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Abstract: Esophageal cancer is a lethal disease that frequently occurs in developing countries, the
incidence of which could be declined by drinking EGCG-enriched drinks or food. SERPINB2,
whose complex functions and regulations are not yet fully understood, are induced by multiple
inflammatory molecules and anti-tumor agents. Here, we identify 2444 EGCG-regulated genes in
esophageal cancer cells, including SERPINB2. EGCG treatment recruits NF-κB at the promoter and
enhancers of SERPINB2 and activates gene transcription, which is repressed by NF-κB knockdown
or inhibition. Loss of SERPINB2 leads to a faster migration rate and less expression of Caspase-3 in
cancer cells. Our study demonstrates that SERPINB2 is a new tumor-suppressor gene involved in cell
movement and apoptosis and could be a therapeutic target for esophageal cancer.
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1. Introduction

Esophageal cancer is a common digestive-tract cancer, with approximately 604,000 new
cases and 544,000 deaths worldwide in 2020. The incidence rate is high in developing
countries in Eastern Asia and Southern Africa [1]. Progress has been made in diagnosis
and treatment, but the overall curative effect and prognosis of esophageal cancer are still
poor [2], so it is urgent to discover novel therapeutic agents and targets.

Epigallocatechin gallate (EGCG), a natural dietary polyphenol compound with low
toxicity, can not only energize gastrointestinal digestion, reduce blood lipids, and boost the
immune system, but also functions as an inhibitor of bacteria, and has significant preventive
and therapeutic effects on esophageal cancer [3,4]. However, the mechanism of EGCG as
an anti-cancer agent is not completely clear, partly due to its multiple molecular targets [3].

Serine Proteinase Inhibitor 2 (SERPINB2), also named Plasminogen Activator Inhibitor
2, is one of the most significantly up-regulated genes during cellular stress. There are
two forms of SERPINB2: a 47-kD intracellular form without glycosylation, and a secreted
60-kD glycosylated form [5], but they are functionally similar [6]. Early studies found
that SERPINB2 could bind to and inhibit urokinase and tissue plasminogen activators
(uPA and tPA) [7]. SERPINB2 is involved in a variety of biological processes, such as
reducing bleeding times by affecting platelet aggregation [8], protecting mice kidneys from
damage and fibrosis [9], impairing osteoblastic differentiation of bone marrow stromal
stem cells [10], and acting as a biomarker for asthma [11]. In addition, the expression of
SERPINB2 increased when cells underwent senescence. SERPINB2 was a direct target of
p53, which was conversely up-regulated by SERPINB2 [12]. It was highly inducible under
inflammatory conditions, and its dysregulated expression may cause immune-system-
related diseases [13,14].

More importantly, SERPINB2 was directly related to tumor promotion and poor
prognosis in various cancers such as bladder [15], colorectal [16], endometrial [17], and
ovarian [18] cancers. SERPINB2 might act as a regulator or biomarker for predicting
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metastatic progression in breast and liver cancers [5,19]. SERPINB2 expression significantly
increased in response to various tumorigenic agents in multiple cancer stem cell types [20].
However, the function of SERPINB2 has not been characterized in esophageal cancer.
Herein we identified SERPINB2 as an EGCG-regulated tumor-suppressor gene that was
mediated by NF-κB and confirmed the role of SERPINB2 in cell migration and apoptosis.

2. Material and Methods
2.1. Cell Culture

Human esophageal squamous cell carcinoma (ESCC) cell lines KYSE150 and KYSE510
were generously provided by Dr. Xu Liyan at Shantou University Medical College. The
cells previously described [21,22] were maintained at 37 ◦C with 5% CO2 in RPMI1640
medium (Biosharp Life sciences, Beijing, China) supplemented with 10% FBS (TransGen,
Beijing, China). For EGCG stimulation assays, we inoculated the cells at a concentration
of 1.6 × 105/mL in full-serum medium and changed to RPMI1640 medium without FBS
24 h later, then treated the cells with EGCG at indicated concentrations. We also performed
EGCG stimulation without changing the medium. Inhibition of p65 was performed by
treating the cells with 5 µM BAY11-7082 (Beyotime Biotechnology, SF0011, Shanghai, China)
for 1~3 h.

