higher concentrations resulted
in precipitation. The addition of urea decreases the shrinkage significantly (Figure 5), but
where the addition of urea is especially beneficial, is at higher depths where the clearing
capability of the clearing solutions is increased dramatically with the addition of urea
(Figure 6). This might be due to the less dense tissue that light passes through, due to less
shrinkage caused by hyper-hydration of the tissues in the presence of urea. All the different
formulae resulted in a less blurry image after clearing, as measured by the increase in the
variance of the images before and after clearing (Figure 7). Combining all the factors, we



Cells 2022, 11, 3854 9 of 20

have demonstrated the clearing mixture HyClear-Pre5 (RI = 1.47, µ = 12.7 cP) as the optimal
solution of choice for tissue clearing and we call it HyClear.
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Figure 4. (a) The average fold increase in the fluorescence signal after clearing using different types
of HPG. (b) The average change of the area of the cross-sectional images before and after clearing
using different types of HPG. (c) An example of the MIP image of the spheroids before and after
tissue clearing using different types of HPG. The error bars represent the standard error of the mean
of five to six replicates.
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Figure 5. (a) The average change of the cross-sectional area of the cross-sectional images before and
after clearing using HyClear with different concentrations of urea. (b) An example of the MIP image
of the spheroids before and after tissue clearing using different concentrations of urea. The error bars
represent the standard error of the mean of five to six replicates. The p-values are calculated using a
heteroscedastic two-tailed t-test. The scale bars represent 200 µm.
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Figure 7. The average fold increase in image sharpness after clearing in different imaging depths
using various HyClear formulations. All variations of HyClear improve the sharpness by more than
~1.6 times. The addition of urea suggests improving the sharpness, although the significance cannot
be established in all cases. The p-values are calculated using a heteroscedastic two-tailed t-test. The
error bars represent the standard error of the mean of five to six replicates.

3.3. Clearing Spheroids with HyClear

We have tested the HyClear on different types of samples to assess its efficacy in
tissue clearing. Figure 8 depicts an example of a large spheroid made of GFP producing
NCI-H1299 lung cancer cells, cleared using the HyClear and imaged using two-photon
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microscopy (Olympus FV1000 MPE microscope with a 25× water immersion objective).
Figure 8c,d are histogram-adjusted versions of (a) and (b), maximizing the visibility of
the signals in each depth. It is evident from the comparison of (a) and (b) that HyClear
increases the fluorescence signal in each depth. From the comparison of (c) and (d), we
can see how HyClear can help to visualize larger spheroids of about 500 µm, resulting in
sharper images in each depth.
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Figure 8. Two-photon microscopy image slices of a tumour spheroid at 200, 300, 400 and 500 µm
deep into the tissue (a) before HyClear with 6.4 M Urea clearing with the corresponding z-stacks and
(b) after clearing. The 3-D projection image of the spheroids is shown on the bottom. (c,d) are the
histogram adjusted version of (a,b) at each depth, respectively. The scale bars represent 100 µm. The
images were obtained using an Olympus FV1000 MPE microscope with a 25× water dipping objective.

3.4. HyClear Incorporated in Screening Experiments

As mentioned earlier, the main reason behind developing HyClear was to have a tissue
clearing solution that can be fitted in large-scale screening experimental workflows that
use 3-D cell cultures like spheroids, so that we could realize their full potential as a tissue
model by being able to visualize the cells deep inside them. Hereby, we are demonstrating
an example of fitting HyClear into a screening experiment involving several spheroids in a
96-well plate format.
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The aim of this experiment is to establish a more sophisticated 3-D culture model that
can mimic the in vivo tissues better, by including other cell types that normally exist in
tissues, such as fibroblasts and endothelial cells. These new models can be especially used
for modelling diseases like lung cancer, where anti-angiogenesis have been used with some
lung cancers such as non-small-cell lung cancer [33,34], where the addition of cells, such
as endothelial cells, with the potential for vasculature formation will make the spheroids
a potentially useful model for testing with anti-angiogenesis drugs. Whereas a simple
monoculture of lung epithelial cells would not be capturing the sophisticated nature of the
lung tissues, developing methods for producing coculture lung spheroids could potentially
compete with or complete the picture illustrated by other sophisticated models, such as
lung-on-a-chip devices.

In this experiment, we wanted to produce lung co-culture models with epithelial,
fibroblast and endothelial cells. We aim to have a model in which all different cell types
can thrive, but we would particularly like to see the more sensitive endothelial cells thrive
in the coculture. Since the growth rates of the different cell types are different, starting
from the same number of cells results in the complete take-over of the spheroids by the
fastest-growing cell type. Other researchers who have made similar co-cultures from these
cell types have come up with some rules of thumb regarding the ratio of the different cell
types. For example, Lazarri et al. have suggested a 9:1:4 ratio for the (fibroblast: epithelial:
endothelial) ratios [35]. We tried different ratios, as described in Table 2, where the number
of fibroblasts was kept the same, and some different ratios of epithelial to endothelial cells
were looked at from conditions A to D, and with half of those numbers from conditions
E to H. We were looking for the growth of cell types other than the epithelial cells, and
specifically, whether we can find any considerable growth of HUVEC cells inside the
coculture. We used the HyClear as an important part of the experiment to find out if such
vascular structures form.

To promote the growth of HUVEC cells, EBM-2 media has some special growth factors,
among which vascular endothelial growth factor (VEGF) is of considerbale importance.
Since EBM-2 endothelial growth media is diluted when mixed with the required media for
epithelial and fibroblast cells (DMEM/F12), we supplemented the media with additional
VEGF so that its level comes back to the concentration present in EBM-2 (here called VEGF-
1X). To see the effect of VEGF, we also made spheroids of every condition with 2- and
3-times the VEGF concentration as that of VEGF-1X (called VEGF-2X and 3X, respectively).

Table 2. Experimental design to find the optimal starting point for the lung co-culture spheroids.

Condition No. of HFL-1 Cells
(Ratio)

No. of H1299 Cells
(Ratio)

No. of HUVEC Cells
(Ratio)

DMEM/F12
(µL)

EBM-2
(µL)

A 2500 (10) 500 (2) 500 (2) 100 100
B 2500 (10) 500 (2) 1250 (5) 100 100
C 2500 (10) 500 (2) 2500 (10) 100 100
D 2500 (10) 1250 (5) 1250 (5) 100 100
E 2500 (10) 250 (1) 250 (1) 100 100
F 2500 (10) 250 (1) 625 (2.5) 100 100
G 2500 (10) 250 (1) 1250 (5) 100 100
H 2500 (10) 625 (2.5) 625 (2.5) 100 100
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To visualize the cells, the H1299 cells were tagged with GFP, and the HUVEC cells
were transfected to express mCherry. To discern the HFL-1 fibroblast cells, we incubated
the spheroids with CellTracker Blue (Invitrogen), such that any cell that is only blue is
a fibroblast, and others with colocalized GFP and mCherry are NCI-H1299 and HUVEC
cells, respectively.

We had 24 conditions, for which we made three spheroids for each condition, for a total
of 72 spheroids. Obtaining data for this number of spheroids would be very difficult if we
rely on the conventional tissue clearing protocols, and would be virtually impossible while
doing more sophisticated experiments with a much higher number of samples common in
industrial drug screening practice. However, HyClear provides a practical and effective
way to overcome this problem. To perform the tissue clearing in this experiment, we moved
the spheroids to a cover-glass bottom plate using wide pipette tips (to prevent any damage
to the spheroids). All the buffer in each well was removed, except 20 µL in each well to
keep the spheroids from dismantling. Then, 80 µL of HyClear was added to the wells, and
the plate was spun using a centrifuge briefly to make sure all the spheroids settle down
in the bottom. The imaging was started at about 30 min after the addition of HyClear.
To make the imaging faster, all spheroid locations were identified first so that the whole
imaging process could be done in one turn without the need for manual intervention.