2.2. Gene Knockdown, Gene Overexpression, and Cell Proliferation Assay

For EGCG concentration-series and time-series assay, KYSE150 and KYSE510 cells
were treated with 0–100 µM EGCG (Guangdong Yilong, Chaozhou, China) for 24 h or
60 µM EGCG for 0–60 h with or without FBS. For the SERPINB2 knockdown assay, two
antisense oligonucleotides (ASOs, Accurate Biotechnology, Hunan, China) targeting SER-
PINB2 mRNA were used to transfect the cells. The sequences and design of ASOs are
shown in Table S1. For p65 knockdown, SignalSilence® NF-κB p65 siRNA II #6534 (Cell
Signaling Technology, Shanghai, China) targeting RELA mRNA was used to transfect the
cells [23]. Briefly, 100 µL cells (4 × 104) were inoculated in a 96-well plate one day before
transfection. An amount of 0.1 µL of 10 µM ASO or siRNA was added to 10 µL Opti-MEM
(Gibco, Thermo Fisher Scientific, Shanghai, China) and mixed with 0.3 µL of Lipofectamine
RNAiMAX reagent (Invitrogen, Shanghai, China). The mixture was incubated at room
temperature for 5 min and dripped into the wells. The cells were then cultured for 24 h in
the 37 °C incubator. SERPINB2 overexpression was conducted using the plasmid EX-Z6805-
M98 (GeneCopoeia, Guangzhou, China) and Lipo8000TM (Beyotime Biotechnology, C0533)
according to the manufacturer’s instructions. The vector pEZ-M98 was used as control.

The supernatant was removed and replaced with RPMI1640 medium containing 10%
cell counting kit 8 (CCK8) solution (MCE, Shanghai, China). The cells were incubated for
an additional hour and measured at 450 nm with a MULTISKAN MK3 spectrophotometer
(Thermo Scientific, Shanghai, China).

2.3. RNA Extraction and qRT-PCR

Total RNA was isolated using Total RNA Isolation Reagent (Biosharp Life sciences,
Beijing, China) according to the manufacturer’s instructions. Reverse transcription was
performed using Hifair II 1st Strand cDNA Synthesis SuperMix with a gDNA digester
(Yeasen, HB181210, Shanghai, China). Quantitative real-time PCR was performed using
SYBR Green Master Mix (Yeasen, HB181203, Shanghai, China) on a Lightcycler Real-Time
PCR System (Roche, Beijing, China). The relative expression level of the target genes and
the relative fold change were normalized to GAPDH and the control, respectively. The
sequences of primers (Tianyihuiyuan, Guangzhou, China) are shown in Table S2.

2.4. RNA-seq and Screening for Differentially Expressed Genes (DEGs)

Quality control was carried out for RNA samples extracted as described in 2.3 (Table S3).
Then, MGISEQ-2000 RNA-Seq was performed by Beijing Genomics Institute (BGI). We
filtered out DEGs in two steps: first, the genes had a fold change greater than 2 (or smaller
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than 0.5) and a false discovery rate lower than 0.05. Second, the average FPKM of three
replicates of the selected genes was more than 1.0 for either control or EGCG-treated
samples. The analysis for RNA-seq data was conducted using Dr. Tom System developed
by BGI (https://biosys.bgi.com (accessed on 5 January 2021)).

2.5. Western Blotting

Cells were directly lysed using a home-made loading buffer (12 mM Tris-HCl (pH6.8),
5% glycerol, 0.4% SDS, 2.88 mM β-mercaptoethanol, 0.02% bromophenol blue). Protein
extracts were boiled for 10 min and then separated on SDS–PAGE gels. Protein amounts
were adjusted according to the housekeeping gene GAPDH.

Antibodies used for Western blots were as follows: SERPINB2 rabbit polyclonal anti-
body (ABclonal, A15297, Wuhan, China), GAPDH mouse monoclonal antibody (Beyotime
Biotechnology, AF0006), Caspase-3 rabbit polyclonal antibody (Beyotime Biotechnology,
AF0081). Secondary antibodies were HRP-conjugated goat anti-mouse IgG (Beyotime
Biotechnology, A0216) and peroxidase-conjugated goat anti-rabbit IgG (Beyotime Biotech-
nology, A0208).

2.6. Chromatin Immunoprecipitation (ChIP)

ChIP assays were performed using a Chromatin Immunoprecipitation Kit (Millipore,
17-611, Guangzhou, China) as previously described [24]. Cells were inoculated in 10 cm
dishes, treated with EGCG for 2 h, and fixed with 4% formaldehyde (Sigma, 252549,
Shanghai, China). After DNA fragmentation, 2–3 µg ChIP-grade antibodies against anti-
IgG (Beyotime Biotechnology, A7016) and anti-p65 (Abcam, ab16502, Shanghai, China)
were used to perform ChIP assays with protein A/G magnetic beads (MCE, Shanghai,
China). Immunoprecipitated DNA was purified using a DNA purification kit (Axygen,
Corning Life Sciences, Wujiang, China) and applied to qPCR. The results were normalized
to the input DNA. The sequences of the primers are listed in Table S4.