Figure 9 shows the maximum Z-projection images of spheroids from each condition
in the experimental design. The blue cells are the NCI-HFL-1 fibroblasts, the ones that
are green or cyan are the epithelial NCI-H1299 cells and the ones that are red or orange
denote the HUVEC cells. These images could provide us some clues about which condition
has resulted in better growth of HUVEC cells or any vascular formation, but they are not
conclusive as any vascular formation should show up in the 3-D reconstruction of each
image. As the number of images is quite high for the processing-intensive 3-D reconstruc-
tion and visual inspection, we designed another method to find the spheroids with the
highest probability of having endothelial cell growth without initial visual inspection. We
segmented the spheroids based on the ubiquitous CellTracker in the blue channel, to find
out the area of the spheroids. Then, we created a Sum Projection Image of the red channel
and measured its mean and standard deviation in the segmented area. The red pixels in that
area could either be from autofluorescence or the HUVEC cells. If they were caused by the
HUVEC cell fluorescence, we would expect them to be closer together with higher intensity
than autofluorescence pixels, hence resulting in a higher standard deviation. To normalize
the standard deviation to the total intensity of the images (different among individual
spheroids), we divided the standard deviation by the average intensity of the red pixels
in the segmented area, also known as its relative standard deviation, or the coefficient of
variance (C.V.).

We checked the spheroids with a C.V. larger than 0.9, and among them found that some
significant growth of HUVEC cells have formed within the spheroids (depicted in Figure 10)
made using condition G, with ratios of 10:1:5 at the VEGF-3X condition. While we only
intended to demonstrate the process of incorporating HyClear in large-scale experiments
here, we should add that these results are, to the best of our knowledge, the first reports of
coculture lung spheroids.

The spheroid shown in Figure 10 is an example from condition F, from which we
found several cases of HUVEC growth and demonstrate notably that by using HyClear
we were able to see HUVEC-mCherry cells deep in the core of spheroids. Figure 10 also
shows how HyClear can be used in multiplexing applications, conserving both fluorescent
proteins and stains at the same time without interference with each other.
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Figure 9. MIP and z-slice (at approximately 2/3 of the whole depth, at z = ~200 µm, histogram-
adjusted) images of the spheroids at conditions described in Table 2, with different VEGF levels. Each
whole spheroid is treated with CellTracker Blue; NCI_HFL-1 fibroblast cells were not fluorescent
themselves, so they were only blue due to the CellTracker stain. NCI-H1299 cells are fluorescent with
GFP, so they show as green to cyan. The HUVEC cells are brightly colored with mCherry, and show
as red. The scale bars represent 100 µm.
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Overall, this example demonstrates how we could use HyClear in experiments where
we desire to obtain data from the core of 3-D tissues in experiments with a large number
of samples. Due to the simplicity of the processes, which involves a simple aspiration of
the supernatant media and the addition of the low-viscosity HyClear solution (µ = 12.7 cP),
they could all easily be implemented in robotic fluid handling systems. HyClear can
also handle the multiplexing of fluorescent dyes and proteins, as was demonstrated in
this example.
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Figure 10. 10× confocal images (after clearing with HyClear, histogram-adjusted) of a triculture
spheroid of epithelial, fibroblast and endothelial cells, depicted by dGFP (green), CellTracker Blue
(blue) and mCherry (red) colours, respectively. (a–d) are histogram adjusted z-slices of the spheroid
at (a) 150 µm, (b) 200 µm, (c) 250 µm, and (d) 300 µm. (e) depicts the maximum projection image of
the spheroid. (f,g) depict the 3D projection of the spheroid (red channel only) from the Y and X axes,
respectively. Scale bars represent 100 µm.

3.5. HyClear for Clearing Whole Tissues

While HyClear was formulated with spheroids and microtissues in large experimental
setups in mind, we also looked to see how it would perform in clearing tissues larger than
spheroids such as whole mouse organs. The protocol remained the same (A single immer-
sion step in the HyClear Reagent). We used transgenic mouse muscles with fibroblasts that
are fluorescently labelled with EGFP. We cleared the tibialis anterior (TA) muscle and the
heart muscle in this demonstration of the HyClear. As evident from Figures 11 and 12, the
HyClear increased the imageable depth of the tissues (with imaging parameters that were
kept the same throughout the experiment for each sample type).