2.7. Cell Migration Assay

Cell migration was determined using a scratching assay. Cells were inoculated in a
96-well plate and grew to 100% confluency. A scratch was generated by using a sterilized
10 µL pipette tip. The cells were washed twice with PBS and cultured in RPMI1640 medium
in the absence of FBS, followed by ASO-mediated SERPINB2 knockdown, with or without
60 µM EGCG treatment. Images were captured at different time points using a microscope
(Olympus IX73 or Nikon Eclipse TS100).

2.8. Statistical Analysis

A paired-sample T-test was used to determine if the difference was significant between
the two groups of data (p < 0.05). One-way ANOVA analysis was employed for more than
two samples. All data were calculated with at least three independent experiments and
shown as the mean ± standard deviation (SD).

3. Results
3.1. EGCG Inhibits Esophageal Cancer Cell Proliferation in a Dose- and Time-Dependent Manner

To test the efficacy of EGCG in cancer cell growth, we treated KYSE150 and KYSE510
cells with EGCG at a series of concentrations and time points with or without FBS. With
the presence of FBS, cancer cell proliferation was marginally affected at a concentration
of up to 100 µM for 24 h or at 60 µM up to 60 h (Figure 1A,C and S1A,C). However, in
the absence of FBS, both cell lines showed significantly lower growth rates when treated
with a generally low concentration of EGCG. The half maximal inhibitory concentration
(IC50) was approximately 60 µM without FBS, but it was approximately 240 µM with the
presence of FBS (Figure 1B and S1B,E). In addition, the inhibitory effect of EGCG on cell
proliferation was also treatment-time-dependent (Figure 1D and S1D). To examine the
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molecular functions of EGCG with minimum influence on cell viability, we adopted 60 µM
of EGCG without FBS for the following assays.
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Figure 1. Cell proliferation of KYSE150 under different conditions. (A,B) Cells were treated with
EGCG at concentrations from 0~100 µM with (A) or without (B) FBS for 24 h. (C,D) Cells were treated
with 60 µM EGCG at a series of time points from 0~60 h with (A) or without (B) FBS. Data are shown
as mean ± SD. n = 3, **: p < 0.01; ***: p < 0.001.

3.2. mRNA Sequencing Reveals Early Responsive Genes of EGCG in Esophageal Cancer

To systematically characterize EGCG-regulated genes at the early stage, we treated
K150 cells with 60 µM of EGCG for 6 h and extracted mRNA for sequencing. We identified
2440 differentially expressed genes (DEGs) by comparing the samples treated with and
without EGCG. A total of 1072 genes were up-regulated while 1372 genes were down-
regulated (Figure 2A and S2B). In order to explore the function of EGCG on esophageal
cancer cells, we further performed enrichment of gene ontology and KEGG pathways
for the DEGs. For molecular function, the DEGs were highly enriched in hydrolase and
endopeptidase activity (Figure 2B). For the biological process, they were enriched in the
apoptotic process and DNA repair (Figure 2C). For KEGG pathways, the EGCG-regulated
genes were also enriched in Proteasome (Figure 2D), indicating active protein degradation
upon EGCG treatment. There was no significant difference in the global expression of all
detected genes between the control and the EGCG-treated samples (Figure S2A). On the
contrary, the median expression levels of the DEGs were lower than that of the control
groups (Figure 2E), indicating a general suppressive effect of EGCG on the expression of
regulated genes.

3.3. Validation of EGCG-Regulated Genes by qRT-PCR

To verify the DEGs identified by RNA sequencing, we selected 5 up-regulated genes
(SERPINB2, CCL3, IL24, KRTAP2-3, and KRT34) and 5 down-regulated genes (LUCL3, IFIT1,
IFIT3, NPIPB4, and ARGLU1) and performed qRT-PCR to determine the expression levels
of these genes before and after EGCG treatment for 6 h. The trends for the change of all
the ten genes were consistent with the sequencing data (Figure 3A,B and S3A), though
the differences were not significant for LUCL3, NPIPB4, and ARGLU1 in KYSE150 and for
ARGLU1 in KYSE510 (Figure 3B and S3A). SERPINB2 was the most up-regulated gene
(16-fold higher than the control) among 2440 DEGs. Therefore, we further explored the
expression trend in SERPINB2 at different time points. SERPINB2 was highly induced by
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EGCG at the early time points and reduced after 24 h, yet still significantly higher than the
control (Figure 3C and S3B). The protein level of SERPINB2 did not change before 12 h and
increased from 14 h to 22 hour’s treatment in KYSE150. On the other hand, the elevation of
SERPINB2 in KYSE510 was as early as 3 h. Intriguingly, we found synchronous fluctuation
of Caspase-3 and SERPINB2 during the time course assay (Figure 3D and S3C).
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3.4. SERPINB2 Negatively Regulates Cell Migration and Enhances Apoptosis in Esophageal Cancer

To investigate the function of SERPINB2 in esophageal cancer cells, we performed
knockdown experiments using antisense oligonucleotides (ASO) (Figure 4A,D and S4A,D).
The expression of SERPINB2 significantly reduced after gene knockdown regardless of
EGCG treatment, and the SERPINB2 levels were constantly higher in the presence of
EGCG versus no EGCG. (Figure 4A and S4A). Unexpectedly, knockdown of SERPINB2
did not affect cell viability regardless of EGCG treatment (Figure 4C and S4C). Impor-
tantly, we observed a significant increase in cell migration of KYSE150 (Figure 4E,F) and
KYSE510 (Figure S4E,G) in the absence of EGCG after SERPINB2 knockdown. However,
the migration-promoting effect of SERPINB2 downregulation was prohibited by EGCG
treatment (Figure 4G and S4F,H). In addition, cells treated with SERPINB2-ASO showed
decreased protein levels of Caspase-3 (Figure 4D and S4D), suggesting that SERPINB2 was
closely related to cell apoptosis. Consistently, overexpression of SERPINB2 induced high
expression of Caspase-3 and impaired cell viability (Figure 4H,I and S4I).
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Figure 3. Validation of DEGs in KYSE150 cells. (A) Heatmap showing the expression levels of the
top 10 up-regulated and down-regulated genes in RNA-seq. (B) Verification of DEGs after EGCG
treatment for 6 h in KYSE150 cells. (C) Relative expression of SERPINB2 after EGCG treatment at 0,
3, 6, and 24 h in KYSE150 cells. (D) Changes of SERPINB2 and Caspase-3 protein levels at different
time points in KYSE150. Data are shown as mean ± SD. n = 3, *: p < 0.05; **: p < 0.01; ***: p < 0.001, ns:
not significant.

3.5. EGCG Regulates the Expression of SERPINB2 via Enrichment of NF-κB at Its Promoter
and Enhancers

Next, we aimed to explore the regulatory mechanism of EGCG on SERPINB2 expres-
sion. To this end, we searched for potential transcriptional factors (TFs) that bind to the
promoter and enhancer regions of SERPINB2 on the Cistrome Browser [25]. Currently,
no ChIP-seq data are available for esophagus cancer cells, so we screened the TFs using
five independent data sets (GEO accession ID: GSM1566734, GSM2103051, GSM2419824,
GSM1305212, GSM2394421), including adipocyte, lung epithelium cells, Detroit 562 cells,
and endothelium cells (Figure 5A). We identified the subunit of NF-κB, p65 with a high ca-
pacity of binding and regulatory potential at both regions (Figure 5B). Thus, we conducted
ChIP PCR to verify three p65 binding sites at the enhancer region and two at the promoter
before and after EGCG treatment in both KYSE150 and KYSE510. We observed significant
increases for p65 enrichment at the two sites of the promoter, as well as the enhancer E1
and E3 after EGCG treatment for 2 h (Figure 5C–F). However, p65 binding at E2 was not
affected by EGCG treatment (Figure S5A,B).
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treatment. (F,G) Statistical analysis for cell migration distance of three independent assays without
(F) or with (G) EGCG. (H) Western blotting showing up-regulation of SERPINB2 and Caspase-3 after
SERPINB2 overexpression. (I) Cell viability determined by CCK8 assay after SERPINB2 overexpres-
sion. Data are shown as mean ± SD. n = 3, *: p < 0.05; ***: p < 0.001, ns: not significant.
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Figure 5. Prediction and verification of p65 binding sites on the promoter and enhancers of SERPINB2.
(A) Cistrome screenshot showing p65 binding peaks near the SERPINB2 locus in adipocyte, lung
epithelial cells, Detroit cells, and endothelial cells. (B) Regulatory potential for p65 at SERPINB2 locus
within 5 cell lines. (C,D) ChIP-qPCR in KYSE150 cells before and after EGCG treatment showing
p65 enrichment over the enhancer E1 and E3 (C) and the promoter (D) regions (E,F). ChIP-qPCR in
KYSE510 cells before and after EGCG treatment showing p65 enrichment over the enhancer E1 and
E3 (E) and the promoter (F) regions. Data are shown as mean ± SD. n = 3, *: p < 0.05; **: p < 0.01; ns:
not significant.