The imageable depth for the mouse heart in Figure 11 increased from about 50 µm
to about 155 µm (~3× increase). In the mouse TA tissue (Figure 12), the imageable death
increased from about 160 µm to 350 µm.
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(c,d). MIP images of a mouse heart tissue using a 20× lens, with GFP‐positive fibroblasts, before (c) 

and (d) after tissue clearing. 3‐D reconstructed z‐stack image of mouse heart before tissue clearing. 

(e,f) 3‐D  reconstructed z‐stack  image of mouse heart  (e) before and  (f) after  tissue clearing. The 

imageable depth of the tissue increases from about 50 μm in image e (before) to about 155 μm in 

image f (after). The scale bars represent 100 μm. 

Figure 11. Clearing of a mouse heart tissue using HyClear. (a,b) Image slices of a mouse heart tissue
with GFP-positive fibroblasts, using a 20× lens, at 44 µm, (a) before and (b) after tissue clearing.
(c,d). MIP images of a mouse heart tissue using a 20× lens, with GFP-positive fibroblasts, (c) before
and (d) after tissue clearing. 3-D reconstructed z-stack image of mouse heart before tissue clearing.
(e,f) 3-D reconstructed z-stack image of mouse heart (e) before and (f) after tissue clearing. The
imageable depth of the tissue increases from about 50 µm in image (e) (before) to about 155 µm in
image (f) (after). The scale bars represent 100 µm.
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Figure 12. Clearing of a mouse TA muscle tissue using HyClear. (a,b) Image slices of a mouse TA
muscle using a 20× lens with GFP-positive fibroblasts, using a 20× lens, at 150 µm, (a) before and
(b) after tissue clearing. (c,d) MIP image of a mouse TA muscle using a 20× lens, with GFP-positive
fibroblasts, (c) before and (d) after tissue clearing. (e,f) 3-D reconstructed z-stack image of mouse
TA muscle € before, and (f) tissue clearing. The imageable depth of the tissue increases from about
160 µm in image (b) (before) to about 350 µm in image (d) (after). The scale 16 bars represent 100 µm.

4. Discussion

We have demonstrated a novel tissue clearing protocol “HyClear” with excellent
tissue clearing capabilities. HyClear has low viscosity and is capable of one-step and high-
throughput clearing of 3-D microtissues, such as spheroids, which is readily applicable in
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workflows involving 96 and 384-well plates handled with liquid handling robots. HyClear
does not alter morphological features, as it induces minimal tissue shrinkage and negligible
induced autofluorescence. It is also compatible with fluorescent proteins and fluorescent
stains and can be used in assays involving multiplexing fluorophores. This will make
it easier to use tissue clearing for imaging 3-D cell cultures as a part of an image-based
drug screening platform, facilitate data-acquisition from 3-D cultures in high-content
drug discovery experiments usually performed using 2-D cultures, building on the tools
developed for 2-D cultures while taking advantage of the data that 3-D cultures can provide
by imaging not only their surfaces, but also their core. As the cells in the core of the
spheroids facing nutrient and oxygen limitation can respond differently to drugs, the use
of the tools described here may result in important findings on the efficacy of drugs in the
environment simulating the interior of tumours where the cells are restricted of nutrients
and oxygen. In addition to microtissues, we have also tested HyClear on tough-to-clear
mouse whole organs to find that it can clearly increase the imageable depth by more than
two-fold.

Tissue clearing has evolved considerably over the last century to improve the data
acquisition from intact tissues. While there are multiple methods available for different
types of tissues, no single method can claim to be superior in every situation. HyClear has
been developed with the needs of imaging microtissues, such as organoids and spheroids
in mind, and delivers an easy-to-use and effective method for clearing large numbers of
microtissues rapidly. Nonetheless, we have also shown that HyClear can be used in larger
tissues as well, especially where more sophisticated methods are not available. In future,
HyClear can be used as the basis for establishing multistep clearing protocols for clearing
larger tissues even more effectively. Additionally, for antibody labeling of endogenous
proteins, we expect that the immunohistochemical labeling will occur after fixation and
before clearing. HyClear has been shown to conserve the intracellular fluorescent proteins,
so we expect it should be compatible with other proteins, such as antibodies as well. This
will be confirmed in future work.

5. Patents
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