3.6. Knockdown of NF-κB Down-Regulates SERPINB2 Expression and Inhibits Cell Death

To further confirm the function of NF-κB in regulating SERPINB2, we performed
p65 knockdown and NF-κB inhibition in both KYSE150 and KYSE510. siRNA-mediated
knockdown of p65 significantly down-regulated the expression of SERPINB2 in both cell
lines, even under the condition of EGCG treatment (Figure 6A–C and S6A–C). In addition,
p65 knockdown also caused inhibition of cell apoptosis in KYSE150 (Figure 6C) but not in
KYSE510 (Figure S6C). However, p65 knockdown did not affect cell viability, which was
consistent with the effect of SERPINB2 knockdown (Figure 4C, Figure 6D, S4C and S6D).
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Similarly, BAY-11-7082-mediated NF-κB inhibition significantly decreased the expres-
sion of SERPINB2 (Figure 6F and S6F), regardless of the influence on RELA expression
(Figure 6E and S6E). These results indicate that NF-κB is upstream of SERPINB2 but not
the other way around (Figure 4B and S4B).
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4. Discussion

EGCG, the most abundant catechin in green tea, has been shown to suppress tumor
development in cancer but with low bioavailability [3,26]. In this study, we showed that
EGCG was more potent in the medium without FBS than that with FBS, indicating that
some ingredients in the serum may decrease the efficacy of EGCG, possibly by mediating
its degradation or inhibiting its cell import. This result may suggest that esophageal cancer
cells are more sensitive to anti-tumor agents under “starvation” conditions. We depicted
the change of transcriptional landscape after EGCG stimulation in esophageal cancer cells
and revealed its effects on cellular protein degradation and apoptosis. This study also
provides more than 2000 potential EGCG-regulated genes for future study.

EGCG treatment induced SERPINB2, which impaired cell growth and metastasis since
SERPINB2 knockdown enhanced cell migration and SERPINB2 overexpression promoted
cell death. These findings suggest that EGCG exerts its effect partly by upregulating SER-
PINB2. The roles of SERPINB2 are contentious and seemingly contradictory under different
circumstances, as cancer-promoting and -suppressing functions were reported [27,28], even
within the same cancer type [29,30]. SERPINB2 overexpression inhibited invasiveness
and metastasis in liver cancer and pancreatic cancer [29,31]. On the contrary, SERPINB2
expression induced cancer cell migration and was associated with a poor survival rate in
cholangiocarcinoma patients [32]. In this study, we demonstrated that SERPINB2 was a
tumor suppressor which inhibited metastasis and induced apoptosis (Figure 7), suggesting
that it could be a novel therapeutic target for treating esophageal cancer.
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related pathways.

Previous studies have shown that the extraordinary SERPINB2 induction in cells is
overly higher than that required to inhibit any protease [33], indicating that the function
of SERPINB2 was for storage or transport [34]. The protein level of SERPINB2 was accu-
mulated when the cells were treated with EGCG within 24 h, but the increase was not
comparable to the RNA elevation. This phenomenon was likely due to the short half-life of
SERPINB2 protein and clearance or expulsion by cancer cells.

External stimuli often cause variations in the binding affinity of related transcription
factors [24]. The epigenetic regulation of SERPINB2 has been explored but not fully under-
stood [34]. For example, the expression of SERPINB2 was coordinated by the recruitment
or departure of the pause-releasing kinase P-TEFb and the pause-inducing protein NELF
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at the promoter region [35]. In addition, SERPINB2 transcription was controlled by the
interaction of a silencer and distal transactivator region upstream of the transcription start
site [36]. The aryl hydrocarbon receptor was involved in mediating the expression of
SERPINB2 indirectly by regulating its enhancer RNA [37,38]. Conversely, the occupancy of
the GATA-type transcription factor Trps1 on the regulatory region of SERPINB2 repressed
its expression [39,40]. Our study revealed that transcription factor NF-κB was recruited
to the promoter and enhancers of SERPINB2 and involved in the transcriptional activa-
tion of SERPINB2 (Figure 7). Earlier studies showed that SERPINB2 could be induced by
TNF-α [5], possibly through the same pathway, which requires further investigation.

The current study has some limitations. First, both cell lines derived from ESCC
and cells from other types of cancer, such as adenocarcinoma, can be recruited to support
our conclusions. Second, although the artificial culture condition without FBS reduced
experimental disturbance, it could not mimic the situation in the humoral system. Last but
not least, apoptosis is a complicated process involving multiple proteins and has not been
thoroughly evaluated in this study.
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